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SINCE THE SEMINAL PAPER by Amihud and Mendelson (1986), numerous theoretical and empirical 

studies in equity and fixed income markets have shown that stocks and bonds with lower liquidity have 

lower prices and command higher expected returns.4 However, relatively little is known about the 

implications of liquidity for pricing in derivatives markets, such as those for equity or interest rate 

options. An exception in this relatively sparse literature is the study by Brenner et al. (2001), who confirm 

the normally expected result that non-tradable currency options in Israel are discounted by 21 percent on 

average, as compared to exchange-traded options.5 But is this always the case, especially for over-the-

counter (OTC) options markets? Are illiquid options always priced lower than liquid options, similar to 

the liquidity effect consistently observed in the underlying asset markets, or does this depend on the 

institutional structure of the specific market, as suggested by Brenner et al. (2001)? We raise and answer 

this important question using cap and floor data from the OTC interest rate options market, which is one 

of the largest (and yet least researched) options markets in the world, with about $52 trillion in notional 

principal and $700 billion in gross market value outstanding as of June 2007.6 

Contrary to the accepted wisdom in the existing literature based on evidence from other asset markets, we 

find that more illiquid interest rate options in the OTC markets trade at higher prices relative to the more 

liquid options, controlling for other effects. This effect goes in the direction opposite to what is observed 

for stocks, bonds, and even for some exchange-traded currency options. Our paper is the first to document 

such a liquidity effect in any financial market, and is also the first one to examine liquidity effects in the 

OTC options markets. This result has important implications for incorporating liquidity effects in 

derivative pricing models, since we show that the conventional intuition, which holds in other asset 

markets, may not hold in some derivatives markets.   

Our study contributes to the existing literature in several ways. According to the available evidence, the 

impact of illiquidity on asset prices is overwhelmingly presumed to be negative, since the marginal 

                                                           
4 These include theoretical studies, such as Longstaff (1995a) and Longstaff (2001), numerous empirical studies in 
the equity markets, several studies such as Amihud and Mendelson (1991), Krishnamurthy (2002), Longstaff (2004), 
etc. in the Treasury bond markets, and Elton et al. (2001), Longstaff et al. (2005), De Jong and Driessen (2007), 
Nashikkar et al. (2009) and others in the corporate bond market. In addition, Amihud (2002) looks at the liquidity 
premium in a time-series context. 
5 In other related studies, Vijh (1990), George and Longstaff (1993), and Mayhew (2002) examine the determinants 
of equity option bid-ask spreads, while Bollen and Whaley (2004), Cetin et al. (2006), and Garleanu et al. (2008) 
examine the impact of supply and demand effects on equity option prices.  
6 BIS Quarterly Review, December 2007, Bank for International Settlements, Basel, Switzerland.  
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investors typically hold a long position, thereby demanding compensation for the lack of immediacy they 

face if they wish to sell the asset. Thus, the liquidity premium on the asset is expected to be positive ― 

other things remaining the same, the more illiquid an asset, the higher is its liquidity premium and its 

required rate of return, and hence, the lower is its price. For example, in the case of a bond or a stock, 

which are assets in positive net supply, the marginal investor or the buyer of the asset demands 

compensation for illiquidity, while the seller is no longer concerned about the liquidity of the asset after 

the transaction. In fact, within a two-asset version of the standard Lucas economy, Longstaff (2008) 

shows that a liquid asset can be worth up to 25 percent more than an illiquid asset, when both have 

identical cash flow dynamics otherwise.  

However, derivative assets are different from underlying assets like stocks and bonds. First, there is no 

reason to presume that liquidity in the derivatives markets is an exogenous phenomenon. Rather, it is the 

result of the availability and liquidity of the hedging instruments, the magnitude of unhedgeable risks, and 

the risk appetite and capital constraints of the marginal investors, among other factors. Thus, illiquidity in 

derivatives markets captures all of the concerns of the marginal investor about the expected hedging costs 

and the risks over the life of the derivative. In particular, in the case of options, since they cannot be 

hedged perfectly, the dealers are keen to carry as little inventory as possible, after allowing for hedging.  

Therefore, the liquidity of the option captures the ease with which a dealer can offset the trade. 

Consequently, the liquidity of an option matters to the dealers and has an effect on its price. Second, 

derivatives are generally in zero net supply. Therefore, in derivatives, it is not obvious whether the 

marginal investor concerned about liquidity holds a long or a short position. In addition, in the case of 

options, the risk exposures of the short side and the long side are not necessarily the same, since they may 

have other offsetting positions. Both the buyer and the seller continue to have exposure to the asset after 

the transaction, until it is unwound. The buyer demands a reduction in price to compensate for the 

illiquidity, while the seller requires an increase. Due to the asymmetry of the option payoffs, the seller has 

higher risk exposure than the buyer. The net effect of the illiquidity, which itself is endogenous, is 

determined in equilibrium, and one cannot presume ex ante that it will be either positive or negative, 

especially if the motivations of the two parties for engaging in the transaction (e.g. in their other 

positions) are different.  
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These factors are especially prominent in the OTC interest rate cap and floor markets, which are 

institutional markets with hardly any retail presence. OTC markets are of special interest for the analysis 

of liquidity because of their different trading structure.  In the absence of a centralized trading platform, 

such as a conventional exchange, prices have to be bilaterally negotiated between buyers and sellers. The 

buyers of caps and floors in an OTC market are typically (buy and hold investing) corporations 

attempting to hedge their interest rate risk. The sellers (derivative desks at large commercial and 

investment banks) in this market are concerned about hedging the risks of the caps and floors that they 

sell. While bid-ask quotations are normally posted by the dealers, there are search costs associated with 

finding them. The size of individual trades is relatively large, with the contracts being long-dated 

portfolios of options. The long-dated nature of the contract creates enormous transaction costs if the seller 

hedges dynamically using the underlying spot or derivative interest rate markets. Also, dealers cannot 

hedge the risks perfectly, due to maturity and basis differences, as well as contract size considerations. 

Moreover, the dealers have much shorter horizons relative to maturity of these caps and floors which can 

be as high as ten years. Thus, the dealers are interested in reversing their trades and holding as little 

inventory as possible. Hence, they are concerned about the liquidity of these options.7 Thus, for the 

purposes of pricing of liquidity, the marginal investor in this market is generally likely to be net short. 

Consequently, the market maker with a net short position may raise the price of illiquid options.8 Hence, 

illiquidity in this case has a positive relationship with the price, rather than the conventional negative 

relationship identified in the literature so far. This is indeed what we find, within an endogenous 

specification for option liquidity and prices. We provide cross-sectional evidence (in the limited sense 

possible for interest rate options) about the illiquidity premium by analyzing contracts at different strike 

rates. We also provide evidence on the time-series dimension of the illiquidity premium, as in Amihud 

(2002), by focusing only on ATM contracts over time. 

Our result can be explained in the context of deviations from the Black-Scholes world. In the idealized 

setting of the hedging paradigm underlying that world, both the buyer and the seller can hedge 

                                                           
7 In recent years, hedge funds have been quite active in this market.  Based on our conversations with practitioners 
in this market, we understand that these players also typically have short positions in options. 
8 The results in Brenner et al. (2001), to the effect that illiquid currency options were priced lower than traded 
options, can also be explained by the same argument. In their case, illiquidity had a negative relationship with price. 
Since these options were auctioned by the Bank of Israel, the central bank, the buyers of these options were the ones 
who were concerned about illiquidity, and not the seller. 
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continuously, perfectly and costlessly in the underlying market; consequently, illiquidity should not have 

an effect on the price of an option. However, in the real world, options cannot always be exactly and 

costlessly replicated, due to stochastic volatility, jumps, discrete rebalancing or transaction costs.9 There 

are also limits to arbitrage, as outlined in Shleifer and Vishny (1997) and Liu and Longstaff (2004). In 

addition, option dealers face model misspecification and biased parameter estimation risk (Figlewski 

(1989)). These factors result in some part of the risk in options becoming unhedgeable, leading to an 

upward sloping supply curve (Bollen and Whaley (2004), Jarrow and Protter (2005) and Garleanu et al. 

(2008)). In addition, since dealers in this market are net short, they may hit their capital constraints more 

often if they have to sell more options to make a market (Brunnermeier and Pedersen (2008)). They 

would, therefore, ask for more compensation for providing liquidity, thus making the supply curve 

upward-sloping. 

Option liquidity is related to the slope of this upward-sloping option supply curve in three ways. First, the 

time when options become more illiquid may coincide with the time the sellers face greater unhedgeable 

risks, relative to their risk appetite and capital. In addition, it becomes more difficult for sellers to reverse 

their trades and earn the bid-ask spread. They face greater basis risk, since they have to hold an inventory 

of options that they cannot hedge perfectly. Second, the sellers face greater model risk when there is less 

liquidity ― when there are fewer option trades, the dealers have less data to reliably calibrate their pricing 

models. Third, as modeled in Duffie et al. (2005), due to bilateral trading in OTC markets, dealers can 

have market power; hence, search frictions can increase bid-ask spreads as well as liquidity premia.10 All 

these factors result in an increase in the slope of the option supply curve when there is less liquidity, 

consistent with Cetin et al. (2006). The impact of a steeper supply curve on option prices and bid-ask 

spreads can be understood within the theoretical model of Garleanu et al. (2008). Given the inventory of 

the dealer, a steeper supply curve would result in wider bid-ask spreads, since the difference in prices for 

a unit positive, and negative, change in their inventory would be larger. In addition, if the net demand by 

                                                           
9 Constantinides (1997) argues that, with transaction costs, the concept of the no-arbitrage price of a derivative is 
replaced by a range of prices, which is likely to be wider for customized, over-the-counter derivatives (which 
include most interest rate options), as opposed to plain-vanilla exchange-traded contracts, since the seller has to 
incur higher hedging costs to cover short positions, if they are customized contracts. In a similar vein, Longstaff 
(1995b) shows that in the presence of frictions, option pricing models may not satisfy the martingale restriction. 
10 The search costs may not change much on a daily basis. Thus, the contribution of the mechanism in Duffie et al 
(2005) to the time variation in the liquidity discount may be secondary. 
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the end-users is positive (as in the case of interest rate caps and floors), a steeper supply curve will result 

in higher option prices, since the dealer is net short in the aggregate.11 In such a scenario, higher bid-ask 

spreads (lower liquidity) would be associated with higher prices, resulting in a liquidity discount, not a 

premium. Our empirical results are consistent with these implications, given the structure of the OTC 

interest rate options markets. 

Although there is a plethora of research on liquidity effects in equity and debt markets, particularly in the 

United States, there is scant evidence in the case of derivative markets. Using data from the OTC interest 

rate options markets, our results underscore the fact that the positive relationship between liquidity and 

asset prices cannot be generalized to other markets without considering the structure of the market and the 

nature of the demand and supply forces. This fundamental point must be taken into account in both 

theoretical and empirical research. Since OTC interest rate derivatives form a substantial proportion of the 

global derivatives markets, our results could potentially provide insights into the broad question of 

liquidity effects in derivatives markets. 

Recent work by Bongaerts et al (2009) presents a theoretical model of the pricing of liquidity and 

liquidity risk for derivatives. These authors show that the effect of liquidity on pricing can be a premium 

or a discount, depending on the relative wealth, risk aversion and horizon of buyers and sellers. They find 

empirically that for credit default swaps, it is the sellers who earn compensation for illiquidity. 

The structure of our paper is as follows: In Section I we describe the data set and present summary 

statistics. After controlling for the term structure and volatility factors, a simultaneous equation system is 

employed to estimate and examine the relationship between the price (excess implied volatility relative to 

a benchmark) and the liquidity (relative bid-ask spread) of interest rate options. Section II presents the 

results for this relationship for various specifications. Section III concludes with a summary of the main 

results and directions for future research.   

                                                           
11 Garleanu et al (2008) do not specifically examine the relationship between illiquidity and the prices of derivative 
assets. Their main focus is on the effects of the changes in inventory on prices through movement along the supply 
curve. However, their set-up is also useful in understanding the changes in the slope of the supply curve and the 
resultant relationship between illiquidity and option prices. 
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I. Data 

The data for this study consist of an extensive collection of euro (€) interest rate cap and floor prices over 

the 29-month period from January 1999 to May 2001, obtained from WestLB (Westdeutsche Landesbank 

Girozentrale) Global Derivatives and Fixed Income Group. These are daily bid and offer price quotes 

over 591 trading days for nine maturities (two years to ten years, in annual increments) across twelve 

different strike rates ranging from 2% to 8%. On a typical day, price quotes are available for about 30-40 

caps and floors, reflecting the maturity-strike combinations that exhibit market interest on that day. We 

present below some descriptive statistics of our data. We then explain why our data are representative of 

the market quotes even though our prices come from a single dealer. 

