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Abstract

We present a new deterministic linear program for the network revenue management problem with
customer choice behavior. The novel aspect of our linear program is that it naturally generates bid
prices that depend on how much time is left until the time of departure. Similar to the earlier linear
program used by van Ryzin and Liu (2004), the optimal objective value of our linear program provides
an upper bound on the optimal total expected revenue over the planning horizon. In addition, the
percent gap between the optimal objective value of our linear program and the optimal total expected
revenue diminishes in an asymptotic regime where the leg capacities and the number of time periods in
the planning horizon increase linearly with the same rate. Computational experiments indicate that
when compared with the linear program that appears in the existing literature, our linear program
can provide tighter upper bounds and the control policies that are based on our linear program can
obtain higher total expected revenues.
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A prevalent assumption in the revenue management literature is that each customer arrives into the
system with the intention of purchasing a particular itinerary. If its intended itinerary is available for
purchase, then the customer purchases this itinerary. Otherwise, it does not purchase anything at all.
In reality, however, there may be many different itineraries that are acceptable to a particular customer
and the customer makes a choice among the acceptable itineraries that are available for purchase. This
type of customer choice behavior is especially true nowadays with the Internet bringing a variety of
itinerary choices to the customers.

Recently, van Ryzin and Liu (2004) utilize a deterministic linear program that was first proposed
by Gallego, Iyengar, Phillips and Dubey (2004) to develop control policies for the network revenue
management problem with customer choice behavior. This linear program includes one constraint for
each flight leg and the right side of these constraints are the remaining leg capacities. Consequently,
van Ryzin and Liu (2004) use the optimal values of the dual variables associated with these capacity
constraints to estimate the opportunity cost of a unit of capacity. They employ these opportunity
costs to extend the popular bid pricing and dynamic programming decomposition ideas to the network
revenue management problem with customer choice behavior.

In this paper, we propose a new deterministic linear program for the network revenue management
problem with customer choice behavior. Although one should intuitively expect the opportunity costs
to decrease as the departure time of the flight legs approaches and fewer opportunities to utilize the
leg capacities remain, the earlier linear program used by van Ryzin and Liu (2004) essentially assumes
that the opportunity costs of the leg capacities stay constant throughout the planning horizon. Our
main objective in this paper is to remedy this shortcoming. In particular, we propose a linear program
that naturally generates opportunity costs that depend on the number of time periods left until the
departure time. The hope is that our linear program captures the characteristics of the problem more
accurately and obtains more refined opportunity costs.

The method that we use to construct our linear program is also of interest in and of itself. The
linear program that appears in the existing literature is a deterministic and continuous approximation
to the original problem. It is based on the a priori assumption that the random quantities take on their
expected values and the itineraries can be sold in fractional amounts, in which case the network revenue
management problem can be formulated as a linear program. The usual approach is to analyze how this
linear program relates to the original problem through a posteriori analyses. On the other hand, we
construct our linear program directly by using the dynamic programming formulation of the network
revenue management problem. The fundamental idea is to relax the capacity availability constraints in
the dynamic programming formulation by associating Lagrange multipliers with them, in which case the
dynamic programming formulation decomposes by the time periods and we obtain simple expressions
for the value functions. A good set of values for the Lagrange multipliers can be obtained by minimizing
a dual function. The linear program that we propose in this paper essentially solves the problem of
minimizing the dual function.

Our linear program shares the appealing features of the earlier linear program used by van Ryzin and
Liu (2004). In particular, the optimal objective value of our linear program provides an upper bound
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on the optimal total expected revenue over the planning horizon. In an asymptotic regime where the
leg capacities and the number of time periods in the planning horizon increase linearly with the same
rate, the percent gap between the optimal objective value of our linear program and the optimal total
expected revenue diminishes. Our linear program also allows us to extend the popular bid pricing and
dynamic programming decomposition ideas to the network revenue management problem with customer
choice behavior. On the other hand, when compared with the earlier linear program used by van Ryzin
and Liu (2004), computational experiments indicate that our linear program provides tighter upper
bounds on the optimal total expected revenues and the performances of the control policies that are
based on our linear program tend to be better. Furthermore, although we do not pursue here, it is
straightforward to generalize our approach to incorporate cancellations by using the approach followed
by Topaloglu and Kunnumkal (2006). This strengthens the links between the dynamic programming
and linear programming formulations of the network revenue management problem.

Customer choice behavior is an active area of research. Belobaba and Weatherford (1996) extend
the expected marginal seat revenue heuristics of Belobaba (1987) to incorporate the possibility that a
customer buys a more expensive itinerary when the cheaper itinerary is closed. Talluri and van Ryzin
(2004) give a careful analysis of the single-leg revenue management problem with customer choice
behavior and characterize the conditions under which protection level policies are optimal. Zhang
and Cooper (2005) consider parallel flights and provide decomposition methods to compute upper and
lower bounds on the optimal total expected revenue over the planning horizon. Gallego et al. (2004)
analyze the benefits from selling flexible itineraries that allow the airlines to assign a customer to one
of the alternative itineraries right before the departure time. The authors develop a linear program to
approximate the optimal total expected revenue over the planning horizon. This linear program plays
a crucial role in the network revenue management literature and it is subsequently used in van Ryzin
and Liu (2004) to develop control policies for the network revenue management problem with customer
choice behavior. The particular focus of the latter paper is on using the linear program developed by
Gallego et al. (2004) to extend the bid pricing and dynamic programming decomposition ideas to deal
with the customer choice behavior. Zhang and Adelman (2006) develop control policies by using the
linear programming representation of the dynamic programming formulation of the network revenue
management problem. Their approach is related to our linear program in the sense that it generates
opportunity costs that depend on the number of time periods left until the departure time, but our
linear program is considerably simpler. Finally, van Ryzin and Vulcano (2004) compute protection levels
by using a stochastic approximation method that avoids parametric assumptions about the model that
governs the choice behavior of the customers.

We make the following research contributions in this paper. 1) We present a new deterministic
linear program for the network revenue management problem with customer choice behavior. The
novel aspect of our linear program is that it naturally generates opportunity costs that depend on
how much time is left until the time of departure. 2) We prove that the optimal objective value of
our linear program provides an upper bound on the optimal total expected revenue over the planning
horizon. In an asymptotic regime where the leg capacities and the number of time periods in the
planning horizon increase linearly with the same rate, we establish that the percent gap between the
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optimal objective value of our linear program and the optimal total expected revenue diminishes. 3)
The number of decision variables in our linear program increases exponentially with the number of
itineraries, but we show that it is possible to solve our linear program efficiently by using standard
column generation. 4) When compared with the deterministic linear program used by van Ryzin and
Liu (2004), computational experiments indicate that our linear program provides tighter upper bounds
on the optimal total expected revenues and the performances of the control policies that are based on
our linear program tend to be better.

The rest of the paper is organized as follows. Section 1 formulates the problem as a dynamic
program. Section 2 presents the earlier linear program used by van Ryzin and Liu (2004). Section 3
derives our linear program and shows that it provides an upper bound on the optimal total expected
revenue. Section 4 compares the upper bounds provided by the two linear programs. This section also
shows that the percent gap between the upper bound provided by our linear program and the optimal
total expected revenue diminishes as the leg capacities and the number of time periods in the planning
horizon increase linearly with the same rate. Section 5 describes different control policies that are based
on the linear programs in Sections 2 and 3. Section 6 shows that our linear program can be solved
efficiently as long as the customer choice behavior is governed by the multinomial logit model with
disjoint consideration sets. Section 7 presents computational experiments.

1 Problem Formulation

We have a set of flight legs to serve the customers that arrive over time with the intention of purchasing
itineraries. At each time period, we need to decide which itineraries to offer to the customers. Each
customer reviews the offered itineraries and purchases at most one of them according to a probability
distribution defined over the set of offered itineraries. A sold itinerary generates a revenue and consumes
the capacities on the relevant flight legs.

The set of flight legs in the airline network is L and the set of itineraries that can be offered to
the customers is J . The initial capacity on flight leg i is ci. If a customer purchases itinerary j,
then we generate a revenue of rj and consume aij units of capacity on flight leg i. Naturally, we have
aij = 0 when itinerary j does not include flight leg i. The problem takes place over the planning
horizon T = {1, . . . , τ} and all flight legs depart at time period τ +1. We assume that the time periods
correspond to small time intervals so that there is at most one customer arrival at each time period.
The probability that there is a customer arrival at each time period is λ. If the set of itineraries that
we offer to the customers is S, then a customer purchases itinerary j with probability Pj(S). Naturally,
we have Pj(S) = 0 when j 6∈ S. We use Pφ(S) = 1 − ∑

j∈S Pj(S) to denote the probability that a
customer does not purchase an itinerary. We assume that the arrivals in different time periods and
the purchasing decisions of different customers are independent of each other. As evident from our
notation, we also assume that the probability that there is a customer arrival and the probability that
a customer purchases a particular itinerary do not depend on the time period. This assumption is only
for notational brevity and it is straightforward to allow these probabilities to depend on the time period.
The objective is to maximize the total expected revenue over the planning horizon.
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Using xit to denote the remaining capacity on flight leg i at time period t, xt = {xit : i ∈ L}
captures the state of the system. As a function of the remaining leg capacities, we need to decide which
itineraries to offer at each time period. Since it is feasible to offer an itinerary only if we have enough
capacity on all of the flight legs that are included in this itinerary, the set of itineraries that we can
offer at time period t is

O(xt) = {S ⊂ J : 1(j ∈ S) aij ≤ xit ∀ i ∈ L, j ∈ J },
where 1(·) is the indicator function. In this case, the optimal policy can be found by computing the
value functions through the optimality equation

Vt(xt) = max
S∈O(xt)

{ ∑

j∈J
λPj(S)

[
rj + Vt+1(xt −

∑
i∈L aij ei)

]
+

[
1− λ + λ Pφ(S)

]
Vt+1(xt)

}

= max
S∈O(xt)

{ ∑

j∈J
λPj(S)

[
rj + Vt+1(xt −

∑
i∈L aij ei)− Vt+1(xt)

]}
+ Vt+1(xt), (1)

where ei is the |L|-dimensional unit vector with a one in the element corresponding to i ∈ L and the
second equality follows from the fact that Pφ(S) = 1 − ∑

j∈S Pj(S); see van Ryzin and Liu (2004).
Throughout the rest of the paper, we assume that λ = 1 for notational brevity. We note that this is
equivalent to letting P̃j(S) = λPj(S) and P̃φ(S) = 1− λ + λPφ(S) and working with the probabilities
{P̃j(S) : j ∈ S, S ⊂ J } and {P̃φ(S) : S ⊂ J }.