A. Descriptive Statistics 

Our data set allows us to conduct our empirical analysis for caps and floors across strike rates. These caps 

and floors are portfolios of European interest rate options on the six-month Euribor with a six-monthly 

reset frequency. In Appendix A, we provide details of the contract structure for these options. Along with 

the options data, we also collected data on euro swap rates, and the daily term structure of euro interest 

rates, from the same source. These are key inputs necessary for conducting our empirical tests.  

Table I provides descriptive statistics on the midpoint of the bid and ask prices for caps and floors over 

our sample period. The prices of these options can be almost three orders of magnitude apart, depending 

on the strike rate and the maturity of the option. For example, a deep out-of-the-money, two-year cap may 

have a market price of just a few basis points, while a deep in-the-money, ten-year cap may be priced 

above 1500 basis points. Since interest rates varied substantially during our sample period, the data have 

to be reclassified in terms of “moneyness” (“depth in-the-money”) to be meaningfully compared over 

time. In table I, the prices of options are grouped together into “moneyness buckets,” by calculating the 

Log Moneyness Ratio (LMR) for each cap/floor. The LMR is defined as the logarithm of the ratio of the 

par swap rate to the strike rate of the option. Therefore, a zero value for the LMR implies that the option 

is at-the-money forward, since the strike rate is equal to the par swap rate. Since the relevant swap rate 

changes every day, the moneyness of the same strike rate, same maturity, option, as measured by the 

LMR, also changes each day. The average price, as well as the standard deviation of these prices, in basis 
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points, are reported in the table. It is clear from the table that cap/floor prices display a fair amount of 

variability over time. Since these prices are grouped together by moneyness, a large part of this variability 

in prices over time can be attributed to changes in volatilities over time, since term structure effects are 

largely taken into account by our adjustment.  

We also document the magnitude and behavior of the liquidity costs in these markets over time, for caps 

and floors across strike rates. We use the bid-ask spreads for the caps and floors as a proxy for the 

illiquidity of the options in the market. In an OTC market, this is the only measure of illiquidity available 

for these options. Other measures of liquidity common in exchange-traded markets such as volume, 

depth, market impact etc., are just not available. In our sample, we do observe the bid-ask spread for each 

option every day. Therefore, we settle for using this metric as a meaningful, although potentially 

imperfect, proxy for liquidity.12 

It is important to note that these bid-ask spreads are measures of the liquidity costs in the interest rate 

options market and not in the underlying market for swaps. Although the liquidity costs in the two 

markets may be related, the bid-ask spreads for caps and floors directly capture the effect of various 

frictions in the interest rate options market, along with the transaction costs in the underlying market, as 

well as the imperfections in hedging between the option market and the underlying swap market. 

Therefore, the bid-ask spread of the option is the liquidity proxy relevant for pricing analysis.  

In table II, we present the relative bid-ask spreads (RelBAS), defined as the bid-ask spreads divided by 

the mid price (the average of the bid and ask prices) of the option, grouped together into moneyness 

buckets by the LMR. It is important to note that, in general, these bid-ask spreads are much larger than 

those for most exchange-traded options. Close-to-the-money caps and floors have relative bid-ask spreads 

of about 8-9%, except for some of the shorter-term caps and floors that have higher bid-ask spreads. Since 

deep in-the-money options (low strike rate caps and high strike rate floors) have higher prices, they have 

lower relative bid-ask spreads (3-4%). Some of the deep out-of-the-money options have large relative bid-

                                                           
12 The bid-ask spread is a widely accepted proxy for liquidity used by numerous prior studies, including Amihud and 
Mendelson (1986), and has been shown to be highly correlated with other proxies for liquidity. In addition, in the 
spot fixed income markets, Fleming (2003) and Goldreich, Hanke and Nath (2005) show that the bid-ask spread 
quoted by market makers who supply liquidity better measures the value investors place on immediacy, rather than 
the actual trade prices, trade sizes, or trading volume. They also show that the bid-ask spreads are highly correlated 
with price impact coefficients, similar to the ILLIQ measure of Amihud (2002). 
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ask spreads ― for example, the two-year deep out-of-the-money caps, with an average price of just a 

couple of basis points, have bid-ask spreads almost as large as the price itself, on average about 80.9% of 

the price. Part of the reason for this behavior of bid-ask spreads is that some of the costs of the market 

makers (transaction costs on hedges, administrative costs of trading, etc.) are fixed costs that must be 

incurred whatever may be the value of the option sold. However, some of the other costs of the market 

maker (inventory holding costs, hedging costs, etc.) are dependent on the value of the option bought or 

sold. Having presented some preliminary statistics, we now argue that our data are representative of the 

market as a whole, even though they were obtained from a single dealer. 

B. Representativeness of the Data 

There is no single source of market-wide data for most over-the-counter markets.13  This presents a major 

challenge to researchers since there is a choice between collecting data from one or a handful of dealers 

and not being able to study the market at all. Unfortunately, this is an issue in the interest rate options 

market that we study here.  Our data provider, WestLB, is one of the dealers who subscribe to the interest 

rate option valuation service from Totem. Totem is the leading industry source for asset valuation data 

and services supporting independent price verification and risk management in the global financial 

markets. Most derivative dealers subscribe to their service. As part of this service, Totem collects data for 

the entire “skew” of caplets and floorlets across a series of maturities from its set of dealers. They 

aggregate this information and return the consensus values back to the dealers that contribute data to 

them. The market consensus values supplied to the dealers include the underlying term structure data, 

caplet and floorlet prices, as well as the prices and implied volatilities of the reconstituted caps and floors 

across strike rates and maturities. Hence, the prices quoted by dealers such as WestLB that are a part of 

this service reflect market-wide consensus information about these products. This is especially true for 

plain-vanilla caps and floors, which are very high-volume products with standardized structures that are 

also used by dealers to calibrate their models for pricing and hedging exotic derivatives. Our discussions 

with market participants confirm that there is virtually no systematic variation in quotes across the dealers 

                                                           
13 Important recent exceptions to this statement are the U.S. corporate bond market after the advent of the Trade 
Reporting and Compliance Engine (TRACE) data base under the auspices of the Financial Industry Regulatory 
Authority (FINRA), and the syndicated loan secondary market where the Loan Syndications and Trading 
Association (LSTA) collects and distributes secondary loan prices to subscribing market participants (see Gupta et. 
al. (2008) for more information on the secondary loan market). 
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who subscribe to Totem, especially for plain-vanilla products like the interest rate caps and floors that we 

study in this paper. These are relatively standardized options that are traded in large volumes every day, 

where dealers are active on the bid and the ask sides on a daily basis. According to our sources, for such 

vanilla products, a large dealer, especially one who subscribes to Totem, cannot afford to be 

systematically away from the “market” (quotes from other dealers) on either the bid or the ask side, since 

they would either lose business right away, or be hit with a deluge of orders. Furthermore, since these are 

plain vanilla products, the price quotes to institutional clients do not deviate systematically from those in 

the inter-dealer market, due to the high level of activity in the market in both segments.  

In addition, since WestLB had to mark its trading books to market every day, it would be highly unlikely 

that they would use one set of prices as quotes to their customers, but use a different set of prices for 

marking-to-market, since this would violate prudent risk management controls. Using different prices for 

the front office and for the profit and loss account would ultimately cause huge issues of reconciliation 

and also client satisfaction. Thus our data are representative of the market prices for these caps and 

floors.14  

Another way to assess the representativeness of our data is to consider the competitiveness of the market. 

The euro OTC interest rate derivatives market is extremely competitive, especially for plain-vanilla 

contracts like caps and floors. The BIS estimates the Herfindahl index (sum of squares of market shares of 

all participants) for euro interest rate options (which includes exotic options) at about 500-600 during the 

period from 1999 to 2004, which is even lower than that for USD interest rate options (around 1,000), 

compared to a range of 0-10,000 (where 0 indicates a perfectly competitive market and 10,000 a market 

dominated by a single monopolist.) The Herfindahl index values indicates that the OTC interest rate 

options market is a fairly competitive market; hence, it is safe to rely on option quotes from a top 

European derivatives dealer (reflecting the best market consensus information available with them) such 

as WestLB during our sample period. Given the competitive structure of the market, any dealer-specific 

effects on the quotes are likely to be small and unsystematic. 

                                                           
14 The use of market dealer quotations for studying liquidity effects is consistent with several prior studies, including 
Longstaff et al. (2005). 
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We also compare our mid-prices to the mid-prices for ATM interest rate caps and floors, provided by 

DataStream for this period. We cannot use the data provided by DataStream for our study because they do 

not provide bid and ask quotes, and also do not have even mid-prices for options that are away-from-the-

money. However, we find an almost perfect correlation between their ATM mid-price implied volatilities 

and our near-the-money mid-price implied volatilities. These near-perfect correlations rule out the 

possibility that the dealer’s quotes are skewed to one side due to inventory concerns. Inventory concerns 

would mean that both the bid and ask quotes are too low or too high compared to the market quotes thus 

making the dealer’s mid-quotes deviate from the market mid-quotes. 

We also examine the representatitiveness of our bid-ask spreads by comparing them to the estimated bid-

ask spreads for options on 3-month Euribor futures that are traded on the LIFFE. As mentioned on 

LIFFE’s website, these options are part of LIFFE’s Euribor contract suite, which is extremely liquid and 

accounts for 99% of money market activity for exchange-traded derivatives on the Euro-denominated 

short term interest rate. Ideally, we would have liked to compare our bid-ask spreads with bid-ask spreads 

for Euribor caps and floors from a different source. Unfortunately, such data do not exist for the Euribor 

options. However, the next best alternative is to compare the magnitude of our bid-ask spreads with those 

of interest options on the same underlying yield curve. 

LIFFE data on these options do not provide bid and ask quotes directly. However, they do have daily 

high, low and closing prices. We use the procedure suggested in Corwin and Schultz (2008) to estimate 

the bid-ask spreads from daily high and low prices. We modify this procedure so that it can be applied to 

options and find that the average bid-ask spread is 3.6% for these options. Using the model in Roll 

(1984), we get average bid-ask spreads of 11%. For the same moneyness as these options, the bid-ask 

spreads for caps and floors in our sample average to 8.7%. Caps and floors are OTC derivatives, and are 

likely to have higher bid-ask spreads than those for the more liquid exchange-traded options on Euribor 

futures. Thus, the average bid-ask spreads in our sample do not appear to be too wide. We provide the 

details of the estimation of the bid-ask spreads for the LIFFE options in Appendix B. 

Having established the reasonableness of our mid-quotes as well bid-ask spreads, we now turn to 

answering the question about the pricing of liquidity. 
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II. The Pricing of Liquidity in OTC Interest Rate Options 

We use the flat implied volatilities from the Black-BGM model, estimated using mid-prices (the average 

of bid and ask) to characterize option prices throughout the analysis from here on.15 Since our primary 

objective is to examine liquidity effects in interest rate option markets, we focus on the traded assets, 

which are caps and floors. Therefore, we use the flat volatilities of caps and floors, since the spot 

volatilities would correspond to caplets and floorlets, which are untraded assets. The raw implied 

volatility obtained from the Black BGM model removes underlying term structure effects from option 

prices.16 Therefore, a change in the implied volatility of an option from one day to the next can be 

attributed to changes in interest rate uncertainty, or other effects not captured by the model, and not 

simply due to changes in the underlying term structure. We then estimate the excess implied volatility 

(EIV, similar to that used in Garleanu et al. (2008)) as the difference between the implied volatility and a 

benchmark volatility estimated using a panel GARCH model on historical interest rates. We check for the 

robustness of our results by estimating the benchmark volatility using several alternative methods. The 

EIV is a cleaner measure of the expensiveness of options, since even the general level of interest rate 

volatility has been factored out of the implied volatility of each option contract. In addition, in the 

empirical tests where we use EIV, we control for the shape of the volatility smile (using functions of 

LMR), and use several term structure variables as well as approximate controls for the skewness and 

excess kurtosis in the underlying interest rate distribution. In the presence of these controls, the changes in 

the EIV for a particular option cannot be attributed to changes in the underlying term structure or to 

changes in the general level of interest rate volatility. Therefore, the EIV can be effectively used to 

examine factors, such as liquidity, other than the underlying term structure or interest rate uncertainty that 

                                                           
15 The use of implied volatilities, from a variant of the Black-Scholes model, even though model- dependent, is in 
line with all prior studies in the literature, including Bollen and Whaley (2004). The details of the calculation of 
implied volatility are provided in the Appendix. 
16 Our implied volatility estimation is likely to have much smaller errors than those generally encountered in equity 
options (see, for example, Canina and Figlewski (1993)). We pool the data for caps and floors, which reduces errors 
due to misestimation of the underlying yield curve. The options we consider are more long term (the shortest 
cap/floor has a two-year maturity), which reduces this potential error further. For most of our empirical tests, we do 
not include deep ITM or deep OTM options, where estimation errors are likely to be larger. Furthermore, since we 
consider the implied flat volatilities of caps and floors, rather than spot volatilities, the errors are even further 
reduced due to the implicit “averaging” in this computation. The “flat” volatility is the weighted average of the 
volatilities for all the caplets/floorlets in a cap/floor, while the “spot” volatility is the volatility of an individual 
caplet/floorlet. 
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may affect option prices in this market.17 In the rest of the paper, we use the EIV as a measure of the 

expensiveness of the option, for every strike and maturity. 