In the optimality equation above, the number of possible values for the state variable xt increases
exponentially with the number of flight legs and the number of possible values for the decision variable
S increases exponentially with the number of itineraries. Therefore, it is quite difficult to solve this
optimality equation. In the next two sections, we describe approximate methods that can be used to
decide which itineraries to offer to the customers at each time period.

2 Deterministic Linear Program

An alternative to solving the optimality equation in (1) is to employ a deterministic and continuous
approximation to the problem. This approximation assumes that the random quantities take on their
expected values and the itineraries can be sold in fractional amounts. As a result, we obtain the linear
programming formulation used by van Ryzin and Liu (2004).

To formulate the linear program, we let ht(S) be the frequency with which we offer set S at time
period t. In this case, the expected revenue at time period t is

∑

S⊂J

∑

j∈S
Pj(S) rj ht(S) =

∑

S⊂J
R(S) ht(S),

where R(S) =
∑

j∈S Pj(S) rj is the expected revenue when we offer set S. Similarly, using Qi(S) =∑
j∈S Pj(S) aij to denote the expected capacity consumption on flight leg i when we offer set S, the

expected capacity consumption on flight leg i at time period t is
∑

S⊂J

∑

j∈S
Pj(S) aij ht(S) =

∑

S⊂J
Qi(S) ht(S).
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Therefore, we can use the optimal objective value of the linear program

ZLP = max
∑

t∈T

∑

S⊂J
R(S) ht(S) (2)

subject to
∑

t∈T

∑

S⊂J
Qi(S) ht(S) ≤ ci ∀ i ∈ L (3)

∑

S⊂J
ht(S) = 1 ∀ t ∈ T (4)

ht(S) ≥ 0 ∀S ⊂ J , t ∈ T (5)

as an approximation to the optimal total expected revenue over the planning horizon; see van Ryzin
and Liu (2004). The decision variables in problem (2)-(5) are {ht(S) : S ⊂ J , t ∈ T }. The first set
of constraints ensure that the total expected capacity consumptions over the planning horizon do not
exceed the leg capacities. The second set of constraints ensure that the total frequency with which we
offer the sets at each time period is equal to one. Since the empty set is a subset of J , the second set
of constraints allow not offering an itinerary with a certain frequency.

We emphasize that by using the approach followed by van Ryzin and Liu (2004), it is possible to
reduce the number of decision variables in problem (2)-(5) by a factor of |T |, but the way we present
this problem is more useful for the subsequent development in the paper. In addition, problem (2)-(5)
allows time dependent probabilities of the form {Pjt(S) : j ∈ S, S ⊂ J , t ∈ T } simply by using
Rt(S) =

∑
j∈S Pjt(S) rj and Qit(S) =

∑
j∈S Pjt(S) aij instead of R(S) and Qi(S).

The number of decision variables in problem (2)-(5) increases exponentially with the number of
itineraries. However, the number of constraints is only |L| + |T | and this suggests solving problem
(2)-(5) by using column generation. In Section 6, we briefly revisit solving problem (2)-(5) by using
column generation under a particular choice of the probabilities {Pj(S) : j ∈ S, S ⊂ J }.

There are two primary uses of problem (2)-(5). First, this problem can be used to decide which
itineraries to offer. In particular, letting {π̂i : i ∈ L} be the optimal values of the dual variables
associated with constraints (3), the idea is to use π̂i as the estimate of the opportunity cost of a
unit of capacity on flight leg i. If the set of itineraries that we offer is S, then the expected revenue
that we obtain is

∑
j∈S Pj(S) rj and the total expected opportunity cost of the consumed capacities is∑

j∈S
∑

i∈L Pj(S) aij π̂i. Therefore, it is sensible to offer the feasible set of itineraries that maximize
the difference between the expected revenue and the total expected opportunity cost of the consumed
capacities. In other words, we can solve the problem

max
S∈O(xt)

{∑

j∈S
Pj(S)

[
rj −

∑

i∈L
aij π̂i

]}
(6)

to decide which itineraries to offer at time period t. In revenue management language, these estimates
of the opportunity costs are called bid prices. Letting Ṽt(xt) =

∑
i∈L π̂i xit for all t ∈ T and noting

that Ṽt+1(xt)− Ṽt+1(xt−
∑

i∈L aij ei) =
∑

i∈L aij π̂i, it is easy to see that solving problem (6) to decide
which itineraries to offer is equivalent to approximating Vt+1(xt) on the right side of (1) by Ṽt+1(xt).
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Second, Gallego et al. (2004) show that the optimal objective value of problem (2)-(5) provides an
upper bound on the optimal total expected revenue. In other words, letting c = {ci : i ∈ L}, we have
V1(c) ≤ ZLP . This information can be useful when assessing the optimality gap of a suboptimal decision
rule such as the one in (6).

The decision rule in (6) implicitly assumes that the opportunity costs of the leg capacities stay
constant throughout the planning horizon. In reality, however, one should expect the opportunity
costs to decrease as the departure time approaches and fewer opportunities to utilize the leg capacities
remain. In practical implementations, as the departure time approaches, the time dependent nature
of the opportunity costs is “mimicked” by resolving problem (2)-(5) with the remaining number of
time periods in the planning horizon and the remaining leg capacities. In the next section, we develop
an alternative linear program that naturally generates bid prices that depend on the number of time
periods left until the departure time. The hope is that this linear program captures the characteristics
of the problem more accurately and is able to obtain more refined bid prices.

3 An Alternative Deterministic Linear Program

In this section, we develop a new linear program that generates bid prices that depend on the number
of time periods left until the departure time. Noting the constraints captured by the set O(xt) in
the optimality equation in (1), the fundamental idea is to relax these constraints by associating the
Lagrange multipliers α = {αijt : i ∈ L, j ∈ J , t ∈ T } with them. In other words, this idea suggests
solving the optimality equation

V α
t (xt) = max

S⊂J

{ ∑

j∈J
Pj(S)

[
rj + V α

t+1(xt −
∑

i∈L aij ei)− V α
t+1(xt)

]

−
∑

i∈L

∑

j∈J
αijt 1(j ∈ S) aij

}
+

∑

i∈L

∑

j∈J
αijt xit + V α

t+1(xt), (7)

where the superscripts in the value functions emphasize that the solution to the optimality equation
above depends on the Lagrange multipliers. The next proposition shows that we obtain upper bounds
on the value functions by solving the optimality equation in (7).

Proposition 1 If the Lagrange multipliers are positive, then we have Vt(xt) ≤ V α
t (xt).

Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. Assuming that the result holds for time period t + 1 and letting Ŝ be an optimal solution
to problem (1), we have

V α
t (xt) ≥

∑

j∈J
Pj(Ŝ)

[
rj + V α

t+1(xt −
∑

i∈L aij ei)
]

+
[
1−

∑

j∈J
Pj(Ŝ)

]
V α

t+1(xt)

−
∑

i∈L

∑

j∈J
αijt 1(j ∈ Ŝ) aij +

∑

i∈L

∑

j∈J
αijt xit

≥
∑

j∈J
Pj(Ŝ)

[
rj + Vt+1(xt −

∑
i∈L aij ei)

]
+

[
1−

∑

j∈J
Pj(Ŝ)

]
Vt+1(xt),
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where the first inequality follows from the fact that Ŝ is a feasible but not necessarily an optimal
solution to problem (7) and the second inequality follows from the induction assumption and the fact
that Ŝ ∈ O(xt) and αijt ≥ 0 for all i ∈ L, j ∈ J . The result follows by noting that the last expression
above is equal to Vt(xt). 2

The next proposition shows that there is a simple solution to the optimality equation in (7). For
notational brevity, in this proposition and throughout the rest of the paper, we let

Lα
it =

∑

j∈J
αijt + . . . +

∑

j∈J
αijτ (8)

Mα
t = max

S⊂J

{ ∑

j∈J
Pj(S)

[
rj −

∑

i∈L
aij Lα

i,t+1

]
−

∑

i∈L

∑

j∈J
αijt 1(j ∈ S) aij

}
. (9)

We note that both Lα
it and Mα

t are straightforward functions of the Lagrange multipliers as long as we
can solve problem (9) efficiently. We are now ready to show the next proposition.

Proposition 2 The solution to the optimality equation in (7) is given by

V α
t (xt) = Mα

t + . . . + Mα
τ +

∑

i∈L
Lα

it xit.

Proof We show the result by induction over the time periods. It is easy to show the result for the
last time period. Assuming that the result holds for time period t + 1, we have V α

t+1(xt−
∑

i∈L aij ei)−
V α

t+1(xt) = −∑
i∈L Lα

i,t+1 aij . Using this expression and the induction assumption in (7), we obtain

V α
t (xt) = max

S⊂J

{ ∑

j∈J
Pj(S)

[
rj −

∑

i∈L
Lα

i,t+1 aij

]
−

∑

i∈L

∑

j∈J
αijt 1(j ∈ S) aij

}

+
∑

i∈L

∑

j∈J
αijt xit + Mα

t+1 + . . . + Mα
τ +

∑

i∈L
Lα

i,t+1 xit.

The result follows by noting the definition of Mα
t in (9) and the fact that Lα

it =
∑

j∈J αijt + Lα
i,t+1. 2

The optimal total expected revenue is V1(c). By Proposition 1, V1(c) is bounded from above by
V α

1 (c) as long as the Lagrange multipliers are positive. Therefore, to obtain the tightest possible upper
bound on V1(c), we can solve the problem

min
α≥0

{
V α

1 (c)
}
. (10)

It turns out that we can obtain an optimal solution to the problem above by solving a linear program
that very much resembles problem (2)-(5). To see this, we first note that

V α
1 (c) =

∑

t∈T
Mα

t +
∑

i∈L
Lα

i1 ci (11)

Mα
t = max

S⊂J

{
R(S)−

∑

i∈L
Qi(S) Lα

i,t+1 −
∑

i∈L

∑

j∈J
αijt 1(j ∈ S) aij

}
, (12)

8



where the first equality is by Proposition 2 and the second equality is by the definitions of Mα
t , R(S)

and Qi(S). In this case, the next proposition shows that the linear program

ζLP = min
∑

t∈T
µt +

∑

i∈L
ci Λi1 (13)

subject to µt ≥ R(S)−
∑

i∈L
Qi(S) Λi,t+1 −

∑

i∈L

∑

j∈J
1(j ∈ S) aij αijt ∀S ⊂ J , t ∈ T \ {τ} (14)

µτ ≥ R(S)−
∑

i∈L

∑

j∈J
1(j ∈ S) aij αijτ ∀S ⊂ J (15)

Λit =
∑

j∈J
αijt + . . . +

∑

j∈J
αijτ ∀ i ∈ L, t ∈ T (16)

µt and Λit are free, αijt ≥ 0 ∀ i ∈ L , j ∈ J , t ∈ T (17)

is equivalent to problem (10).

Proposition 3 We have ζLP = minα≥0{V α
1 (c)}.

Proof If α̂ = {α̂ijt : i ∈ L, j ∈ J , t ∈ T } is an optimal solution to problem (10), then the definition
of Lα

it in (8) and the definition of Mα
t in (12) imply that {M α̂

t : t ∈ T }, {Lα̂
it : i ∈ L, t ∈ T },

{α̂ijt : i ∈ L, j ∈ J , t ∈ T } is a feasible solution to problem (13)-(17) with the objective value∑
t∈T M α̂

t +
∑

i∈L ci L
α̂
i1. Therefore, we have ζLP ≤

∑
t∈T M α̂

t +
∑

i∈L ci L
α̂
i1 = V α̂

1 (c) = minα≥0{V α
1 (c)},

where the first equality follows from (11).

On the other hand, if {µ̂t : t ∈ T }, {Λ̂it : i ∈ L, t ∈ T }, {α̂ijt : i ∈ L, j ∈ J , t ∈ T } is an
optimal solution to problem (13)-(17), then we have Λ̂it = Lα̂

it for all i ∈ L, t ∈ T by constraints
(16). Noting the definition of Mα

t in (12), constraints (14)-(15) together with the fact that problem
(13)-(17) is a minimization problem imply that µ̂t = M α̂

t for all t ∈ T . Therefore, we have ζLP =∑
t∈T M α̂

t +
∑

i∈L Lα̂
i1 ci = V α̂

1 (c) ≥ minα≥0{V α
1 (c)}. 2

We emphasize that the discussion in the proof of Proposition 3 also shows that if {µ̂t : t ∈ T },
{Λ̂it : i ∈ L, t ∈ T }, {α̂ijt : i ∈ L, j ∈ J , t ∈ T } is an optimal solution to problem (13)-(17), then
{α̂ijt : i ∈ L, j ∈ J , t ∈ T } is an optimal solution to problem (10).

Associating the dual variables {yt(S) : S ⊂ J , t ∈ T } with constraints (14)-(15) and the dual
variables {zit : i ∈ L , t ∈ T } with constraints (16), the dual of problem (13)-(17) is

ζLP = max
∑

t∈T

∑

S⊂J
R(S) yt(S)

subject to
∑

S⊂J
1(j ∈ S) aij yt(S) ≤ zi1 + . . . + zit ∀ i ∈ L , j ∈ J , t ∈ T

zi1 = ci ∀ i ∈ L
zit = −

∑

S⊂J
Qi(S) yt−1(S) ∀ i ∈ L, t ∈ T \ {1}

∑

S⊂J
yt(S) = 1 ∀ t ∈ T

yt(S) ≥ 0, zit is free ∀S ⊂ J , i ∈ L, t ∈ T .
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Substituting for the decision variables {zit : i ∈ L, t ∈ T } by using the second and third sets of
constraints, we can drop these decision variables and the problem above becomes

ζLP = max
∑

t∈T

∑

S⊂J
R(S) yt(S) (18)

subject to
∑

S⊂J
Qi(S) y1(S) + . . . +

∑

S⊂J
Qi(S) yt−1(S)

+
∑

S⊂J
1(j ∈ S) aij yt(S) ≤ ci ∀ i ∈ L, j ∈ J , t ∈ T (19)

∑

S⊂J
yt(S) = 1 ∀ t ∈ T (20)

yt(S) ≥ 0 ∀S ⊂ J , t ∈ T . (21)

Problem (18)-(21) is the deterministic linear program that we propose in this paper. We have ζLP =
minα≥0{V α

1 (c)} by Proposition 3 and minα≥0{V α
1 (c)} ≥ V1(c) by Proposition 1. Therefore, similar to

the optimal objective value of problem (2)-(5), the optimal objective value of problem (18)-(21) provides
an upper bound on V1(c).

Problems (2)-(5) and (18)-(21) are similar to each other. As a matter of fact, the only difference
between them is in the way in which they capture the capacity availabilities. Constraints (3) in problem
(2)-(5) are relatively straightforward and they ensure that the total expected capacity consumptions
over the planning horizon do not exceed the leg capacities. The interpretation of constraints (19) in
problem (18)-(21) is a bit more intricate. We begin by noting that the right side of the constraints

1(j ∈ S) aij ≤ ci −
∑

S′⊂J
Qi(S ′) y1(S ′)− . . .−

∑

S′⊂J
Qi(S ′) yt−1(S ′)

∀S ⊂ J , i ∈ L, j ∈ J , t ∈ T (22)

is the expected remaining capacity on flight leg i at time period t. Therefore, constraints (22) ensure
that if we offer a set that includes itinerary j at time period t, then the capacity consumed by itinerary
j on flight leg i should not exceed the expected remaining capacity on flight leg i. Constraints (22) can
be interpreted as capacity constraints, but they apply to each time period, each itinerary, each flight leg
and each set. In contrast, constraints (3) are in aggregate form in the sense that they apply only to each
flight leg. If we multiply constraints (22) with yt(S), add over all S ⊂ J and note that

∑
S⊂J yt(S) = 1,

then we obtain constraints (19) in problem (18)-(21). This discussion suggests that constraints (19)
are in a more disaggregate form than constraints (3), and hence, they may be stronger. However, in
the next section, we give two examples to show that it is possible to find {yt(S) : S ⊂ J , t ∈ T }
that satisfy constraints (19), but not constraints (3), and it is possible to find {ht(S) : S ⊂ J , t ∈ T }
that satisfy constraints (3), but not constraints (19). Therefore, neither of constraints (3) and (19)
are provably stronger. In practice, however, since constraints (19) operate at a more disaggregate level
than constraints (3), the upper bounds obtained by problem (18)-(21) tend to be tighter than the upper
bounds obtained by problem (2)-(5).

The number of decision variables in problem (18)-(21) increases exponentially with the number of
itineraries. However, the number of constraints is |L| |J | |T | + |T | and this suggests solving problem
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(18)-(21) by using column generation. In Section 6, we discuss solving problem (18)-(21) by using
column generation under a particular choice of the probabilities {Pj(S) : j ∈ S, S ⊂ J }.

4 Comparison of the Deterministic Linear Programs

The optimal objective values of problems (2)-(5) and (18)-(21) both provide upper bounds on the
optimal total expected revenue. In this section, we begin by presenting two examples that show that
neither of these upper bounds is provably tighter than the other one. After this inconclusive result, we
consider an asymptotic regime where the leg capacities and the number of time periods in the planning
horizon increase linearly with the same rate. In this asymptotic regime, we establish a result that
roughly shows that the upper bound obtained by problem (18)-(21) tends to be tighter than the upper
bound obtained by problem (2)-(5).

Noting that ZLP and ζLP are respectively the optimal objective values of problems (2)-(5) and
(18)-(21), we begin with an example that shows that it is possible to have ZLP < ζLP . We consider
a problem instance with T = {1}, L = {1}, J = {1, 2}, r1 = r2 = 10, c1 = 1 and a1j = 2 for all
j ∈ {1, 2}. Letting S1, S2 and S3 respectively be the sets {1}, {2} and {1, 2}, we use the probabilities
P1(S1) = 0.9, P2(S2) = 0.9, P1(S3) = 0.2 and P2(S3) = 0.6. Omitting the nonnegativity constraints,
problem (2)-(5) for this problem instance becomes

ZLP = max 9h1(S1) + 9 h1(S2) + 8h1(S3)

subject to 1.8 h1(S1) + 1.8h1(S2) + 1.6 h1(S3) ≤ 1

h1(S1) + h1(S2) + h1(S3) + h1(∅) = 1.