A. Panel GARCH Model for Benchmark Volatility 

The GARCH models proposed by Engle (1982) and Bollerslev (1986) have been extended to explain the 

dynamics of the short-term interest rate by Longstaff and Schwartz (1992), Brenner et al. (1996), Cvsa 

and Ritchken (2001), and others. These studies find that for modeling interest rate volatility, it is 

important to allow the volatility to depend both on the level of interest rates and on unexpected 

information shocks. The asymmetric volatility effect as modeled in Glosten, Jagannathan, and Runkle 

(GJR, 1993) has also been found to improve volatility forecasts. In particular, these studies recommend 

using a GJR-GARCH (1,1) model with a square-root type level dependence in the volatility process. 

However, for estimating the relevant benchmark volatilities for caps/floors, we need to model forward 

rate volatilities. These present an additional challenge, since the volatilities for different forward rate 

maturities, while being different, are linked together due to the common factors that drive the entire term 

structure of interest rates. Therefore, the entire term structure of forward rate volatilities must be 

estimated simultaneously in an internally consistent modeling framework. We extend this literature and 

develop a panel GARCH model with the following process for forward rates: 
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where ft,T is the six-month tenor forward rate, T periods forward, observed at time t. This is a panel 

version of the GJR-GARCH(1,1) model with square-root level dependence. It is a parsimonious, yet very 

flexible, model that nests many widely used GARCH models, as well as the continuous time term 

structure models in the Heath, Jarrow, and Morton (HJM, 1992) framework, including the Cox, Ingersoll, 

and Ross (CIR, 1985) model. We estimate this panel GARCH model using the maximum likelihood 

                                                           
17 Changes in the EIV, in the presence of these controls, are somewhat analogous to the excess returns used in asset 
pricing studies.  
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method and the Marquardt-Levenberg algorithm. We have a panel of 19 forward rates of six-month tenor 

with maturities ranging from six-months to 9.5 years in increments of six months each. For each day, we 

estimate the GARCH model on the history of the forward rates available up to that day. We impose a 

minimum requirement of 66 days of data (about three months) which gives us sufficient observations (66 

x 19 = 1,254) to estimate this panel GARCH model reliably. Based on the estimated model, we forecast 

the one-day-ahead volatilities of all the forward rates, and use this forecast as a proxy for the expected 

volatility of the relevant maturity forward rate. Using these forward rate volatility forecasts, we price each 

caplet individually using the Black model, and then invert the resultant at-the-money cap price to obtain 

the flat implied volatility which is then used as the benchmark volatility in the EIV calculation. We use 

the panel GARCH model as a sophisticated way of extracting information from historical volatility, 

which we convert into a consistent benchmark through the Black model.18  

In addition to using this panel GARCH model to estimate the benchmark volatility, we employ two 

alternative volatility measures as benchmarks to compute the EIV for additional robustness. The first is a 

simple historical volatility estimated as the annualized standard deviation of changes in the log forward 

rates of different maturities, using the past 66 days of forward rate data (our results are again robust to 

different choices of this historical time window). The second alternative volatility measure we use is a 

comparable implied volatility from the swaption market. We use only the at-the-money “diagonal” 

swaption volatilities since they are the most actively traded swaption contracts in the market. For 

example, for the two-year caps/floors, we use the 1x1 swaption (one-year option on the one-year forward 

swap) volatility as the relevant benchmark, since the 1x1 swaption price reflects the volatilities of forward 

rates out to two-years in the term structure. Similarly, for the four-year caps/floors, we use the 2x2 

swaption volatility as the benchmark volatility. For the three-year caps/floors, we use the average of the 

1x1 and the 2x2 swaption volatilities. The other benchmark volatilities are calculated in a similar manner. 

It is important to note that the first two benchmark volatility measures (the panel GARCH based volatility 

and simple standard deviation) are both historical volatility measures. In principle, one could forecast the 

                                                           
18 We do extensive robustness tests using several alternative specifications of the panel GARCH model (including a 
specification with a parametric volatility hump similar to the one in Fan et al. (2007)), to ensure that our results are 
not driven by any particular choice of a model for the benchmark volatility. These results are not presented in the 
paper to save space, but can be furnished by the authors, upon request. 
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volatility of forward rates over the life of the cap/floor using the panel GARCH model. However, given 

the long maturity of interest rate options like caps/floors (unlike most equity options) such forecasts are 

likely to be unreliable. As a result, we use these two alternative historical volatility measures (panel 

GARCH and standard deviation) as proxies for the expected volatility. It is important to note that these 

measures capture the historical volatility of the forward rates of appropriate maturity; hence, the long 

duration of the particular caps and floors is automatically taken into account to some extent. The 

advantage of the panel GARCH methodology is that it extends to forward rates a model that has been 

shown to work well for forecasting the short rate volatility. The advantage of the historical standard 

deviation is its simplicity and freedom from the imposition of any particular model structure. However, 

both these benchmarks suffer from the fact that they are backward looking, whereas option prices are 

based on forward looking volatilities. The volatility from the swaption market provides us with a measure 

of the expected volatility in the underlying Euribor market (which is common to both caps/floors as well 

as swaptions) over the maturity of the cap/floor, but from a different market that is not directly influenced 

by the liquidity effects in the cap/floor markets. These three benchmark volatility measures, applied 

separately, complement each other and inspire confidence in the robustness of our results.  

Figure 1 presents the scatter plots for the EIV across moneyness represented by LMR for our three 

benchmark volatility measures – panel GARCH, standard deviation, and swaption implied volatility. The 

plots are presented for three representative maturities ― two-year, five-year, and ten-year ― for the 

pooled cap and floor data. The plots for the other maturities are similar. These plots clearly show that 

there is a significant smile curve, across strike rates, in these interest rate options markets. The smile 

curve is steeper for short-term options, while for long-term options, it is flatter and not symmetric around 

the at-the-money strike rate. It is also important to note that the range of moneyness observed in this 

market is much greater than that generally observed in the equity markets. For example, for two-year 

caps/floor, it is not uncommon to find options that have strike rates that are 40%-50% higher or lower 

than the at-the-money strike rate. We classify the options that have LMRs between -0.1 and 0.1 as being 

at-the-money, since the volatility smile is virtually non-existent within this moneyness range.  
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B. The Relationship between Liquidity and Option Prices  

As argued in the literature, the relationship between the liquidity of an asset and its price is of 

fundamental importance in any asset market. For common underlying assets like stocks and bonds usually 

more liquid assets will have lower returns and higher prices. However, for derivative assets, especially 

those in zero net supply where it is not clear whether the marginal investor would be long or short, this 

relationship may go either way. In this subsection, we examine this relationship for OTC euro interest rate 

caps and floors.  

To gain an initial understanding of this relationship, we first estimate the correlation between the EIV and 

the RelBAS for all maturities for all three of the benchmark volatility measures. For example, the 

correlation between the EIV (based on the panel GARCH model) and the RelBAS is about 0.41 for two-

year maturity caps/floors, 0.35 for five-year maturity caps/floors, and 0.44 for ten-year maturity 

caps/floors, which are all statistically significantly greater than zero.19 Figure 2 presents the sample 

scatter plots for the two, five, and ten-year maturity options, for all three benchmark volatility measures. 

The plots for the other maturities are similar. Across all the nine maturities, we find that the average of 

the correlation coefficients (between the EIV and the RelBAS) is 0.41 using the panel GARCH based 

benchmark volatility, 0.44 using the historical standard deviation based benchmark volatility, and 0.43 

using the swaption based benchmark volatility. Although these are just “raw” correlations between option 

expensiveness and illiquidity, they do indicate that, on average, more illiquid options appear to be more 

expensive across all moneyness buckets and maturities.  

Illiquidity, especially for a derivative asset, arises endogenously due to the fundamental frictions in 

financial markets. In particular, the bid-ask spreads capture the slope of the supply curve of the dealers, 

which is affected by hedging costs, the extent of unhedgeable risks, and the dealers’ risk appetite and 

capital. Liquidity in a broader sense also captures the ease with which the market-makers can find an 

offsetting trade. Even though dealers may find offsetting trades for part of their inventory, they would still 

prefer to carry as little inventory as possible. Therefore, finding an offsetting trade, and hence the 

liquidity of the options themselves, matters to them. To the extent that they cannot find an offsetting 

                                                           
19 The correlations between the EIV and the RelBAS are positive and significant using either bid or ask prices, as 
well. 
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trade, they would charge a premium to carry that inventory. In this manner, liquidity could be both a 

“cause” and an “effect”. In fact, in the context of a dynamic trading model, Gallmeyer et al. (2007) show 

that, especially for long-dated securities, the demand discovery process leads to endogenous joint 

dynamics in prices and liquidity. Thus, both liquidity and price can have an effect on each other, and it is 

likely that they are jointly determined by a set of exogenous macro-financial variables. Therefore, we 

model this endogenous relationship within a simultaneous equation model of liquidity (relative bid-ask 

spreads) and price (EIV), using macro-financial variables as the exogenous determinants of these two 

endogenous variables.  

B.1. Liquidity Effects in ATM Options 

Unlike underlying asset markets, options markets have another dimension (the strike price/rate) along 

which both liquidity and prices change, as shown in the figures above. There is a smile (or a skew) across 

strike rates in both implied volatilities as well as liquidity. These smiles/skews arise in part due to the 

skewness and excess kurtosis in the distribution of the underlying interest rates. In order to clearly 

disentangle liquidity effects from any effects arising due to the volatility smiles/skews observed in this 

market, we first focus only on at-the-money options, with LMRs between -0.1 and 0.1. More precisely, 

these options are near-the-money, instead of being truly at-the-money. However, as shown in figure 1, the 

volatility smile is virtually flat within this moneyness range; hence, the smile effects, if any, are negligible 

for these options.20 In spite of the smile being virtually flat for these at-the-money options, we control for 

any residual smile effects within this moneyness bucket using an asymmetric quadratic function of LMR 

that best explains the variation in EIV as well as in RelBAS across strikes.21 Therefore, we use LMR, 

LMR2, and (1LMR<0.LMR) as controls for any residual strike rate effects for both liquidity and price in the 

simultaneous equation model.  

Our discussions with market participants revealed that the dealers consider the vega and the moneyness of 

the options as proxies for the inventory risk they face, while setting bid-ask spreads. As a good 

                                                           
20 In additional tests, we find that our results are robust to narrower (LMRs between -0.05 and 0.05) or wider (LMRs 
between -0.15 and 0.15) LMR ranges for defining options as being at-the-money. 
21 This is based on our examination of alternative functional forms using pooled time-series cross-sectional 
regressions of EIV and RelBAS on various functions of LMR, and is consistent with the appearance of the plots 
presented in Figure 1. Our results are robust to the exclusion of these LMR controls for the at-the-money options. 

16 



 

approximation, vega can be expressed as a quadratic function of the moneyness of the option. Thus, the 

inclusion of these LMR controls in the RelBAS equation also takes care of the dependence of bid-ask 

spreads on vega and on moneyness. The objective of such LMR controls in both the equations is to filter 

out any residual dependence of EIV and RelBAS on the moneyness of the option, and examine whether 

there is still any relationship between these two variables, as well as between these two variables and the 

exogenous variables in the model. 

Therefore, we estimate the following equation system for ATM options with LMRs between -0.1 and 0.1: 
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The two-equation simultaneous-equations model above has two endogenous variables (EIV and RelBAS), 

a vector of LMR controls, and a vector of exogenous variables in both the equations for model 

identification. The intuition behind the choice of the exogenous variables is explained below. In 

econometric tests reported later in the paper, we examine the validity and strength of these variables as 

instruments. 

Although we have already benchmarked the cap/floor implied volatility against various proxies for the 

expected interest rate volatility, we include the swaption volatility (SwpnVol) in the first equation to 

account for any residual dependence of the EIV on the level of volatility. We also include the swaption 

volatility as an explanatory variable for relative bid-ask spreads since greater uncertainty would make a 

risk-averse market maker demand higher compensation for providing liquidity and hence result in higher 

bid-ask spreads. The ATM swaption volatility, which is from a different but related market, can be 

interpreted as a general measure of the future interest rate volatility.  

Caps and floors are over-the-counter options not backed by a clearing corporation or an exchange. Hence 

the level of credit risk may affect the pricing as well as the liquidity of these options. To account for this 
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effect, we include the six-month German Treasury-Euribor Spread (DefSprd) as a measure of the 

aggregate default risk of the constituent banks in the Euribor fixing.  