It is easy to see that ZLP = 5. On the other hand, problem (18)-(21) is

ζLP = max 9 y1(S1) + 9 y1(S2) + 8 y1(S3)

subject to 2 y1(S1) + 2 y1(S3) ≤ 1

2 y1(S2) + 2 y1(S3) ≤ 1

y1(S1) + y1(S2) + y1(S3) + y1(∅) = 1.

We have ζLP = 9 so that ZLP < ζLP for this problem instance.

Our second example shows that it is possible to have ZLP > ζLP . We consider a problem instance
with T = {1}, L = {1}, J = {1}, r1 = 10, c1 = 1, a11 = 2 and P1({1}) = 0.5. Problem (2)-(5) for this
problem instance becomes

ZLP = max 5h1({1})
subject to h1({1}) ≤ 1 and h1({1}) + h1(∅) = 1

so that we have ZLP = 5. On the other hand, problem (18)-(21) is

ζLP = max 5 y1({1})
subject to 2 y1({1}) ≤ 1 and y1({1}) + y1(∅) = 1.
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We have ζLP = 5/2 so that ZLP > ζLP for this problem instance.

In the remainder of this section, we consider an asymptotic regime where the leg capacities and the
number of time periods in the planning horizon increase linearly with the same rate. For this purpose,
we consider a family of network revenue management problems {Pθ : θ ∈ Z+} parameterized by the
scaling parameter θ. Problem Pθ takes place over the planning horizon T θ = {1, . . . , θτ} and the initial
capacity on flight leg i in this problem is θci. All other parameters of problem Pθ are the same as
those described in Section 1. This is a standard way of scaling the problem in the revenue management
literature to obtain asymptotic results; see Talluri and van Ryzin (1998).

We let Zθ
LP and ζθ

LP respectively be the optimal objective values of problems (2)-(5) and (18)-(21)
when these problems are solved with planning horizon T θ and leg capacities {θci : i ∈ L}. The next
proposition shows that limθ→∞ ζθ

LP /Zθ
LP ≤ 1.

Proposition 4 We have limθ→∞ ζθ
LP /Zθ

LP ≤ 1.

Proof The dual of problem (2)-(5) is

ZLP = min
∑

i∈L
ci πi +

∑

t∈T
σt

subject to
∑

i∈L
Qi(S) πi + σt ≥ R(S) ∀S ⊂ J , t ∈ T

πi ≥ 0, σt is free ∀ i ∈ L, t ∈ T .

The decision variables {σt : t ∈ T } take the same value maxS⊂J {R(S)−∑
i∈LQi(S) πi} in the optimal

solution to the problem above. Therefore, we can replace these decision variables with a single decision
variable and write the problem above as

ZLP = min
∑

i∈L
ci πi + τ σ (23)

subject to
∑

i∈L
Qi(S) πi + σ ≥ R(S) ∀S ⊂ J (24)

πi ≥ 0, σ is free ∀ i ∈ L. (25)

We let {π̂i : i ∈ L}, σ̂ be an optimal solution to problem (23)-(25). We note that if we solve this
problem with planning horizon T θ and leg capacities {θci : i ∈ L}, then an optimal solution to this
problem is still {π̂i : i ∈ L}, σ̂. This implies that Zθ

LP = θZLP and if we let σ̂t = σ̂ for all t ∈ T θ,
then {π̂i : i ∈ L}, {σ̂t : t ∈ T θ} is still an optimal dual solution to problem (2)-(5) when we solve this
problem with planning horizon T θ and leg capacities {θci : i ∈ L}. In this case, by using the duality
theory on problem (2)-(5), we have

Zθ
LP = max

∑

t∈T θ

∑

S⊂J
R(S) ht(S) +

∑

i∈L
π̂i

[
θci −

∑

t∈T θ

∑

S⊂J
Qi(S) ht(S)

]
(26)

subject to (4), (5). (27)
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We let Q̂i = maxS⊂J Qi(S) for all i ∈ L and {ŷt(S) : S ⊂ J , t ∈ T θ} be an optimal solution to
problem (18)-(21) when we solve this problem with planning horizon T θ and leg capacities {θci : i ∈ L}.
Since

∑
S⊂J ŷθτ (S) = 1 and ŷθτ (S) ≥ 0 for all S ⊂ J , we have

∑

t∈T θ

∑

S⊂J
Qi(S) ŷt(S)− Q̂i ≤

∑

t∈T θ

∑

S⊂J
Qi(S) ŷt(S)−

∑

S⊂J
Qi(S) ŷθτ (S)

≤
∑

t∈T θ

∑

S⊂J
Qi(S) ŷt(S)−

∑

S⊂J
Qi(S) ŷθτ (S) +

∑

S⊂J
1(j ∈ S) aij ŷθτ (S) ≤ θci (28)

for all i ∈ L, where the third inequality follows from constraints (19) for time period θτ and any
itinerary j. Since {ŷt(S) : S ⊂ J , t ∈ T θ} is a feasible but not necessarily an optimal solution to
problem (26)-(27), we obtain

θZLP = Zθ
LP ≥

∑

t∈T θ

∑

S⊂J
R(S) ŷt(S) +

∑

i∈L
π̂i

[
θci −

∑

t∈T θ

∑

S⊂J
Qi(S) ŷt(S)

]
≥ ζθ

LP −
∑

i∈L
π̂i Q̂i,

where the second inequality follows from (28) and the fact that π̂i ≥ 0 for all i ∈ L. The final result
follows by dividing the expression above by θZLP and taking the limit. 2

Therefore, we have limθ→∞[ζθ
LP −Zθ

LP ]/Zθ
LP ≤ 0 and the percent gap between ζθ

LP and Zθ
LP becomes

negative as the leg capacities and the number of time periods in the planning horizon increase linearly
with the same rate.

Letting {Vt(· | θ) : t ∈ T θ} be the value functions obtained by solving the optimality equation in (1)
with planning horizon T θ, Gallego et al. (2004) show that limθ→∞ Zθ

LP /V1(θc | θ) = 1. In other words,
the percent gap between the optimal objective value of problem (2)-(5) and the optimal total expected
revenue diminishes as the leg capacities and the number of time periods in the planning horizon increase
linearly with the same rate. An immediate corollary to Proposition 4 is that the same property holds
for the optimal objective value of problem (18)-(21).

Corollary 5 We have limθ→∞ ζθ
LP /V1(θc | θ) = 1.

5 Control Policies from the Deterministic Linear Programs

In this section, we describe several ways in which the linear programs in Sections 2 and 3 can be used
to decide which itineraries to offer at each time period.

5.1 Bid Price Policy from the Deterministic Linear Program

This is the approach described in Section 2. Letting {π̂i : i ∈ L} be the optimal values of the dual
variables associated with constraints (3) in problem (2)-(5), we solve problem (6) to decide which
itineraries to offer at time period t; see van Ryzin and Liu (2004). As mentioned before, this approach
is equivalent to approximating Vt+1(xt) on the right side of (1) by Ṽt+1(xt) =

∑
i∈L π̂i xit.
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5.2 Decomposition from the Deterministic Linear Program

This approach decomposes the network revenue management problem into a number of single-leg revenue
management problems. In particular, letting {π̂i : i ∈ L} be the optimal values of the dual variables
associated with constraints (3) in problem (2)-(5), we consider the single-leg revenue management
problem that takes place over flight leg i under the assumption that rj −

∑
k∈L\{i} akj π̂k is the revenue

associated with itinerary j. We can obtain the optimal total expected revenue for this single-leg revenue
management problem by solving the optimality equation

vit(xit) = max
S∈Oi(xit)

{ ∑

j∈J
Pj(S)

[
rj −

∑

k∈L\{i}
akj π̂k + vi,t+1(xit − aij)− vi,t+1(xit)

]}
+ vi,t+1(xit), (29)

where we let Oi(xit) = {S ⊂ J : 1(j ∈ S) aij ≤ xit ∀ j ∈ J } and use an optimality equation that is
similar to the one in (1), but focus only on flight leg i. Zhang and Adelman (2006) show that

V1(c) ≤ vi1(ci) +
∑

k∈L\{i}
π̂k ck ≤ ZLP . (30)

Therefore, we can solve the optimality equation in (29) to obtain an upper bound on the optimal total
expected revenue that is tighter than the one provided by problem (2)-(5). In Appendix A, we give an
alternative proof for the second inequality above that provides additional insight.

Repeating this approach for all i ∈ L, the tightest possible upper bound on V1(c) is

min
i∈L

{
vi1(ci) +

∑

k∈L\{i}
π̂k ck

}
.

Furthermore, we can collect the one-dimensional value functions {vit(·) : i ∈ L, t ∈ T } together to
construct the separable value function approximation Ṽt(xt) =

∑
i∈L vit(xit) for all t ∈ T . In this case,

we can decide which itineraries to offer at time period t by replacing Vt+1(xt) on the right side of (1)
with Ṽt+1(xt) and solving this problem.

5.3 Bid Price Policy from the Alternative Deterministic Linear Program

This approach is similar to the one in Section 5.1. Letting α̂ be an optimal solution to problem (10),
we replace Vt+1(xt) on the right side of (1) with V α̂

t+1(xt) = M α̂
t+1 + . . .+M α̂

τ +
∑

i∈L Lα̂
i,t+1 xit and solve

this problem to decide which itineraries to offer at time period t.

5.4 Decomposition from the Alternative Deterministic Linear Program

The idea behind this approach is similar to the one in Section 5.2, but this approach uses the linear
program that we propose in the current paper. We let {α̂ijt : i ∈ L, j ∈ J , t ∈ T } be the optimal
values of the dual variables associated with constraints (19) in problem (18)-(21). We choose a flight
leg i and relax constraints (19) for all other flight legs by associating the dual multipliers {α̂kjt : k ∈
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L \ {i}, j ∈ J , t ∈ T } with them. In this case, the objective function of problem (18)-(21) becomes
∑

t∈T

∑

S⊂J
R(S) yt(S)−

∑

t∈T

∑

j∈J

∑

k∈L\{i}
α̂kjt

[ ∑

S⊂J
Qk(S) y1(S) + . . . +

∑

S⊂J
Qk(S) yt−1(S)

+
∑

S⊂J
1(j ∈ S) akj yt(S)− ck

]
.

In Appendix B, we show that simply by arranging the terms and using the definitions of R(S), Qi(S)
and Lα

it, the expression above can be written as
∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S)

[
rj −

∑

k∈L\{i}
akj Lα̂

k,t+1 −
∑

k∈L\{i}

[
α̂kjt 1(j ∈ S) akj/Pj(S)

]]
yt(S) +

∑

k∈L\{i}
Lα̂

k1 ck,

where we use the convention that Pj(S)
[
1(j ∈ S)/Pj(S)] = 1(j ∈ S) when Pj(S) = 0. Therefore, the

duality theory implies that the linear program

ζLP = max
∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S)

[
rj −

∑

k∈L\{i}
akj Lα̂

k,t+1

−
∑

k∈L\{i}

[
α̂kjt 1(j ∈ S) akj/Pj(S)

]]
yt(S) +

∑

k∈L\{i}
Lα̂

k1 ck

subject to (20), (21)∑

S⊂J
Qi(S) y1(S) + . . . +

∑

S⊂J
Qi(S) yt−1(S)

+
∑

S⊂J
1(j ∈ S) aij yt(S) ≤ ci ∀ j ∈ J , t ∈ T

has the same optimal objective value as problem (18)-(21).

We consider the single-leg revenue management problem that takes place over flight leg i under the
assumption that rj−

∑
k∈L\{i} akj Lα̂

k,t+1−
∑

k∈L\{i}
[
α̂kjt 1(j ∈ S) akj/Pj(S)

]
is the revenue associated

with itinerary j when we offer set S at time period t. If we compare the last problem above with
problem (18)-(21) and ignore the constant term

∑
k∈L\{i} Lα̂

k1 ck in the objective function, then it is
easy to see that the last problem above is the linear program for the single-leg revenue management
problem that takes place over flight leg i. Therefore, ζLP −

∑
k∈L\{i} Lα̂

k1 ck is an upper bound on the
optimal total expected revenue for this single-leg revenue management problem. On the other hand,
we can obtain the optimal total expected revenue for the single-leg revenue management problem that
takes place over flight leg i by solving the optimality equation

ϑit(xit) = max
S⊂Oi(xit)

{∑

j∈S
Pj(S)

[
rj −

∑

k∈L\{i}
akj Lα̂

k,t+1 −
∑

k∈L\{i}

[
α̂kjt 1(j ∈ S) akj/Pj(S)

]

+ ϑi,t+1(xit − aij)− ϑi,t+1(xit)
]}

+ ϑi,t+1(xit). (31)

We have ϑi1(ci) ≤ ζLP −
∑

k∈L\{i} Lα̂
k1 ck by the discussion above. Furthermore, the next proposition

shows that V1(c) ≤ ϑi1(ci) +
∑

k∈L\{i} Lα̂
k1 ck. Therefore, we have

V1(c) ≤ ϑi1(ci) +
∑

k∈L\{i}
Lα̂

k1 ck ≤ ζLP
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and we can solve the optimality equation in (31) to obtain an upper bound that is tighter than the one
provided by problem (18)-(21). We note that the inequality above is analogous to the one in (30).

Proposition 6 Letting α̂ = {α̂ijt : i ∈ L, j ∈ J , t ∈ T } be the optimal values of the dual variables
associated with constraints (19) in problem (18)-(21), we have Vt(xt) ≤ ϑit(xit) +

∑
k∈L\{i} Lα̂

kt xkt.

Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. Assuming that the result holds for time period t + 1, we let Ŝ be an optimal solution to
problem (1). We have

Vt(xt) =
∑

j∈Ŝ
Pj(Ŝ)

[
rj + Vt+1(xt −

∑
i∈L aij ei)

]
+

[
1−

∑

j∈J
Pj(Ŝ)

]
Vt+1(xt)

≤
∑

j∈Ŝ
Pj(Ŝ)

[
rj + ϑi,t+1(xit − aij) +

∑

k∈L\{i}
Lα̂

k,t+1

[
xkt − akj

]]

+
[
1−

∑

j∈J
Pj(Ŝ)

][
ϑi,t+1(xit) +

∑

k∈L\{i}
Lα̂

k,t+1 xkt

]

=
∑

j∈Ŝ
Pj(Ŝ)

[
rj −

∑

k∈L\{i}
akj Lα̂

k,t+1 + ϑi,t+1(xit − aij)− ϑi,t+1(xit)
]

+ ϑi,t+1(xit) +
∑

k∈L\{i}
Lα̂

kt xkt −
∑

k∈L\{i}

∑

j∈J
α̂kjt xkt

≤
∑

j∈Ŝ
Pj(Ŝ)

[
rj −

∑

k∈L\{i}
akj Lα̂

k,t+1 + ϑi,t+1(xit − aij)− ϑi,t+1(xit)
]

+ ϑi,t+1(xit) +
∑

k∈L\{i}
Lα̂

kt xkt −
∑

k∈L\{i}

∑

j∈J
α̂kjt 1(j ∈ Ŝ) akj

≤ ϑit(xit) +
∑

k∈L\{i}
Lα̂

kt xkt,

where the first inequality follows from the induction assumption, the second equality follows from
arranging the terms and using the definition of Lα

it in (8), the second inequality follows from the fact
that Ŝ ∈ O(xt) and α̂ijt ≥ 0 for all i ∈ L, j ∈ J and the third inequality follows from the fact that Ŝ
is a feasible but not necessarily an optimal solution to problem (31). 2

Similar to Section 5.2, we can repeat this approach for all i ∈ L and construct the separable value
function approximation Ṽt(xt) =

∑
i∈L ϑit(xit) for all t ∈ T .

6 Applications of the Logit Model

The essence of the four control policies described in Section 5 is to construct approximations to the
value functions and to decide which itineraries to offer by plugging the value function approximations
into the right side of the optimality equation in (1). However, the number of possible values for
the decision variable S in the optimality equation in (1) increases exponentially with the number of
itineraries, and it may not be easy to decide which itineraries to offer even if we have approximations
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to the value functions. In this section, we begin by briefly reviewing a result shown by Gallego et al.
(2004) that establishes that deciding which itineraries to offer is tractable as long as the probabilities
{Pj(S) : j ∈ S, S ⊂ J } are characterized by the multinomial logit model with disjoint consideration
sets. This result also implies that the column generation subproblem for problem (2)-(5) is tractable.
After reviewing the result shown by Gallego et al. (2004), we establish that the column generation
subproblem for problem (18)-(21) can be formulated as an integer program under the multinomial logit
model with disjoint consideration sets. Throughout the rest of the paper, we refer to the multinomial
logit model with disjoint consideration sets simply as the logit model.

The logit model assumes that there are multiple customer types and customers of different types are
interested in disjoint sets of itineraries. The set of customer types is C. At each time period, a customer
of type l arrives with probability λl. The set of itineraries that a customer of type l is interested in is
Jl. In other words, a customer of type l either purchases an itinerary in Jl or does not purchase an
itinerary at all. We assume that Jl ∩ Jl′ = ∅ for all l 6= l′ so that customers of different types are
interested in disjoint sets of itineraries. We use binary decision variables, rather than sets, to represent
which itineraries are offered and define

zj =

{
1 if itinerary j is offered
0 otherwise.

We let Pj(z) be the probability that a customer purchases itinerary j whenever the set of offered
itineraries is given by z = {zj : j ∈ J }.

The logit model associates the preference weights {ρj : j ∈ J } with the itineraries. If the set of
offered itineraries is given by z = {zj : j ∈ J } and a customer of type l arrives, then this customer
purchases itinerary j with probability 1(j ∈ Jl) ρj zj/

[∑
m∈Jl

ρm zm + ρl
0

]
, where ρl

0 is the strictly
positive preference weight associated with purchasing nothing for customer type l. Therefore, we have

Pj(z) = λl
ρj zj∑

m∈Jl
ρm zm + ρl

0

for all j ∈ Jl under the logit model.

6.1 Applications of the Logit Model to the Deterministic Linear Program

If we use the bid price policy described in Section 5.1, then we decide which itineraries to offer by solving
problem (6). Under the logit model, this problem becomes

max
z∈Z(xt)

{∑

l∈C

∑

j∈Jl

λl
ρj zj∑

m∈Jl
ρm zm + ρl

0

[
rj −

∑

i∈L
aij π̂i

]}

=
∑

l∈C
max

zl∈Zl(xt)

{ ∑

j∈Jl

λl ρj zj

[
rj −

∑
i∈L aij π̂i

]
∑

m∈Jl
ρm zm + ρl

0

}
, (32)

where we let zl = {zj : j ∈ Jl} and capture the set of itineraries that we can offer at time period t by
Z(xt) = {z ∈ {0, 1}|J | : aij zj ≤ xit ∀ i ∈ L, j ∈ J } and Z l(xt) = {zl ∈ {0, 1}|Jl| : aij zj ≤ xit ∀ i ∈
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L, j ∈ Jl}. Gallego et al. (2004) show that it is possible to obtain an optimal solution to problem
(32) simply by sorting {rj −

∑
i∈L aij π̂i : j ∈ Jl} and checking the objective value obtained by |Jl|+ 1

possible solutions. Interestingly, the values of {ρj : j ∈ Jl} do not play a role in the sorting procedure.
An alternative proof for this result is given in van Ryzin and Liu (2004). In Appendix C, we give a
second alternative proof and we feel that our proof clearly shows why the values of {ρj : j ∈ Jl} do not
play a role in the sorting procedure. We also note that the fact that customers of different types are
interested in disjoint sets of itineraries plays a crucial role in this result. Otherwise, Bront, Mendez-Diaz
and Vulcano (2007) show that problem (32) is NP-hard.