In the first equation of the simultaneous equation model, we include the spot six-month Euribor (6Mrate) 

and the slope of the yield curve (Slope, defined as the difference between the five-year and six-month spot 

rates) as instruments for EIV. These variables are used as proxies of the expectations of the market about 

the direction in which interest rates are expected to move in the future. They also reflect the expectations 

in the financial markets about future inflation and money supply, which are fundamental determinants of 

the term structure of interest rates and its volatility. Thus, these yield curve variables are likely to capture 

the demand for these interest rate options and hence affect EIV of these options. However, it is unlikely 

that the yield curve variables have a direct effect on the relative bid-ask spreads of these options. 

Therefore, we use them as instruments for the excess implied volatilities.  

Typically, in models of interest rates displaying skewness and excess kurtosis, the future distribution of 

interest rates depends on the current day’s volatility and on the level of interest rates. Thus, by including 

the contemporaneous volatility and interest rate variables in the EIV regression, we try to approximately 

control for non-normal distribution of future interest rates, without explicitly considering a more detailed 

structural model for interest rates. 22   

In the second equation of the simultaneous equations model, we include the logarithm of the trading 

volume of the three-month Euribor futures contract on the London International Financial Futures 

Exchange i.e. LIFFE (LiffeVol) and the spread between the three-month AA financial CP rate and the 

three-month Treasury bill rate (CpTbSprd) as instruments for the relative bid-ask spreads. The Euribor 

futures volume is a proxy for trading activity due to interest rate hedging demand. There are no volume 

data available for caps and floors, since they are traded over-the-counter. However, the Euribor futures 

volume is likely to be positively correlated with the trading volume (and liquidity) for caps and floors, 

since, to some extent, they are substitute products for hedging interest rate risk. However, there is no 

reason for the Euribor futures volume to affect the excess implied volatilities of these options, except 

through liquidity effects. Therefore, it is likely to be a valid instrument for the relative bid-asks spreads. 

                                                           
22 Our results for the ATM bucket are robust to the explicit inclusion of the historical skewness and excess kurtosis 
of the interest rate distribution as additional controls in the simultaneous equation model. 
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Since the CP market is illiquid in comparison with the T-bill market, the spread in the rates of the 

commercial paper (CP) over the Treasury bill (T-bill) rates can be used as a proxy of the aggregate 

liquidity demand.23, Therefore, this spread is likely to be positively correlated to the bid-ask spreads of 

caps and floors to the extent that macro institution-level liquidity may be correlated with micro contract-

level liquidity. However, it is unlikely that this spread would affect the excess implied volatilities of these 

options, except through their effect on liquidity. Hence, it is a valid instrument for the relative bid-ask 

spreads.  

These macro-financial variables, taken together, incorporate most of the relevant information about 

fundamental economic indicators, such as the expected inflation, the GDP growth rate, and risk premia. 

The macro-financial variables along with the LIFFE futures volume also control for the volatility risk 

premium in this market. Since the fundamental economic variables are available at most monthly, we 

must rely on daily proxies for the expectations of these economic factors in the financial markets.24 

This simultaneous equation model is estimated using three-stage least squares, since the residuals in each 

equation may be correlated with the endogenous variables, and these residuals may also be correlated 

across the two equations. We use instrumental variables to produce consistent estimates, and generalized 

least squares (GLS) to account for the correlation structure of the residuals across the two equations. In 

the first stage, we develop instrumented values for both the endogenous variables, using all exogenous 

variables in the system as instruments. In the second stage, based on a two-stage least squares estimation 

of each equation, we obtain a consistent estimate of the covariance matrix of the equation disturbances. 

Using this covariance matrix of residuals from the second stage, and the instrumented values of the 

endogenous variables from the first stage, we then perform a GLS estimation as the third stage of the 

three-stage least squares estimation.  

The results for this model are presented in table III. To save space, we do not present the coefficients for 

the LMR controls. They are mostly insignificant, consistent with the fact that the implied volatility smile 

is almost flat in the near-the-money region that we consider. Our primary inference is regarding the sign 

                                                           
23 This use is consistent with several prior studies, including Krishnamurthy (2002) and Gatev and Strahan (2006). 
24 We considered other macro-financial variables as well, such as yields on speculative grade long-term debt, the 
short term repurchase (repo) rate as a proxy for money supply, and the volatility and stock returns in European 
equity markets. These variables were eliminated due to collinearity with the variables included in the model. 
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of the coefficients c2 and d2. Both these coefficients are positive and statistically significant for all option 

maturities. This shows that for ATM options, within the endogenous framework specified above, 

controlling for potential exogenous drivers of price and liquidity in this market, higher values of EIV are 

associated with higher values of RelBAS, and vice-versa. In other words, more liquid options are priced 

lower, while less liquid options are priced higher, after taking into account the effects of the macro and 

control variables. This is an important result, and is quite different from the relationship between price 

and liquidity observed in other asset markets, such as those for stocks and bonds. For example, in the 

equity markets, it has been shown that more liquid stocks have lower returns (higher prices); what we 

observe here is the opposite; that is, that more liquid options have lower prices. Thus in this market, 

higher liquidity is actually associated with a discount, not a premium. 

The primary explanation for this result is the fundamental difference between derivative assets and 

underlying assets alluded to in the introduction. Derivatives are in zero net supply; therefore, it is unclear 

whether the marginal investor concerned about illiquidity in these assets would be long or short. In 

addition, the long and short positions in derivatives have asymmetric risk exposures (especially for 

options), and present different hedging needs to the counterparties on both sides. As argued by Brenneret 

al. (2001), for an asset in zero net supply, both the buyer and the seller are concerned about illiquidity 

pushing the prices in the opposite directions. Depending on the risk exposure and the hedging needs of 

each side, either the “buyer-effect” (lower prices for illiquid assets) or the “seller-effect” (higher prices 

for illiquid assets) could dominate.  

In the OTC market for interest rate options, we find that the “seller-effect” dominates and the more 

illiquid options have higher prices. From our discussions with the market participants it is clear that, in 

general, in this market, the dealers are net sellers of these options whereas the corporate entities are the 

net buyers. On any given day, a substantial proportion of the trades in the OTC interest rate options 

market are sell-side trades where banks sell caps and floor to corporate clients.25 The corporate end-users 

buy these options to hedge their other interest rate exposures and are usually not concerned about the 

liquidity of the options, since they typically hold these options to maturity. On the other hand, the dealers, 

                                                           
25 An experienced market maker, who was the global head of the interest rate options desk at one of the largest 
banks in the world put the proportion of sell-side trades at between 80% and 90% on any given day. Unfortunately, 
there are no hard data available to substantiate his estimate. 
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who are net sellers, are concerned about the liquidity of the options because it captures the effects of 

imperfect hedging, limited risk appetite and capital constraints (Figlewski (1989) and Garleanu et al. 

(2008)).26 Limited risk appetite and capital constraints may be a result of the agency considerations 

between the dealers and their financiers. Imperfect hedging may be due to the trading frictions in the 

underlying asset markets, as well as the presence of risks in options that cannot be hedged using the 

underlying assets (such as unspanned stochastic volatility or jumps). There is basis risk between options 

of different strikes and maturities, which makes it impossible to exactly offset a short position in an 

illiquid option by buying a liquid option at a different strike and/or maturity. In such a scenario, when 

option market-makers sell illiquid options, it is difficult for them to find an offsetting trade and earn the 

bid-ask spread on the option right away (which is something traders generally try to do). Furthermore, the 

dealers are exposed to greater model risk, when there is less liquidity in the market, since they have fewer 

traded prices available to reliably calibrate their pricing models. Therefore, they are exposed to 

unhedgeable risks for which they demand compensation by way of higher option prices on more illiquid 

contracts. The resulting increase in the slope of the upward sloping option supply curve (Bollen and 

Whaley (2004) and Garleanu et al. (2008)) increases the bid-ask spreads as well as the option prices, 

consistent with our findings. Thus, given the structure of this particular market, it is not surprising that the 

“seller-effect” dominates and that the illiquid options trade at higher prices. 

We can examine the magnitude of the coefficient c2 to determine the economic significance of the 

responsive of EIV to relative bid-ask spreads. Depending upon maturity, the excess implied volatilities 

increase by 25 to 70 basis points for every percentage point increase in the relative bid-ask spreads of 

these options. Alternatively, we can estimate the absolute price impact of a one standard deviation change 

in the relative bid-ask spread of an option. For example, the standard deviation of the relative bid-ask 

spreads of five-year caps and floors is about 2.3%. Therefore, a one standard deviation shock to the 

liquidity of the ATM five-year caps and floors would translate into a 115 basis point increase in their 

                                                           
26 Garleanu et al (2008) focus on the effects of changing inventory on the prices of derivatives due to the risk 
aversion of the dealer and imperfect hedging. However, their set-up is also useful for examining the relationship 
between the prices and bid-ask spreads given the level of inventory. Changing levels of inventory affect the prices 
through movement along a given supply curve, whereas the relationship between the bid-ask spreads and prices is a 
result of the changing slope of the supply curve. Our empirical analysis examines the latter relationship rather than 
the former. Our analysis is not meant to throw any light on the extent to which the changes in the levels of inventory 
affect prices, but not bid-ask spreads. However, we control for macro-economic variables that capture the changes in 
the demand for these options, and hence the changing levels of dealers’ inventory. 
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excess implied volatility, given a c2 coefficient of 0.50.  For representative interest rates and ATM 

volatility, this is equivalent to an increase of about 5% in the absolute price (the price in Euros) of the 

five-year ATM cap/floor.  In general, for other maturities, a one standard deviation shock to the liquidity 

of a cap/floor translates into an absolute price change of between 4% and 8%, which is an economically 

significant magnitude.   

In addition, we see that the coefficients c2 and d2 are generally increasing in the maturity of these 

options. This indicates that the longer maturity options exhibit a stronger liquidity effect, perhaps to 

compensate the seller for the illiquidity over a longer time frame. This is consistent with the effect 

reported by Goldreich et al. (2005) in the U.S. Treasury securities market, where the average liquidity 

over the asset’s remaining life is found to affect yields, since the expected trading costs to the marginal 

investor vary with the remaining life of the security. Similar results are reported by Nashikkar and 

Subrahmanyam (2007) for the U.S. corporate bond market; they estimate that a one standard deviation 

improvement in liquidity leads to a 8-11 basis points reduction in the non-default component of the yield 

spread. These results shed some light on the term structure dimension of liquidity effects in this market.  

The coefficients of the exogenous variables in the two equations provide important information about the 

common determinants of price and liquidity in this market. Higher spot rates are generally associated with 

higher excess implied volatility, implying that when there are inflation concerns and expectations of 

rising interest rates, the dealers charge even higher prices (and wider bid-ask spreads) for selling these 

options. Note that these options are all nearly ATM; therefore their pricing is not confounded by any 

smile effects that may be observed in this market. Once the effects of the spot rate are accounted for, the 

slope of the yield curve has a less significant effect on the EIV. The impact of increasing interest rate 

uncertainty is similar ― when swaption volatilities are higher, the excess implied volatilities are also 

higher. When there is more uncertainty in fixed income markets, dealers appear to charge even higher 

prices (and wider bid-ask spreads) for these options. This increase in uncertainty worsens the basis risk 

and the model risk that dealers face, which, in turn, adversely affects liquidity, thereby increasing the 

slope of their supply curve, leading to higher prices and wider bid-ask spreads. Aggregate credit risk 

concerns, proxied by the default spread, do not appear to be significantly related to either price or 

liquidity in this market, except for longer maturity options. The futures volume on LIFFE is negatively 
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related to the relative bid-ask spreads on caps and floors, indicating that the demand for hedging interest 

rate risk is one of the determinants of liquidity in the interest rate options markets. The CP/T-bill spread 

appears to be weakly related to the bid-ask spreads, since it is statistically significant at the 5% level only 

for some of the maturities. Aggregate liquidity shocks to financial institutions might play some role in 

affecting the liquidity of interest rate options, but their role is not very significant, perhaps because the 

interest rate options business is not a significant proportion of their overall operations. 

We use the single equation version of the Hausman test to examine whether the variables assumed to be 

exogenous in the system are, in fact, uncorrelated with the structural disturbances. We examine the issue 

for each equation, for each of the exogenous variables. For each exogenous variable individually, we 

adopt the following procedure. First, we estimate the parameters of the equation using two-stage least 

squares, treating the variable in question as an exogenous variable. Then we compute an instrumental 

variables estimate of the same parameters, where the instrumented values of the endogenous variables are 

estimated using the remaining exogenous variables, excluding the exogenous variable being examined. A 

Wald test based on the difference of these two estimators examines the null hypothesis that the variable in 

question is indeed exogenous. In addition, we compute a system-wide statistic for model specification 

based on the specification test in Greene (2000). This is a likelihood ratio test based on the residuals with 

respect to the exogenous variables computed using three-stage least squares (a full information estimator) 

versus those computed using OLS. If the likelihood ratio statistic is below the chi-square critical value 

(with degrees of freedom equal to the number of over-identifying restrictions), the model specification is 

not rejected. 