If we use the dynamic programming decomposition approach described in Section 5.2, then we
replace Vt+1(xt) on the right side of (1) with

∑
i∈L vi,t+1(xit) and solve this problem to decide which

itineraries to offer at time period t. Under the logit model, this problem becomes

max
z∈Z(xt)

{ ∑

l∈C

∑

j∈Jl

λl
ρj zj∑

m∈Jl
ρm zm + ρl

0

[
rj +

∑

i∈L
vi,t+1(xit − aij)−

∑

i∈L
vi,t+1(xit)

]}
, (33)

which has the same structure as problem (32) and the sorting result shown by Gallego et al. (2004)
continues to apply. Similarly, van Ryzin and Liu (2004) show that the column generation subproblem
for problem (2)-(5) has the same structure as problem (32).

6.2 Applications of the Logit Model to the Alternative Deterministic
Linear Program

If we use the bid price policy described in Section 5.3, then we first need to find an optimal solution
to problem (10). By the discussion in Section 3, an optimal solution to problem (10) can be obtained
by solving problem (18)-(21) through column generation. Alternatively, since problem (13)-(17) is the
dual of problem (18)-(21), we can solve problem (13)-(17) through constraint generation.

Constraint generation iteratively solves a master problem that has the same objective function and
decision variables as problem (13)-(17), but has only a few of constraints (14)-(15). After solving the
master problem, we check if any of constraints (14)-(15) is violated by the solution. If there is one
such constraint, then we add this constraint to the master problem and resolve it. Specifically, letting
{µ̂t : t ∈ T }, {Λ̂it : i ∈ L, t ∈ T }, {α̂ijt : i ∈ L, j ∈ J , t ∈ T } be the solution to the current master
problem, we solve the problem

max
S⊂J

{
R(S)−

∑

i∈L
Qi(S) Λ̂i,t+1 −

∑

i∈L

∑

j∈J
1(j ∈ S) aij α̂ijt

}
(34)

for all t ∈ T \{τ} to check if any of constraints (14) is violated by this solution. Letting Ŝ be an optimal
solution to problem (34), if we have R(Ŝ)−∑

i∈LQi(Ŝ) Λ̂i,t+1−
∑

i∈L
∑

j∈J 1(j ∈ Ŝ) aij α̂ijt > µ̂t, then
the constraint

µt ≥ R(Ŝ)−
∑

i∈L
Qi(Ŝ) Λi,t+1 −

∑

i∈L

∑

j∈J
1(j ∈ Ŝ) aij αijt
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is violated by the solution {µ̂t : t ∈ T }, {Λ̂it : i ∈ L, t ∈ T }, {α̂ijt : i ∈ L, j ∈ J , t ∈ T }. We add this
constraint to the master problem and resolve it. Similarly, we solve the problem

max
S⊂J

{
R(S)−

∑

i∈L

∑

j∈J
1(j ∈ S) aij α̂ijτ

}
. (35)

to check if any of constraints (15) is violated by the solution to the current master problem. Since
problem (35) is a special case of problem (34) with Λ̂i,t+1 = 0 and α̂ijt = α̂ijτ for all i ∈ L, j ∈ J , we
only consider problem (34) here.

Under the logit model, problem (34) becomes

max
z∈{0,1}|J |

{ ∑

l∈C

∑

j∈Jl

λl
ρj zj∑

m∈Jl
ρm zm + ρl

0

[
rj −

∑

i∈L
aij Λ̂i,t+1

]
−

∑

l∈C

∑

j∈Jl

∑

i∈L
aij α̂ijt zj

}

=
∑

l∈C
max

zl∈{0,1}|Jl|

{ ∑

j∈Jl

λl ρj zj

[
rj −

∑
i∈L aij Λ̂i,t+1

]
∑

m∈Jl
ρm zm + ρl

0

−
∑

j∈Jl

∑

i∈L
aij α̂ijt zj

}
. (36)

We note that due to the term
∑

j∈Jl

∑
i∈L aij α̂ijt zj , problem (36) does not have the same structure

as problem (32). Therefore, the sorting result shown by Gallego et al. (2004) does not apply and it is
not necessarily possible to solve this problem through a sorting procedure. However, we now show that
problem (36) can be solved as a linear integer program.

The problem inside the summation on the right side of (36) is of the form

max
z∈{0,1}n

{ ∑n
j=1 βj ρj zj∑n

m=1 ρm zm + ρl
0

−
n∑

j=1

γj zj

}
(37)

for appropriately defined values of n, {βj : j = 1, . . . , n} and {γj : j = 1, . . . , n}. We make the change
of variables

wj =
zj∑n

m=1 ρm zm + ρl
0

and κ =
1∑n

m=1 ρm zm + ρl
0

so that we have
∑n

j=1 ρj wj + ρl
0 κ = 1 by definition. In this case, the next lemma shows that problem

(37) is equivalent to the nonlinear integer program

max
n∑

j=1

βj ρj wj −
n∑

j=1

γj zj (38)

subject to
n∑

j=1

ρj wj + ρl
0 κ = 1 (39)

wj = κ zj ∀ j = 1, . . . , n (40)

zj ∈ {0, 1} ∀ j = 1, . . . , n (41)

wj ≥ 0, κ ≥ 0 ∀ j = 1, . . . , n. (42)

Lemma 7 Problems (37) and (38)-(42) have the same optimal objective value and an optimal solution
to one of these problems can be recovered by using an optimal solution to the other one.
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Proof The proof follows from an argument similar to the one that is used to show Lemma 2 in Zhang
and Adelman (2006). It is based on showing that given a feasible solution to one problem, we can
construct a feasible solution to the other one that yields the same objective value. 2

Letting B be a large number, it is easy to see that problem (38)-(42) is equivalent to the linear
integer program

max
n∑

j=1

βj ρj wj −
n∑

j=1

γj zj

subject to (39), (41), (42)

wj ≤ B zj ∀ j = 1, . . . , n

wj ≤ κ ∀ j = 1, . . . , n

wj ≥ κ−B [1− zj ] ∀ j = 1, . . . , n.

Noting (40), the largest value that wj can take is κ. Since we have κ ≤ 1/ρl
0 by (39), letting B = 1/ρl

0

in the problem above suffices. Therefore, the column generation subproblem for problem (18)-(21) can
be solved as a linear integer program.

If we use the bid price policy described in Section 5.3, then after solving problem (18)-(21) to obtain
an optimal solution α̂ to problem (10), we compute Lα̂

it and M α̂
t for all i ∈ L, t ∈ T . Noting (9),

computing M α̂
t requires solving a problem that has the same structure as problem (34) and Lemma 7

continues to apply. To decide which itineraries to offer at time period t, we replace Vt+1(xt) on the right
side of (1) with V α̂

t+1(xt) = M α̂
t+1 + . . . + M α̂

τ +
∑

i∈L Lα̂
i,t+1 xit and solve this problem. Since V α̂

t+1(xt) is
a linear function of xt, it is easy to see that this problem has the same structure as problem (32) and
the sorting result shown by Gallego et al. (2004) continues to apply.

If we use the dynamic programming decomposition approach described in Section 5.4, then we
replace Vt+1(xt) on the right side of (1) with

∑
i∈L ϑi,t+1(xit) and solve this problem to decide which

itineraries to offer at time period t. Since
∑

i∈L ϑi,t+1(xit) is a separable function, this problem has the
same structure as problem (33) and the sorting result shown by Gallego et al. (2004) continues to apply.

7 Computational Experiments

In this section, we test the performances of the four control policies described in Section 5. We work
with two sets of test problems that are all taken from van Ryzin and Liu (2004). The first set of test
problems involve a number of parallel flight legs that operate between the same origin destination pair
and the second set of test problems involve a small airline network.

Our implementations of the control policies divide the planning horizon into five equal segments and
recompute the value function approximations at the beginning of each segment by using the remaining
leg capacities and the remaining number of time periods in the planning horizon. We refer to the control
policies described in Sections 5.1, 5.2, 5.3 and 5.4 respectively as LP, DP-LP, ALP and DP-ALP.
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Problem LP vs. DP-LP vs. CPU
(q, ρ1

0, ρ
2
0) LP DP-LP ALP DP-ALP ALP DP-ALP (secs.)

(0.6, 10−4, 10−4) 55,200 55,200 55,095 55,095 0.19 0.19 175
(0.6, 1, 5) 53,400 53,378 53,281 53,276 0.22 0.19 126
(0.6, 5, 10) 50,400 49,506 50,039 49,361 0.72 0.29 182
(0.6, 10, 20) 45,138 44,628 44,990 44,298 0.33 0.74 124

(0.8, 10−4, 10−4) 67,200 67,200 67,060 67,060 0.21 0.21 156
(0.8, 1, 5) 65,600 65,245 65,324 65,084 0.42 0.25 108
(0.8, 5, 10) 59,446 59,239 59,251 58,639 0.33 1.02 86
(0.8, 10, 20) 47,431 46,894 47,333 46,894 0.21 0.00 33

(1.0, 10−4, 10−4) 78,000 77,972 77,860 77,834 0.18 0.18 134
(1.0, 1, 5) 76,000 75,599 75,721 75,441 0.37 0.21 100
(1.0, 5, 10) 60,731 60,492 60,668 60,492 0.10 0.00 35
(1.0, 10, 20) 47,442 47,368 47,442 47,368 0.00 0.00 25

(1.2, 10−4, 10−4) 88,800 88,467 88,611 88,341 0.21 0.14 123
(1.2, 1, 5) 78,117 77,731 78,117 77,731 0.00 0.00 24
(1.2, 5, 10) 61,038 60,905 61,038 60,905 0.00 0.00 25
(1.2, 10, 20) 47,442 47,438 47,442 47,438 0.00 0.00 25

(1.4, 10−4, 10−4) 93,200 93,096 93,130 93,075 0.08 0.02 95
(1.4, 1, 5) 78,117 78,084 78,117 78,084 0.00 0.00 25
(1.4, 5, 10) 61,038 61,023 61,038 61,023 0.00 0.00 25
(1.4, 10, 20) 47,442 47,442 47,442 47,442 0.00 0.00 25

Table 1: Comparison of the upper bounds obtained by the four control policies.

7.1 Test Problems with Parallel Flight Legs

We consider three flight legs that operate between the same origin destination pair. There is an expensive
and a cheap itinerary associated with each flight leg so that the number of itineraries is six. There are
two customer types. The first customer type is interested only in the expensive itineraries, whereas the
second customer type is interested only in the cheap itineraries. The capacities on the three flight legs
are [30, 50, 40] and we scale these capacities by a scalar factor to obtain test problems with different
levels of congestion. We also vary the preference weights associated with purchasing nothing. All other
problem parameters are the same as those in van Ryzin and Liu (2004).

As described in Sections 2, 3, 5.2 and 5.4, we can obtain upper bounds on the optimal total expected
revenue by using LP, DP-LP, ALP and DP-ALP. Table 1 shows the upper bounds obtained by the
four control policies for different test problems. In this table, the first column shows the problem
characteristics by using the triplet (q, ρ1

0, ρ
2
0), where q is the factor that we use to scale the leg capacities,

and ρ1
0 and ρ2

0 are the preference weights associated with purchasing nothing for the two customer types.
The second, third, fourth and fifth columns respectively show the upper bounds obtained by LP, DP-LP,
ALP and DP-ALP. The sixth column shows the percent gap between the upper bounds obtained by LP
and ALP, whereas the seventh columns shows the percent gap between the upper bounds obtained by
DP-LP and DP-ALP. The last column shows the CPU seconds required to solve problem (18)-(21) on
a Pentium IV desktop PC with 2.4 GHz CPU and 1 GB RAM running Windows XP.

Although both LP and ALP provide upper bounds on the optimal total expected revenue, the
examples in Section 4 show that neither of these upper bounds is provably tighter than the other one.
On the other hand, the empirical results in Table 1 indicate that the upper bounds obtained by ALP
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Problem LP vs. DP-LP vs.
(q, ρ1

0, ρ
2
0) LP DP-LP ALP DP-ALP ALP DP-ALP

(0.6, 10−4, 10−4) 52,529 52,587 52,733 52,770 0.39 0.35
(0.6, 1, 5) 48,836 52,315 51,720 52,593 5.58 0.53
(0.6, 5, 10) 42,366 48,756 47,794 48,879 11.36 0.25
(0.6, 10, 20) 37,282 43,106 42,426 43,341 12.12 0.54

(0.8, 10−4, 10−4) 63,225 63,163 63,322 63,360 0.15 0.31
(0.8, 1, 5) 59,544 64,094 63,340 64,111 5.99 0.03
(0.8, 5, 10) 49,706 57,568 56,478 57,658 11.99 0.16
(0.8, 10, 20) 40,599 46,553 40,919 46,566 0.78 0.03

(1.0, 10−4, 10−4) 73,925 75,443 75,202 75,478 1.70 0.05
(1.0, 1, 5) 65,428 74,137 71,704 74,095 8.75 -0.06
(1.0, 5, 10) 54,026 60,535 55,753 60,539 3.10 0.01
(1.0, 10, 20) 42,554 47,136 43,747 47,136 2.73 0.00

(1.2, 10−4, 10−4) 82,191 85,563 84,300 86,130 2.50 0.66
(1.2, 1, 5) 72,921 77,823 74,591 77,842 2.24 0.02
(1.2, 5, 10) 56,010 60,982 58,103 60,982 3.60 0.00
(1.2, 10, 20) 43,438 47,275 45,639 47,275 4.82 0.00

(1.4, 10−4, 10−4) 86,373 89,088 86,851 89,182 0.55 0.11
(1.4, 1, 5) 75,899 78,252 77,189 78,252 1.67 0.00
(1.4, 5, 10) 57,470 61,220 59,819 61,220 3.93 0.00
(1.4, 10, 20) 43,923 47,278 45,436 47,278 3.33 0.00

Table 2: Comparison of the total expected revenues obtained by the four control policies.

are tighter than those obtained by LP by a small but consistent margin. The percent gap between
the upper bounds is more pronounced for test problems with tight leg capacities. Similarly, the upper
bounds obtained by DP-ALP are tighter than the upper bounds obtained by DP-LP. We also note that
the dynamic programming decomposition approach significantly tightens the upper bounds. Although
we do not show these figures in Table 1, the percent gap between the upper bounds obtained by ALP
and DP-ALP can be as large as 1.5%.

Table 2 shows the total expected revenues obtained by the four control policies. The second, third,
fourth and fifth columns in this table respectively show the total expected revenues obtained LP, DP-
LP, ALP and DP-ALP. We obtain these total expected revenues by simulating the performances of the
four control policies under 100 customer arrival trajectories. We use common random numbers when
simulating the performances of different control policies. The last two columns show the percent gap
between the total expected revenues obtained by LP and ALP, and DP-LP and DP-ALP. The results
indicate that the performance of ALP is consistently superior to the performance of LP. The average
performance gap between ALP and LP is about 4.5%, which is a quite significant figure in the revenue
management context. The performance of DP-ALP also tends to be better than the performance of
DP-LP in general, although the margin is small.

For the three flight legs in test problem (0.6, 1, 5), Figure 1 plots the bid prices used by LP and ALP
as a function of the time period when the bid prices are computed at the beginning of the planning
horizon. We recall that LP and ALP periodically recompute the bid prices and the bid prices naturally
change when they are recomputed later in the planning horizon. The left and right charts in Figure 1
respectively correspond to LP and ALP. The bid prices used by LP do not depend on the time period
and they are very close to those used by ALP in the early portion of the planning horizon. Since the
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Figure 1: Bid prices used by LP and ALP as a function of the time period for test problem (0.6, 1, 5).
We note that the time periods in the charts are compressed in the early portion of the planning horizon.

A H

B

C

Figure 2: Structure of the airline network.

capacities are abundant in the early portion of the planning horizon, the bid prices used by ALP tend
to be constant during this period. However, as expected, the bid prices used by ALP decrease as the
departure time approaches and fewer opportunities to utilize the leg capacities remain.

7.2 Test Problems with an Airline Network

In this set of test problems, we consider a small airline network that connects three spokes and a hub.
There are 7 flight legs, 22 itineraries and 10 customer types. Half of the itineraries are expensive and the
other half are cheap. Correspondingly, half of the customer types are interested only in the expensive
itineraries and the other half are interested only in the cheap itineraries. The structure of the airline
network is shown in Figure 2. All problem parameters are the same as those in van Ryzin and Liu
(2004) except for the number of time periods in the planning horizon and the leg capacities. We set
τ = 300 and use the leg capacities shown in Table 3. Similar to Section 7.1, we obtain different test
problems by scaling the leg capacities by a scalar factor and varying the preference weights associated
with purchasing nothing. We label our test problems by using the triplet (q, ρE

0 , ρC
0 ), where q is the

scaling factor for the leg capacities, and ρE
0 and ρC

0 are the preference weights associated with purchasing
nothing for the customer types that are interested in the expensive and cheap itineraries.

Table 4 shows the upper bounds on the optimal total expected revenues, whereas Table 5 shows the
total expected revenues obtained by the four control policies. The results essentially display the same
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Flight Leg Origin Destination Capacity

1 AB 30
2 AH 45
3 AH 45
4 HB 45
5 HB 45
6 HC 24
7 HC 24

Table 3: Leg capacities for the test problems with an airline network.

Problem LP vs. DP-LP vs. CPU
(q, ρE

0 , ρC
0 ) LP DP-LP ALP DP-ALP ALP DP-ALP (secs.)