The diagnostic tests for the validity of our model show that our overall model specification cannot be 

rejected. The system-wide likelihood ratio statistic is 1.44, much below the critical value at the 5% level 

of 5.99. In addition, the Hausman tests for each exogenous variable result in chi-square statistics well 

below the critical value at the 5% level of 3.84. Therefore, we cannot reject the null hypothesis that the 

variables assumed to be exogenous are indeed exogenous within the system.  

We also test for weak instruments using the first stage F-statistic and critical cut-off values provided by 

Stock and Yogo (2004), based on Stock, Wright, and Yogo (2002). Our F-statistics are well above the 
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critical values for all option maturities, thus rejecting the null hypothesis of weak instruments at the 5% 

level. These tests give us confidence that our instruments are strong and valid, within the overall 

specification of the simultaneous equation model. 

The results, so far, use the mid prices of ATM options to estimate their EIV. Therefore, positive values of 

c2 and d2 imply that wider bid-ask spreads are associated with higher mid-prices, controlling for other 

factors. However, in response to lower liquidity, do the dealers just increase their ask prices, keeping their 

bid prices the same (which would still result in higher mid prices)? Or is there any effect of illiquidity on 

the bid prices of these options as well? In order to understand this relationship between liquidity and 

option prices further, we re-estimate the simultaneous equation model separately using EIV computed 

from ask and bid prices. The results from this analysis are presented in table IV; to conserve space, we 

only report the coefficients of c2 and d2. (The size and significance of the other coefficients as well as the 

R2 of the regressions are similar to those in table III.). On the ask side, the coefficients are positive and 

significant for all option maturities, indicating that the ask prices are definitely higher in states of the 

world where the bid-ask spreads are wider. This is consistent with the hypothesis that the dealers charge 

higher prices for selling these options, when they are more illiquid. The results on the bid side are actually 

more interesting ― the coefficients are positive and significant at 10% for all maturities, with significance 

at the 5% level for the longer maturity caps and floors. This shows that when there is less liquidity, the 

dealers are also willing to pay more for buying some of the caps/floors, especially the longer maturity 

options. This is consistent with the explanation that some part of the risk of options is unhedgeable, and 

hence the dealers are less willing to hold net short positions, especially in the longer maturity options. 

When there is less liquidity, the dealers are also willing to pay more to find a counterparty to reverse their 

sell-side trades than they are when there is more liquidity. Of course, since the dealers are net short in the 

aggregate, not all of them are able to reverse their sell-side trades. 

For robustness, we re-estimate the simultaneous equation model for ATM options using the two 

alternative benchmark volatility measures – the historical standard deviation of log changes in forward 

rates, as well as the relevant implied volatility from the swaptions market. The excess implied volatilities 

are calculated in a similar manner, as the difference between the implied volatility of the cap/floor and the 

benchmark volatility. The results from these tests are presented in table V. In the interest of brevity, we 

24 



 

only present the coefficients of interest, c2 and d2, since the other coefficients are of similar sign and 

significance as before. We again find that across all maturities, the coefficients of EIV and RelBAS are 

positive and statistically significant, indicating that these ATM options become more expensive when 

their liquidity reduces, and vice-versa.27  

B.2. Liquidity Effects in Options Across Strikes 

In this sub-section, we expand our analysis to options across all strikes. In order to properly control for 

smile effects, we introduce the skewness and excess kurtosis of the underlying interest rate distribution, 

interacted with LMR, in the simultaneous equation model as additional controls for the time-varying 

patterns of volatility smiles in these markets. Skewness and excess kurtosis are estimated on a rolling 

basis using the historical forward rates data from the most recent 66 days. Much of the volatility smile in 

options arises as a result of stochastic volatility, jumps in interest rates or both, which manifest 

themselves in the interest rate distribution as skewness and excess kurtosis. Therefore, controlling for the 

skewness and excess kurtosis at least partially controls for the daily variation in the volatility smile 

arising from stochastic volatility or jumps in interest rate. As before, we also have the asymmetric 

quadratic functional form of LMR as a control for the general shape of the volatility smile observed in 

these markets. Therefore, the model we estimate is as follows: 
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The skewness is interacted with LMR, as the effect of skewness on the smile is likely to be asymmetric 

and dependent on the moneyness of the option. Excess kurtosis is interacted with absolute LMR, as the 

effect of kurtosis on the smile is likely to be symmetric and higher for away-from-the-money options. We 

estimate this model for bid-, mid-, and ask-prices, for our primary measure of option expensiveness that 

                                                           
27 We did several further robustness checks on our results, by re-estimating these models for bid and ask prices 
separately, as well as by using different historical time windows for calculating the standard deviation based 
reference volatility. These results were similar, and are not reported in the paper, but are available directly from the 
authors. 

25 



 

uses the panel GARCH based volatility as the benchmark. The results for this analysis are presented in 

table VI. Again, to conserve space, we again present only the coefficients of interest, c2 and d2, since the 

size and significance of the coefficients as well as the R2 are similar to those in table III. We find that, 

across all maturities, more illiquid options are more expensive. They have significantly higher mid and 

ask prices, while the results for bid prices are somewhat weak for the shorter maturity caps/floors. It is 

important to note that the liquidity effects that we observe in this sub-section are incremental to the 

general volatility smile that is observed in this market, controlling for the daily changes in the skewness 

and excess kurtosis in the underlying interest rate distribution, thereby controlling for at least some of the 

effects of stochastic volatility and jumps in interest rates. In addition, since these effects are also present 

in the bid prices of these options, at least for the longer maturity caps/floors, it is unlikely that they arise 

only due to an increase in the ask prices.  

As a further robustness check for the liquidity effects across strikes, we re-estimate the simultaneous 

equation model in equation (3) using the historical standard deviation and swaption implied volatilities as 

benchmark. These results, presented in table VII, confirm our results for ATM options that more illiquid 

options are more expensive, controlling for other effects, regardless of the benchmark volatility used for 

estimating the excess implied volatilities.  

C. The Relationship between Changes in Liquidity and Changes in Option Prices 

To analyze the relationship between price and liquidity further, we re-estimate the simultaneous equation 

model using first differences for at-the-money options. If liquidity affects asset prices, then changes in 

liquidity should also change asset prices (Amihud et al. (1990)). In table VIII, we present the results of 

the simultaneous equation model, where daily changes in EIV and RelBAS are regressed on each other as 

well as on changes in LMR functions and macro-financial variables, as follows: 
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This model explicitly tests for the relationship between daily changes in the price and the liquidity of 

options, as opposed to the relationship between the levels of these variables examined earlier. As before, 

we estimate this model for ATM options separately for each option maturity. The results in table VIII are 

similar to the ones reported in table III, although these models have lower explanatory power, which is 

not surprising since they are estimated based on daily changes. The daily change in EIV is positively 

associated with the daily change in RelBAS, controlling for changes in option-specific and macro-

financial variables. In addition, we find that positive shocks to the changes in uncertainty in the fixed 

income markets are associated with positive shocks to changes in both price and liquidity of these interest 

rate options, although these effects are weaker than those observed in the simultaneous equation model, in 

levels, estimated in the previous subsection. The overall model specification and Hausman tests again 

confirm that our instruments are valid. In addition, consistent with our findings in the previous section, 

we find stronger effects on the ask side than on the bid side, though the coefficients c2 and d2 are positive 

in both cases. We also obtain similar results when we repeat the tests for options across all strike rates, 

and when we use the other measures of EIV, calculated using the alternative benchmark volatilities. 

The analysis above helps us understand the joint determinants of price and liquidity in this market. It 

establishes clearly that illiquid OTC Euro interest rate caps and floors trade at higher prices than the 

liquid ones, controlling for other effects. This result, contrary to established wisdom, is nonetheless 

consistent with the market structure and forces of demand and supply in this OTC market. 

III. Concluding Remarks 

The liquidity of an asset has an important influence on its market price. In recent years, this influence has 

been analyzed extensively in the U.S. equity markets, and, to a lesser extent, in the U.S. Treasury, 

corporate bond, and some foreign exchange options markets. The results from all these markets indicate 

that illiquidity suppresses the price of an asset, resulting in a higher expected return. 

In contrast to this work on the underlying stock and bond markets, there is very little work on the 

influence of liquidity in the derivatives markets, particularly the OTC interest rate derivatives markets. 

This gap is striking for three reasons. First, derivatives markets are an important segment of the global 

financial markets, and thus need to be taken into account in assessing the overall liquidity in financial 
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markets. Second, the effect of liquidity on the prices of derivatives is, by no means, clear cut. With zero 

net supply, both the buyers and sellers of derivatives are exposed to its illiquidity. In addition, in the case 

of derivatives, it is not obvious whether, for the purpose of the pricing of liquidity, the marginal investor 

would be long or short. It would depend on the risk exposures and the hedging needs of either side. Thus, 

the prices of illiquid derivatives could be higher or lower, as compared to the prices of derivatives that are 

more liquid. Third, the interest rate derivatives market is an OTC market, with a structure quite different 

from exchanges, and with contracts that are generally more illiquid compared to many exchange traded 

contracts. Therefore, the inferences drawn from studies on the liquidity effects in exchange-traded 

contracts may not be readily extendable to OTC contracts. 

The liquidity and the price of an asset are fundamentally endogenous variables. Therefore, we examine 

the liquidity effects in the OTC euro interest rate options markets within a simultaneous equation model 

that endogenizes both liquidity and price, thereby modeling liquidity both as a cause and an effect. Our 

results show that more illiquid interest rate options are more expensive, controlling for other determinants 

of liquidity and price. Thus, this result is in sharp contrast to earlier findings in the stock and bond 

markets and in some exchange-traded currency options markets. As our results indicate, the relationship 

between illiquidity and asset prices cannot be generalized based on evidence from just the exchange-

traded stock and the bond markets. 

Our results have important implications for the role of liquidity in the pricing of derivative instruments. It 

would be worthwhile to explore this effect in other derivatives markets and for derivative instruments 

other than options, to see if this influence is similar, especially in other market settings. It would also be 

interesting to focus on crisis periods, such as the aftermath of the Russian default in 1998 and the LTCM 

failure that followed thereafter, and the more recent crisis in the credit markets, to examine the issue of 

episodic liquidity in such an extreme scenario. A related question that has not been explored in the 

literature so far is the interplay between the liquidity effects in the underlying asset market versus the 

market for derivatives.  

Another important direction for future research based on our results is the development of models where 

one could include these drivers of liquidity in the pricing kernel itself. Furthermore, since interest rate 
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options are much harder to price, with large pricing and hedging errors in general, liquidity-adjusted 

models could provide better pricing and hedging. Given the enormous size of this market, there are 

systemic effects of mispricing and/or inaccurate hedging - understanding such liquidity effects can help 

reduce such systemic risks. We leave these questions for future research. 
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Appendix A: Implied Volatility in the Black Model for Caps and Floors 

The standard model used for dealer quotations for interest rate caps and floors is the Black (1976) model 

of pricing of options on futures and forward contracts. The model is a variant of the basic Black and 

Scholes (1973) option pricing model. Applied to the interest rate option context, the model assumes that 

interest rates are log-normally distributed and relates the price of a European call option (C) and a put 

option (P), at time 0, on an interest rate forward rate agreement (FRA), to the underlying variables as 

follows:28 
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where 

f = forward interest rate for the period t to t+m, 

 = annualized volatility of the forward interest rate t on the maturity date, 

m = maturity period of the underlying loan, 

t = maturity date of the option, 

k =  strike rate of the option, and  

B0,t+m= the zero bond price at time 0, for the bond maturing at date t+m. 

Of course, the key variable in the above equations, which is not observable, but about which market 

participants may have differing views, is the volatility. Given all other parameters, a price of an option 

can be inverted to obtain an implied volatility. Thus implied volatility is a manifestation of price of the 

option.  

                                                           
28 This formula is also consistent with the model proposed by Brace, Gatarek and Musiela (1997) [BGM] and 
Miltersen et al. (1997), which is popular among practitioners. BGM derive the processes followed by market quoted 
rates within the HJM framework, and deduce the restrictions necessary to ensure that the distribution of market 
quoted rates of a given tenor under the risk-neutral forward measure is log-normal. With these restrictions, caplets of 
that tenor satisfy the Black (1976) formula for options on futures and forward contracts. 
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An interest rate cap (floor) is a collection of caplets (floorlets). A caplet (floorlet), in turn, is a single 

European call (put) option on a reference interest rate, expiring on a specific date. Hence, a cap (floor) 

can be regarded as a portfolio of European call (put) options on interest rates, or equivalently, put (call) 

options on discount bonds. Typically, an interest rate cap is an agreement between a cap writer and a 

buyer (for example, a borrower) to limit the latter’s floating interest payments to a specific level for a 

given period of time. The cap is structured on a specific reference rate (usually the three- or the six-month 

Libor (London Interbank Offer Rate) or Euribor (Euro Interbank Offer Rate)) at a predetermined strike 

level. The reference rate is reset at periodic intervals (usually three or six months). In a similar manner, an 

interest rate floor contract sets a minimum interest rate level for a floating rate lender. The cap and floor 

contracts are defined on a pre-specified principal amount.29 

A caplet with maturity ti and strike rate k pays at date ti, an amount based on the difference between the 

rate (ri) at time ti and the strike rate, if this difference is positive, and zero otherwise. The amount paid is 

based on the notional amount and the reset period of the caplet and is paid on a discounted basis at time ti. 

The payoff of this caplet at date ti on a notional principal of €A is:  
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The payoff from a floorlet can be described in a similar manner.  

Since the interest rate over the first period is known, there is no caplet corresponding to the first period of 

the cap. For example, a two-year cap on the six-month Euribor rate, with four semiannual periods over its 

life, would consist of three caplets, the first one expiring in six months, and the last one in one year and 

six months. Thus, the underlying interest rate for the first period is the six-month Euribor rate on the date 

six months from initiating the cap contract. 

Each caplet or floorlet has to be valued separately, using a valuation model such as the Black or BGM 

model in equation (A.1) (the same model that is generally used by the market for quotation purposes), 

with the price of the cap or floor being the sum of these prices. The volatilities used for each caplet or 

                                                           
29 Interest rate caps and floors for various maturities and reference rates in all the major currencies are traded in the 
over-the-counter (OTC) markets. The most common reference rate is the three-month Libor for USD caps/floors, 
and the six-month Euribor in the euro markets. 
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floorlet, which are generally different, across strike rates and maturities, are sometimes called spot 

volatilities. The market quotation for interest rate caps and floors, however, is based on the same volatility 

for all the caplets in a particular cap (or the floorlets in a particular floor). In other words, the market price 

of a cap (or floor) can be derived by plugging in this constant volatility for all the component caplets (or 

floorlets) in the contract. This constant volatility is referred to as the flat volatility for the particular cap 

(or floor) and varies with the maturity of the contract. Since caps are portfolios of caplets, the implied flat 

volatilities of caps reflect some average of the implied spot volatilities of individual caplets.  

 

Appendix B: Implied Bid-Ask Spreads of LIFFE Options on Euribor Futures 

We use the data for options on 3-month Euribor futures from January 1999 to May 2001. These options 

are traded on LIFFE and are part of LIFFE’s flagship Euro interest rate suite. For each trading day of the 

sample, the LIFFE options on Euribor futures data give us the expiration date, exercise price, volume, 

open interest, opening price, high price, low price, closing price, the closing price for the underlying 

interest rate, and the implied volatility. We apply the methodology suggested in Corwin and Schultz 

(2008) (henceforth CS) to the high, low and closing prices to infer the bid-ask spreads for these contracts. 

We restrict our sample to options for which the volume, the low price and the difference between the high 

and low price for the day are all positive. This ensures that the high and low prices we use are based on 

traded options, and hence are informative.  

CS develop the methodology based on the assumption that the price of the asset under consideration 

follows a geometric Brownian motion. This allows them to express the ratio of the daily high and low 

prices and the ratio of the high and low prices over a two-day interval as a function of the daily volatility 

and the bid-ask spreads. They compare the daily high and low prices with the closing price of the 

previous trading day and make adjustments to account for the overnight volatility. Their procedure results 

in somewhat noisy estimates of bid-ask spreads, with the estimated spreads sometimes being negative. 

They set such negative numbers to zero and take the average over positive and zero bid-ask spreads. 

The assumption of geometric Brownian motion is reasonably appropriate for stocks, but not for options. 

Thus, we cannot directly apply their methodology to our options data from LIFFE. To overcome this 
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problem, we convert the option prices to the corresponding underlying prices using the implied volatility 

for each option and the Black (1976) model for options on futures. In particular, we use the following 

formulae for the price of call (c) and put (p) options on futures:  
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where F is the price of the underlying futures contract, K is the exercise price, σ is the implied volatility 

and T is time to expiry. We use one minus the futures price as the interest rate, r.  

Using this model, we convert the high and low option prices to high and low futures prices. We then 

apply the CS methodology to these high and low underlying futures prices, comparing the high and low 

prices over two-day trading periods for the same type of option (put / call) with the same exercise price 

and the same maturity. We make all the adjustments that CS make including correction for overnight 

volatility and setting the negative bid-ask spreads to zero. Once we get the bid-ask spreads for the 

underlying futures contracts, we estimate the bid and ask quotes for the underlying futures contracts by 

applying the bid-ask spreads to the average of the high and low prices. We then convert the estimated bid 

and ask quotes of the underlying futures contracts back to the bid and ask quotes of the option using the 

Black model described above. We calculate the percent bid-ask spread for the options for every valid pair 

of two consecutive trading days for the same option, and calculate the average across all such pairs. Using 

this methodology, the average bid-ask spread for these exchange traded options is 3.6%. 

We also apply the model in Roll (1984) to closing option prices to estimate the bid-ask spreads. This 

methodology does not assume any particular distribution for the price of the asset. Thus, we apply it 

directly to the option prices. In this model, if the dollar spread is 2c, the first order autocovariance of the 

price changes is –c2. We do not have a long enough time series for any option with the same maturity and 
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same exercise price to calculate the autocovariance of price changes. However, following CS, we 

calculate the autocovariance, γ, for every three consecutive trading days as follows:  

            (A.4) )2)(( ,1,1,,,   tititiiti PPPP t

where “i" is an option (put or call) with a given exercise price and given expiration and P is the closing 

price of that option. Then, we calculate the dollar spread, 2c and the percentage spread pc as follows: 
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Just as the bid-ask spreads in the CS methodology can be negative, the autocovariance in this 

methodology can be positive. When that is the case, we set the autocovariance to zero. We take the 

average of the percentage bid-ask spread across all valid three-consecutive-trading-day periods across all 

options. As per this methodology, the average bid-ask spread for the exchange traded options is 11%.  

34 



 

REFERENCES 
 

Amihud Y.. Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial 
Markets 2002; 5; 31–56. 

Amihud Y, Mendelson H.. Asset pricing and the bid-ask spread. Journal of Financial Economics 1986; 
17; 223–249. 

Amihud Y, Mendelson H. Liquidity, maturity and the yields on U.S. government securities. Journal of 
Finance 1991; 46; 1411-1426. 

Amihud Y, Mendelson H, Wood R. Liquidity and the 1987 stock market crash. Journal of Portfolio 
Management 1990; 6; 65-69. 

Black F. The pricing of commodity contracts. Journal of Financial Economics 1976; 3; 167-179. 

Black F, Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy 1973; 
81; 637-654. 

Bollen N P;Whaley R E. Does net buying pressure affect the shape of the implied volatility functions? 
Journal of Finance 2004; 59; 711-753. 

Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 1986; 
31; 307-327. 

Bongaerts D, De Jong, F , Driessen J. Derivative Pricing with Liquidity Risk: Theory and Evidence from 
the Credit Default Swap Market, Working Paper 2009 Erasmus University Rotterdam. 

Brace, A;. Gatarek, D, Musiela M. The market model of interest rate dynamics. Mathematical Finance 
1997; 7; 127-155. 

Brenner M., Eldor R, Hauser S. The price of options illiquidity. Journal of Finance 2001; 56; 789-805. 

Brenner R H., Harjes R H, Kroner K F. Another look at models of the short-term interest rate. Journal of 
Financial and Quantitative Analysis 1996; 3;, 85-107. 

Brunnermeier M K, Pedersen L H. Market liquidity and funding liquidity. Review of Financial Studies 
2008 (forthcoming). 

Canina L, Figlewski S. The informational content of implied volatility. Review of Financial Studies 1993; 
6; 659-681.  

Cetin U, Jarrow R, Protter P, M Warachka. Pricing options in an extended Black Scholes economy with 
illiquidity: Theory and empirical evidence. Review of Financial Studies 2006;19; 493-529. 

Constantinides G M. Transaction costs and the pricing of financial assets. Multinational Finance Journal 
1997; 1; 93-99. 

Corwin S A, Schultz P. A simple way to estimate bid-ask spreads from daily high and low prices. 
Working paper 2008; University of Notre Dame 

Cox J C, Ingersoll J E, Ross S A. A theory of the term structure of interest rates. Econometrica 1985; 53; 
385-408 

Cvsa V, Ritchken P. Pricing claims under GARCH-level dependent interest rate processes. Management 
Science 2001; 47; 1693-1711 

35 



 

De Jong F, Driessen J. Liquidity risk premia in corporate bond markets. Working Paper 2007; University 
of Amsterdam  

Duffie D, Garleanu N, Pedersen L H. Over-the-counter markets. Econometrica 2005; 73; 1815-1847 

Elton E, Gruber M, Agrawal D, Mann C. Explaining the rate spread on corporate bonds. Journal of 
Finance 2001; 56; 247-277 

Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United 
Kingdom inflation. Econometrica 1982; 50; 987-1008 

Fan R, Gupta A ,Ritchken P. On pricing and hedging in the swaption market: How many factors really? 
Journal of Derivatives 2007; 15; 9-33 

Figlewski S. Options arbitrage in imperfect markets. Journal of Finance 1989; 44; 1289-1311 

Fleming M J. Measuring Treasury market liquidity. Economic Policy Review (Federal Reserve Bank of 
New York) 2003; 9; 83-108 

Gallmeyer M, Hollifield B, Seppi D J. Demand discovery and asset pricing. Working Paper 2007; 
Carnegie Mellon University 

Garleanu N, Pedersen L H, Poteshman A M. Demand-based option pricing. Review of Financial Studies 
2008 (conditionally accepted) 

Gatev E, Strahan P E. Banks’ advantage in hedging liquidity risk: Theory and evidence from the 
commercial paper market. Journal of Finance 2006; 61; 867-892 

George T J; Longstaff F A. Bid-ask spreads and trading activity in the S&P 100 index options market. 
Journal of Financial and Quantitative Analysis 1993; 28; 381-397 

Glosten L R, Jagannathan R, Runkle D E. On the relation between the expected value and the volatility of 
the nominal excess return on stocks. Journal of Finance 1993; 48; 1779-1801 

Goldreich D, Hanke B, Nath P. The price of future liquidity: Time-varying liquidity in the US Treasury 
market. Review of Finance 2005; 9; 1-32 

Greene W H 2000 Econometric analysis 4th edition Macmillan  

Gupta A, Singh A, Zebedee A. Liquidity in the pricing of syndicated loans. Journal of Financial 
Markets 2008; 11; 339-376 

Heath D, Jarrow R, Morton A. Bond pricing and the term structure of interest rates: A new methodology 
for contingent claims valuation. Econometrica 1992; 60; 77-105. 

Jarrow R A, Protter P. Liquidity risk and option pricing theory Handbook of Financial Engineering 2005 
ed J Birge and V Linetsky Elsevier (forthcoming) 

Krishnamurthy A. The bond/old-bond spread. Journal of Financial Economics 2002; 66; 463-506 

Liu J, Longstaff, F A. Losing money on arbitrages: optimal dynamic portfolio choice in markets with 
arbitrage opportunities. Review of Financial Studies 2004; 17; 611-641 

Longstaff F A. How much can marketability affect security values? Journal of Finance 1995a; 50; 1767-
1774 

36 



 

37 

Longstaff F A. Option pricing and the martingale restriction. Review of Financial Studies 1995b; 8; 1091-
1124 

Longstaff F A. Optimal portfolio choice and the valuation of illiquid securities. Review of Financial 
Studies 2001; 14; 407-431 

Longstaff F A. The flight-to-liquidity premium in US Treasury bond prices. Journal of Business 2004; 77; 
511-526 

Longstaff F A. Asset pricing in markets with illiquid assets. American Economic Review 2008; 
(forthcoming). 

Longstaff F A, Mithal S, Neis E. Corporate yield spreads: default risk or liquidity? New evidence from 
the credit default swap market. Journal of Finance 2005; 60; 2213-2253 

Longstaff F A, Schwartz E S. Interest rate volatility and the term structure: A two-factor general 
equilibrium model. Journal of Finance 1992; 47; 1259-1282 

Nashikkar A; Subrahmanyam M G, Mahanti S. Liquidity and arbitrage in the market for credit risk. 
Working paper 2009, New York University 

Mayhew S. Competition market structure and bid-ask spreads in stock option markets. Journal of Finance 
2002; 57; 931-958 

Miltersen K, Sandmann K, Sodermann D. Closed form solutions for term structure derivatives with log-
normal interest rates. Journal of Finance 1997; 52; 409-430 

Roll R. A simple implicit measure of the effective bid-ask spread in an efficient market. Journal of 
Finance 1984; 39; 1127-1139 

Shleifer A, Vishny R W. The limits of arbitrage. Journal of Finance 1997; 52; 35-55 

Vijh A M. Liquidity of the CBOE equity options. Journal of Finance 1990; 45; 1157-1179 

 

 



 

Table I 
 

Descriptive Statistics for Cap and Floor Prices 
 

This table presents descriptive statistics on OTC euro (€) interest rate cap and floor prices, across maturities and 
strike rates, over the sample period from January 1999 to May 2001. The caps and floors are grouped together by 
moneyness into five categories. The moneyness for these options is expressed in terms of the Log Moneyness Ratio 
(LMR), defined as the log of the ratio of the par swap rate to the strike rate of the cap/floor. All prices are averages, 
reported in basis points, with the standard deviations of these prices in parenthesis.  
 

 
Maturity  

   
Caps 

      
Floors 

  

            
 Deep 

OTM 
OTM ATM ITM Deep 

ITM 
 Deep 

ITM 
ITM ATM OTM Deep 

OTM 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

            
2-year 2.1 11.1 43.2  107.7 250.5  250.5 153.7 55.5 13.6 3.6 

 (0.5)   (5.8) (19.8)  (30.9)   (58.8)   (48.1)  (50.7)  (25.4)  (7.9 ) (2.0) 
            

3-year 10.7  37.7  91.9  209.6 481.3   529.1  285.3  111.3  32.7  6.9  

 (10.0)  (20.0)  (33.8)  (52.3)  (133.4)  (114.2)  (74.7)  (44.6)  (18.0)  (4.6) 

4-year 22.3  72.6  152.7 311.3  674.4   728.3  406.4  176.1  62.1  12.0  

  (12.5) (32.2)  (49.7)  (78.3)  (193.1)  (138.7)  (98.9)  (64.8)  (27.8)  (7.9) 

5-year 42.7  119.4  221.7  409.1  872.3   910.8  519.5  244.7  94.3  19.2  

 (16.3) (48.6)  (67.2)  (95.4)  (252.2)  (161.2)  (122.5)  (84.5)  (35.2)  (13.9) 

6-year 66.9  163.7 286.6  507.9  1,006.6  1,093.1  663.8  323.7  128.6  27.2  

 (20.2)  (64.4)  (84.6)  (109.5)  (257.4)  (173.2)  (133.1)  (101.9)  (43.5)  (18.7) 

7-year 93.7 210.9  355.8  610.8  1206.4  1,239.0  809.3  393.3  164.1  36.9  

 (25.4)  (82.2)  (99.3)  (125.3)  (275.5)  (147.0)  (127.5)  (115.2)  (51.9)  (33.0) 

8-year 123.9  264.2  433.2  706.8  1,248.2  1,284.7  924.7  425.2  199.2  46.8  

 (31.4)  (98.1)  (115.9)  (162.8)  (253.4)  (120.8)  (139.3)  (108.3)  (59.6)  (32.8) 

9-year  152.1  309.6  509.9  811.8  1,310.3  NA     997.1  482.3  235.0  58.9  

  (35.6)  (103.2) (128.7)  (172.2)  (205.3)       (150.2)  (120.9)  (69.6)  (41.5) 

10-year  179.6  347.8  598.0  881.3  1,493.4  NA 815.5  541.7 242.9  71.3  

 (39.8) (106.7) (140.0)  (153.4)  (275.3)       (31.1) (139.6)  (61.9) (50.1) 
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Table II 
 

Relative Bid-Ask Spreads for Caps and Floors 
 

This table presents summary statistics on the bid-ask spreads for OTC euro (€) interest rate caps and floors, scaled 
by the average of the bid and ask prices for the options, across strike rates, for different maturities, expressed as 
percentages. The statistics are presented for the sample period from January 1999 to May 2001. The caps and floors 
are grouped together by moneyness into five categories. The moneyness for these options is expressed in terms of 
the Log Moneyness Ratio (LMR), defined as the log of the ratio of the par swap rate to the strike rate of the 
cap/floor. All the spreads are averages, with the standard deviations of the relative spreads in parentheses.  
 

 
Maturity 

   
Caps 

      
Floors 

  

            
 Deep 

OTM 
OTM ATM ITM Deep 

ITM 
 Deep 

ITM 
ITM ATM OTM Deep 

OTM 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

            
2-year 80.9% 32.4% 14.7% 7.1% 3.8%  2.5% 4.5% 13.3% 30.8% 77.2% 

 (21.2%) (14.3%) (4.8%) (2.4%) (0.5%)  (1.3%) (1.3%) (7.9%) (11.7%) (24.1%) 

3-year 44.2% 19.0% 11.4% 7.0% 3.8%  2.9% 4.7% 11.2% 31.6% 72.0% 

 (22.9%) (5.7%) (3.2%) (2.5%) (0.6%)  (1.1%) (1.1%) (6.1%) (18.1%) (25.2%) 

4-year 26.1% 14.4% 9.1% 6.2% 4.1%  2.9% 4.5% 8.4% 22.2% 59.9% 

 (9.4%) (4.7%) (2.5%) (2.2%) (1.0%)  (1.0%) (1.0%) (2.5%) (14.5%) (28.7%) 

5-year 20.0% 12.6% 8.6% 6.1% 4.1%  3.1% 4.7% 8.2% 19.8% 59.5% 

 (5.5%) (3.9%) (2.3%) (2.1%) (0.9%)  (1.0%) (1.1%) (2.3%) (13.2%) (27.4%) 

6-year 18.3% 12.1% 8.5% 5.7% 4.1%  3.3% 4.7% 7.9% 15.8% 50.2% 

 (4.8%) (3.6%) (2.2%) (1.4%) (0.9%)  (0.9%) (1.2%) (2.0%) (7.5%) (24.6%) 

7-year 17.6% 11.5% 8.4% 5.5% 4.1%  3.4% 4.6% 7.8% 14.0% 45.3% 

 (4.4%) (3.4%) (2.1%) (1.3%) (3.9%)  (0.9%) (1.1%) (1.9%) (5.0%) (24.6%) 

8-year 17.1% 11.1% 8.3% 5.6% 4.0%  3.2% 4.5% 8.1% 14.0% 42.3% 

 (3.8%) (3.3%) (2.0%) (1.1%) (0.3%)  (1.0%) (1.1%) (2.0%) (5.1%) (21.9%) 

9-year 17.1% 11.0% 8.3% 6.0% 4.2%  NA 4.8% 8.3% 14.0% 40.0% 

 (3.4%) (3.1%) (1.9%) (0.7%) (0.3%)   (1.0%) (2.0%) (5.2%) (20.8%) 

10-year 17.1% 11.2% 7.9% 6.2% 4.1%  NA 4.7% 8.1% 14.9% 38.6% 

 (2.9%) (3.0%) (1.8%) (0.6%) (0.3%)   (1.2%) (2.2%) (5.5%) (20.6%) 
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 Table III 
 

Determinants of Excess Implied Volatility and Bid-Ask Spreads in ATM Caps and Floors 
 

This table presents the results for a simultaneous equation model, for near-the-money options with LMRs between -
0.1 and 0.1, where the excess implied volatility of OTC euro (€) interest rate caps/floors and relative bid-ask spreads 
are determined endogenously as a function of each other and of other exogenous variables, for the sample period 
from April 1999 to May 2001. 
  

 
CpTbSprddLiffeVoldDefSprdd*SwpnVol d

LMRdLMRdLMRdEIVddRelBAS

SlopecMratecDefSprdcSwpnVolc

LMRcLMRcLMRcRelBASccEIV

LMR

LMR

*9*8*76                  

.1*5*4*3*21

*96*8*76                    

.1*5*4*3*21

0
2

0
2









 

 
 
 
 
 
 
EIV is the excess implied volatility of the mid-price of the cap/floor relative to the benchmark volatility estimated 
using a panel GARCH model on historical interest rates. RelBAS is the bid-ask spread scaled by the mid-price. 
LMR is the logarithm of the ratio of the swap rate to the strike rate of the option. 6Mrate is the six-month Euribor 
rate. Slope is the difference between the five-year and six-month Euribor rates. SwpnVol is the implied volatility of 
at-the-money swaption of comparable maturity. DefSprd is the difference between the six-month Euribor and the 
six-month Treasury rate. LiffeVol is the logarithm of the trading volume of three-month Euribor futures on the 
LIFFE. CpTbSprd is the spread between the three-month AA Financial Commercial Paper rate and the three-month 
T-bill rate. Only the coefficients of interest are presented in this table. 
 

 Panel A: EIV as the dependent variable  
 

Maturity c2 c6 c7 c8 
 

c9 Obs R2 

2-year 0.24** 0.43** 0.00 1.45* 1.96 1100 0.19 
3-year 0.28** 0.58** 0.00 0.54* 1.34** 1392 0.22 
4-year 0.52** 1.28** 0.04 0.87** 0.48* 1448 0.24 
5-year 0.50** 0.52** 0.08 0.35** 0.01 1430 0.21 
6-year 0.69** 0.73** 0.12 0.75** 0.68* 1468 0.38 
7-year 0.71** 0.93* 0.22* 0.90** -1.12 1386 0.26 
8-year 0.78** 0.91** 0.18* 0.86** 0.11 1237 0.22 
9-year 0.48** 0.81* 0.25* 0.84* 0.07 1202 0.31 
10-year 0.71** 0.43** 0.56* 0.10* 0.14 887 0.31 
        

 

Panel B: RelBAS as the dependent variable 
 

Maturity d2 d6 d7 d8 
 

d9 Obs R2 

2-year 0.50** 0.46* 0.00 -0.03* 0.25 1100 0.26 
3-year 1.43** 0.89** 0.00 -0.02** 0.19** 1392 0.17 
4-year 1.24** 0.60** 0.03 -0.10** 0.31* 1448 0.22 
5-year 1.19** 0.63** 0.06* -0.20** 0.44** 1430 0.32 
6-year 1.32** 0.68** 0.13** -0.42** 0.71** 1468 0.32 
7-year 1.38** 0.62** 0.04* -0.27** 0.64* 1386 0.32 
8-year 1.29** 0.65** 0.34** -0.60** 0.76* 1237 0.32 
9-year 1.41** 0.45** 0.37** -0.86** 0.66** 1202 0.42 
10-year 1.46** 0.32** 0.64** -0.90** 0.51** 887 0.42 
        

 

** implies significance at the 5% level; * implies significance at the 10% level.  

40 



 

Table IV 
 

Bid and Ask Side Determinants of Liquidity and Price (ATM) 
 

This table presents the results for a simultaneous equation model, for near-the-money options with LMRs between -
0.1 and 0.1, estimated separately using bid and ask prices, where the excess implied volatility of OTC euro (€) 
interest rate caps and floors and the relative bid-ask spreads are determined endogenously as a function of each 
other, and other exogenous variables, for the sample period from April 1999 to May 2001: 
 

 

 
CpTbSprddLiffeVoldDefSprdd*SwpnVol d

LMRdLMRdLMRdEIVddRelBAS

SlopecMratecDefSprdcSwpnVolc

LMRcLMRcLMRcRelBASccEIV

LMR

LMR

*9*8*76                  

.1*5*4*3*21

*96*8*76                    

.1*5*4*3*21

0
2

0
2










 
 
 
 
 
 
 
 
EIV is the excess implied volatility of the bid or the ask price of the cap/floor relative to the benchmark volatility 
estimated using a panel GARCH model on historical interest rates. RelBAS is the bid-ask spread scaled by the mid-
price. LMR is the logarithm of the ratio of the swap rate to the strike rate of the option. 6Mrate is the six-month 
Euribor rate. Slope is the difference between the five-year and six-month Euribor rates. SwpnVol is the implied 
volatility of at-the-money swaption of comparable maturity. DefSprd is the difference between the six-month 
Euribor and the six-month Treasury rate. LiffeVol is the logarithm of the trading volume of three-month Euribor 
futures on the LIFFE. CpTbSprd is the spread between the three-month AA Financial Commercial Paper rate and 
the three-month T-bill rate. Only the coefficients of interest are presented in this table. 

 
   

Maturity Bid Side Ask Side 
   
  

c2 
_________________ 

 
d2 

_________________ 

 
c2 

_________________ 

 
d2 

_________________ 
 

2-year 
 

0.08* 
 

0.18* 
 

0.28** 
 

0.74** 
3-year 0.07* 0.21* 0.31** 1.66** 
4-year 0.21* 0.17* 0.92** 1.39** 
5-year 0.34* 0.54** 0.71** 1.58** 
6-year 0.41** 0.43* 0.75** 1.89** 
7-year 0.31* 0.71* 0.82** 2.01** 
8-year 0.33** 1.22** 0.91** 1.54** 
9-year 0.22** 0.67** 0.65** 1.79** 

10-year 0.44** 0.91** 0.82** 1.72** 
     

** implies significance at the 5% level; * implies significance at the 10% level. 
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Table V 
 

Determinants of Liquidity and Price Using Alternative Volatility Benchmarks (ATM) 
 

This table presents the results for a simultaneous equation model, for near-the-money options with LMRs between -
0.1 and 0.1, where the excess implied volatility of OTC euro (€) interest rate caps and floors and the relative bid-ask 
spreads are determined endogenously as a function of each other and other exogenous variables, for the sample 
period from April 1999 to May 2001: 
 

 

 
CpTbSprddLiffeVoldDefSprdd*SwpnVol d

LMRdLMRdLMRdEIVddRelBAS

SlopecMratecDefSprdcSwpnVolc

LMRcLMRcLMRcRelBASccEIV

LMR

LMR

*9*8*76                  

.1*5*4*3*21

*96*8*76                    

.1*5*4*3*21

0
2

0
2










 
 
 
 
 
 
 
 
EIV is the implied volatility of the mid price of the cap/floor relative to the alternative benchmark volatilities 
(historical standard deviation of changes in log rates and swaption volatilities of comparable maturity). RelBAS is 
the bid-ask spread scaled by the mid-price. LMR is the logarithm of the ratio of the swap rate to the strike rate of the 
option. 6Mrate is the six-month Euribor rate. Slope is the difference between the five-year and six-month Euribor 
rates. SwpnVol is the implied volatility of at-the-money swaption of comparable maturity. DefSprd is the difference 
between the six-month Euribor and the six-month Treasury rate. LiffeVol is the logarithm of the trading volume of 
three-month Euribor futures on the LIFFE. CpTbSprd is the spread between the three-month AA Financial 
Commercial Paper rate and the three-month T-bill rate. Only the coefficients of interest are presented in this table. 

 
   

Maturity Historical Standard Deviation Swaption Volatility 
   
  

c2 
_________________ 

 
d2 

_________________ 

 
c2 

_________________ 

 
d2 

_________________ 
 

2-year 
 

0.39** 
 

1.05** 
 

0.19* 
 

0.44** 
3-year 0.41** 1.56** 0.22** 0.99** 
4-year 0.55** 1.91** 0.31** 1.05** 
5-year 0.68** 2.05** 0.52** 1.51** 
6-year 0.74** 1.77** 0.45** 1.24** 
7-year 0.61** 2.15** 0.61** 1.33** 
8-year 0.79** 2.08** 0.44** 1.28** 
9-year 0.81** 1.64** 0.57** 1.69** 

10-year 0.83** 1.79** 0.63** 1.42** 
     

** implies significance at the 5% level; * implies significance at the 10% level. 
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Table VI 
 

Determinants of Liquidity and Price Across Strikes 
 

This table presents the results for a simultaneous equation model estimated separately using bid, mid and ask prices 
across all available strikes, where the excess implied volatility of OTC euro (€) interest rate caps and floors and the 
relative bid-ask spreads are determined endogenously as a function of each other and other exogenous variables, for 
the sample period from April 1999 to May 2001: 
 

 

 
CpTbSprddLiffeVoldDefSprdd

SwpnVoldLMRdLMRdLMRdEIVddRelBAS

KurtLMRcSkewLMRcSlopecMratecDefSprdc

SwpnVolcLMRcLMRcLMRcRelBASccEIV

LMR

LMR

*9*8*7           

*6.1*5*4*3*21

*||*11**10*96*8*7           

*6.1*5*4*3*21

0
2

0
2










 
 
 
 
 
 
 
 
EIV is the implied volatility of the bid or the ask price of the cap/floor relative to the benchmark volatility estimated 
using a panel GARCH model on historical interest rates. RelBAS is the bid-ask spread scaled by the mid-price. 
LMR is the logarithm of the ratio of the swap rate to the strike rate of the option. 6Mrate is the six-month Euribor 
rate. Slope is the difference between the five-year and six-month Euribor rates. SwpnVol is the implied volatility of 
at-the-money swaption of comparable maturity. DefSprd is the difference between the six-month Euribor and the 
six-month Treasury rate. Skew is the skewness of the historical distribution of interest rates. Kurt is the excess 
kurtosis of the historical distribution of interest rates. LiffeVol is the logarithm of the trading volume of three-month 
Euribor futures on the LIFFE. CpTbSprd is the spread between the three-month AA Financial Commercial Paper 
rate and the three-month T-bill rate. Only the coefficients of interest are presented in this table. 

 
    

Maturity Bid Prices Mid Prices Ask Prices 
    
  

c2 
___________ 

 
d2 

___________ 

 
c2 

___________ 

 
d2 

___________ 

 
c2 

___________ 

 
d2 

___________ 
 

2-year 
 

0.04 
 

0.07 
 

0.18* 
 

0.92* 
 

0.33** 
 

1.19** 
3-year 0.09* 0.03 0.31** 0.78* 0.61** 1.75** 
4-year 0.13* 0.08* 0.54** 1.07** 0.54** 1.22** 
5-year 0.10* 0.15* 0.21** 0.99** 0.78** 1.49** 
6-year 0.22* 0.49* 0.46** 1.22** 1.02** 1.85** 
7-year 0.25** 1.03** 0.55** 1.10** 0.91** 2.42** 
8-year 0.19* 0.57* 0.63** 1.45** 0.76** 1.66** 
9-year 0.29** 0.89** 0.72** 1.51** 0.82** 2.34** 

10-year 0.34** 1.24** 0.57** 1.09** 0.93** 1.73** 
       

** implies significance at the 5% level; * implies significance at the 10% level. 
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Table VII 
 

Determinants of Liquidity and Price Across Strikes Using Alternative Volatility Measures 
 

This table presents the results for a simultaneous equation model estimated separately using mid prices across all 
available strikes, where the excess implied volatility of OTC euro (€) interest rate caps and floors and the relative 
bid-ask spreads are determined endogenously as a function of each other and other exogenous variables, for the 
sample period from April 1999 to May 2001: 
 

 

 
CpTbSprddLiffeVoldDefSprdd

SwpnVoldLMRdLMRdLMRdEIVddRelBAS

KurtLMRcSkewLMRcSlopecMratecDefSprdc

SwpnVolcLMRcLMRcLMRcRelBASccEIV

LMR

LMR

*9*8*7           

*6.1*5*4*3*21

*||*11**10*96*8*7           

*6.1*5*4*3*21

0
2

0
2










 
 
 
 
 
 
 
 
EIV is the implied volatility of the mid price of the cap/floor relative to the alternative benchmark volatilities 
(standard deviation of changes in log rates as well as swaption volatilities of comparable maturity). RelBAS is the 
bid-ask spread scaled by the mid-price. LMR is the logarithm of the ratio of the swap rate to the strike rate of the 
option. 6Mrate is the six-month Euribor rate. Slope is the difference between the five-year and six-month Euribor 
rates. SwpnVol is the implied volatility of at-the-money swaption of comparable maturity. DefSprd is the difference 
between the six-month Euribor and the six-month Treasury rate. Skew is the skewness of the historical distribution 
of interest rates. Kurt is the excess of the historical distribution of interest rates. LiffeVol is the logarithm of the 
trading volume of three-month Euribor futures on the LIFFE. CpTbSprd is the spread between the three-month AA 
Financial Commercial Paper rate and the three-month T-bill rate. Only the coefficients of interest are presented in 
this table. 

 
   

Maturity Historical Volatility Swaption Volatility 
   
  

c2 
_________________ 

 
d2 

_________________ 

 
c2 

_________________ 

 
d2 

_________________ 
 

2-year 
 

0.32* 
 

0.88* 
 

0.19* 
 

0.49* 
3-year 0.45** 1.05** 0.52* 0.78** 
4-year 0.61** 1.31** 0.44** 1.55** 
5-year 0.52** 1.07** 0.29** 1.41** 
6-year 0.49** 2.11** 0.22** 1.29** 
7-year 0.65** 1.55** 0.54** 2.67** 
8-year 0.79** 1.71** 0.65** 2.51** 
9-year 0.68** 2.03** 0.27** 2.13** 

10-year 0.72** 1.48** 0.33** 1.45** 
     

** implies significance at the 5% level; * implies significance at the 10% level. 
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Table VIII 
 

Determinants of Changes in Excess Implied Volatility and Bid-Ask Spreads (ATM) 
 

This table presents the results for a simultaneous equation model, for near-the-money options with LMRs between -
0.1 and 0.1, where daily changes in the excess implied volatility of OTC euro (€) interest rate caps and floors and 
daily changes in the relative bid-ask spreads are determined endogenously as a function of each other and of changes 
in other exogenous variables, for the sample period from April 1999 to May 2001: 
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EIV is the implied volatility of the mid-price of the cap/floor relative to the benchmark volatility estimated using a 
panel GARCH model on historical interest rates. RelBAS is the bid-ask spread scaled by the mid-price. LMR is the 
logarithm of the ratio of the swap rate to the strike rate of the option. 6Mrate is the six-month Euribor rate. Slope is 
the difference between the five-year and six-month Euribor rates. SwpnVol is the implied volatility of at-the-money 
swaption of comparable maturity. DefSprd is the difference between the six-month Euribor and the six-month 
Treasury rate. LiffeVol is the logarithm of the trading volume of three-month Euribor futures on the LIFFE. 
CpTbSprd is the spread between the three-month AA Financial Commercial Paper rate and the three-month T-bill 
rate. Only the coefficients of interest are presented in this table. 
 

Panel A: Changes in EIV as the dependent variable 
 

Maturity c2 c6 c7 c8 
 

c9 Obs R2 

2-year 0.47* 0.59* 0.00 -1.37 1.36* 1090 0.07 
3-year 1.09* 8.40 0.01 -2.30* 1.03 1364 0.05 
4-year 0.63* 0.87** 0.07* -4.55* 2.69 1439 0.06 
5-year 0.93** 1.04* 0.03 -3.79* 2.23 1404 0.07 
6-year 1.80* 1.04* 0.02** -1.29* 3.48 1429 0.09 
7-year 3.29** 2.84 0.01* -3.68 4.77 1367 0.11 
8-year 3.75* 5.14* 0.01 -0.81** 1.55 1149 0.12 
9-year 4.87* 4.11* 0.09 -6.47* -1.00 1112 0.14 
10-year 2.87** 3.92* 0.01 -1.11** -3.16 886 0.09 
        

 

Panel B: Changes in RelBAS as the dependent variable 
 

Maturity d2 d6 d7 d8 
 

d9 Obs R2 

2-year 2.86 1.14** 0.00 -0.08 0.01 1090 0.03 
3-year 2.84** 0.08** 0.00 -0.03 0.05 1364 0.09 
4-year 0.14** 0.58* 0.07 -0.02* 0.01 1439 0.07 
5-year 0.44* 0.82** 0.03* -0.02** 0.00 1404 0.06 
6-year 0.56* 0.76** 0.03 -0.03** -0.01 1429 0.06 
7-year 1.65** 0.98** 0.08 -0.04** -0.01 1367 0.09 
8-year 0.22** 1.34** 0.03* -0.02** 0.00 1149 0.13 
9-year 0.45** 1.02** 0.02* -0.01** 0.00 1112 0.13 
10-year 0.12** 0.88* 0.04 -0.01** 0.00 886 0.12 
        

 

** implies significance at the 5% level; * implies significance at the 10% level.  
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Panel A: Panel GARCH volatility as benchmark 
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Panel B: Historical standard deviation as benchmark 
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Panel C: Swaption implied volatility as benchmark 

 

2 year caps/floors

-0.15

0

0.15

0.3

0.45

-0.8 -0.4 0 0.4 0.8 1.2

LMR

E
IV

5 year caps/floors

-0.15

0

0.15

0.3

0.45

-0.8 -0.4 0 0.4 0.8 1.2

LMR

E
IV

10 year caps/floors

-0.15

0

0.15

0.3

0.45

-0.8 -0.4 0 0.4 0.8 1.2

LMR

E
IV

 
 

Figure 1. Volatility smiles using alternative benchmark volatilities. This figure presents scatter plots 
showing the shape of the volatility smiles for the excess implied flat volatilities of OTC euro (€) interest rate caps 
and floors, using three alternative benchmark volatilities - panel GARCH volatility, historical standard deviation and 
swaption implied volatility - over the sample period April 1999 to May 2001. The plots are presented for three 
representative maturities – two, five, and ten years. The plots for the other maturities are similar. 
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Panel A: Panel GARCH volatility as benchmark 
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Panel B: Historical standard deviation as benchmark 

 
Panel C: Swaption implied volatility as benchmark 

 

 
 
 
Figure 2. Plots of excess implied volatility versus liquidity. This figure presents three sample scatter plots 
of the excess implied volatility of euro (€) interest rate caps and floors for the three benchmark volatilities - panel 
GARCH volatility, historical standard deviation and swaption implied volatility. The graphs show the relationship 
between the EIV and the RelBAS for two, five, and ten-year maturity caps and floors. The plots for other maturities 
are similar. The plots are constructed using data for OTC euro (€) interest rate caps and floors over the sample 
period April 1999 to May 2001. 
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