(0.6, 10−4, 10−4) 55,800 55,738 55,597 55,537 0.37 0.36 1,540
(0.6, 1, 5) 54,430 54,201 54,097 53,942 0.62 0.48 3,065
(0.6, 5, 10) 49,775 49,447 49,382 49,216 0.80 0.47 2,132
(0.6, 10, 20) 44,939 44,441 44,525 44,237 0.93 0.46 2,237

(0.8, 10−4, 10−4) 68,100 67,546 67,753 67,347 0.51 0.30 1,080
(0.8, 1, 5) 64,819 64,447 64,523 64,301 0.46 0.23 1,085
(0.8, 5, 10) 58,350 58,065 58,010 57,881 0.59 0.32 1,167
(0.8, 10, 20) 49,668 49,570 49,546 49,446 0.25 0.25 891

(1.0, 10−4, 10−4) 76,800 76,606 76,589 76,506 0.28 0.13 701
(1.0, 1, 5) 73,233 72,955 72,944 72,813 0.40 0.20 859
(1.0, 5, 10) 64,150 64,011 64,044 63,904 0.17 0.17 494
(1.0, 10, 20) 51,321 51,125 51,321 51,125 0.00 0.00 115

(1.2, 10−4, 10−4) 85,200 85,036 84,989 84,935 0.25 0.12 585
(1.2, 1, 5) 80,229 79,778 79,991 79,686 0.30 0.12 331
(1.2, 5, 10) 65,321 65,212 65,321 65,212 0.00 0.00 114
(1.2, 10, 20) 51,321 51,308 51,321 51,308 0.00 0.00 114

(1.4, 10−4, 10−4) 92,700 92,549 92,528 92,477 0.19 0.08 431
(1.4, 1, 5) 80,876 80,825 80,876 80,825 0.00 0.00 115
(1.4, 5, 10) 65,321 65,314 65,321 65,314 0.00 0.00 114
(1.4, 10, 20) 51,321 51,321 51,321 51,321 0.00 0.00 114

Table 4: Comparison of the upper bounds obtained by the four control policies.

trends as those in Tables 1 and 2. For problems with tight leg capacities, the upper bounds obtained
by ALP and DP-ALP are respectively tighter than the upper bounds obtained by LP and DP-LP. As
the leg capacities get larger, the percent gaps between the upper bounds diminish. Comparing the total
expected revenues obtained by the different control policies, the performance gap between ALP and LP
can be as high as 4.1%. Furthermore, DP-ALP tends to perform better than DP-LP by a small but
consistent margin in general.

8 Conclusions

We presented a new deterministic linear program for the network revenue management problem with
customer choice behavior. The novel aspect of our linear program is that it naturally generates bid prices
that depend on the number of time periods left until the departure time. Our linear program inherits
many features of the earlier linear program used by van Ryzin and Liu (2004). In particular, it provides
an upper bound on the optimal total expected revenue, it allows using the dynamic programming
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Problem LP vs. DP-LP vs.
(q, ρE

0 , ρC
0 ) LP DP-LP ALP DP-ALP ALP DP-ALP

(0.6, 10−4, 10−4) 50,187 52,239 52,350 52,871 4.13 1.20
(0.6, 1, 5) 51,100 52,924 51,522 53,029 0.82 0.20
(0.6, 5, 10) 46,198 48,307 46,728 48,338 1.13 0.06
(0.6, 10, 20) 40,552 43,379 41,886 43,283 3.18 -0.22

(0.8, 10−4, 10−4) 61,853 64,884 63,053 65,659 1.90 1.18
(0.8, 1, 5) 60,913 63,576 61,188 63,573 0.45 0.00
(0.8, 5, 10) 55,098 57,003 55,670 57,074 1.03 0.12
(0.8, 10, 20) 46,299 48,749 46,883 48,832 1.25 0.17

(1.0, 10−4, 10−4) 71,680 74,142 72,176 75,375 0.69 1.64
(1.0, 1, 5) 70,511 72,145 70,911 72,167 0.56 0.03
(1.0, 5, 10) 61,265 63,095 61,537 63,158 0.44 0.10
(1.0, 10, 20) 50,486 51,057 50,583 51,049 0.19 -0.02

(1.2, 10−4, 10−4) 82,147 83,178 82,343 84,211 0.24 1.23
(1.2, 1, 5) 77,220 78,952 77,918 79,098 0.90 0.18
(1.2, 5, 10) 64,310 65,288 64,464 65,258 0.24 -0.05
(1.2, 10, 20) 51,527 51,567 51,527 51,567 0.00 0.00

(1.4, 10−4, 10−4) 90,815 91,490 90,759 91,586 -0.06 0.10
(1.4, 1, 5) 79,895 81,116 80,183 81,130 0.36 0.02
(1.4, 5, 10) 65,331 65,531 65,383 65,531 0.08 0.00
(1.4, 10, 20) 51,650 51,650 51,650 51,650 0.00 0.00

Table 5: Comparison of the total expected revenues obtained by the four control policies.

decomposition approach and the percent gap between its optimal objective value and the optimal total
expected revenue diminishes as the leg capacities and the number of time periods in the planning horizon
increase linearly with the same rate. Computational experiments indicate that our linear program can
provide tighter upper bounds and the control policies that are based on our linear program can obtain
higher total expected revenues.

Unfortunately, the advantages come at a cost. In particular, the number of constraints in our linear
program is significantly larger than the number of constraints in the linear program that appears in
the existing literature. Nevertheless, the size of our linear program is still within the capabilities of the
existing computing technology. It may also be possible to aggregate some of the constraints in problem
(18)-(21) to obtain linear programs that are weaker than the linear program that we propose in this
paper, but still stronger than the earlier linear program used by van Ryzin and Liu (2004). This is an
avenue of research worth pursuing.

We emphasize that the method that we use to construct our linear program can be of interest in
and of itself. The idea of relaxing certain constraints in a dynamic program by associating Lagrange
multipliers with them and finding a good set of values for the Lagrange multipliers by minimizing a
dual function may find applications in many different problem settings. For example, Kunnumkal and
Topaloglu (2006) present an application in an inventory distribution setting.
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A Appendix: Upper Bound Obtained by the Decomposition from the
Deterministic Linear Program

We let {π̂i : i ∈ L} be the optimal values of the dual variables associated with constraints (3) in problem
(2)-(5). We choose a flight leg i and relax constraints (3) for all other flight legs by associating the dual
multipliers {π̂k : k ∈ L \ {i}} with them. Noting the definitions of R(S) and Qi(S), the duality theory
implies that the linear program

ZLP = max
∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S)

[
rj −

∑

k∈L\{i}
akj π̂k

]
ht(S) +

∑

k∈L\{i}
π̂k ck

subject to (4), (5)∑

t∈T

∑

S⊂J
Qi(S) ht(S) ≤ ci

has the same optimal objective value as problem (2)-(5).

We consider the single-leg revenue management problem that takes place over flight leg i under the
assumption that rj −

∑
k∈L\{i} akj π̂k is the revenue associated with itinerary j. If we compare the

last problem above with problem (2)-(5) and ignore the constant term
∑

k∈L\{i} π̂k ck in the objective
function, then it is easy to see that the last problem above is the linear program for the single-leg revenue
management problem that takes place over flight leg i. Therefore, ZLP −

∑
k∈L\{i} π̂k ck is an upper

bound on the optimal total expected revenue for this single-leg revenue management problem. On the
other hand, we can obtain the optimal total expected revenue for the single-leg revenue management
problem that takes place over flight leg i by solving the optimality equation in (29). Therefore, we
have vi1(ci) ≤ ZLP − ∑

k∈L\{i} π̂k ck. This result is shown by Zhang and Adelman (2006), but our
interpretation by using a relaxation of problem (2)-(5) appears to be new and it clearly shows why we
associate the revenue rj −

∑
k∈L\{i} akj π̂k with itinerary j.

B Appendix: Manipulating the Objective Function of Problem (18)-(21)
after Relaxing Constraints (19)

Interchanging the order of the summations, we have

∑

k∈L\{i}

∑

j∈J

∑

S⊂J

∑

t∈T
α̂kjt Qk(S)

[
y1(S) + . . . + yt−1(S)

]

=
∑

k∈L\{i}

∑

j∈J

∑

S⊂J

∑

t∈T

[
α̂kj,t+1 + . . . + α̂kjτ

]
Qk(S) yt(S)

=
∑

t∈T

∑

S⊂J

∑

k∈L\{i}
Lα̂

k,t+1 Qk(S) yt(S) =
∑

t∈T

∑

S⊂J

∑

j∈S

∑

k∈L\{i}
Pj(S) akj Lα̂

k,t+1 yt(S),

where the second equality follows from the definition of Lα
it and the third equality follows from the

definition of Qi(S). On the other hand, the definition of Lα
it implies that

∑

k∈L\{i}

∑

t∈T

∑

j∈J
α̂kjt ck =

∑

k∈L\{i}
Lα̂

k1 ck.
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Therefore, the expression
∑

t∈T

∑

S⊂J
R(S) yt(S)−

∑

t∈T

∑

j∈J

∑

k∈L\{i}
α̂kjt

[ ∑

S⊂J
Qk(S) y1(S) + . . . +

∑

S⊂J
Qk(S) yt−1(S)

+
∑

S⊂J
1(j ∈ S) akj yt(S)− ck

]

can be written as

∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S) rj yt(S)−

∑

t∈T

∑

S⊂J

∑

j∈S

∑

k∈L\{i}
Pj(S) akj Lα̂

k,t+1 yt(S)

−
∑

t∈T

∑

S⊂J

∑

j∈S

∑

k∈L\{i}
α̂kjt 1(j ∈ S) akj yt(S) +

∑

k∈L\{i}
Lα̂

k1 ck.

C Appendix: An Alternative Proof for the Sorting Result Shown by
Gallego et al. (2004)

In problem (32), we can immediately set zj to zero when aij > xit for some i ∈ L and we have zj ∈ {0, 1}
when aij ≤ xit for all i ∈ L. Therefore, the problem inside the summation on the right side of (32) is
of the form

max
z∈{0,1}n

{ ∑n
j=1 βj ρj zj∑n

m=1 ρm zm + ρl
0

}
(43)

for appropriately defined values of n and {βj : j = 1, . . . , n}. The next proposition shows that problem
(43) can be solved through a sorting procedure.

Proposition 8 Consider problem (43) and assume without loss of generality that β1 ≥ β2 ≥ . . . ≥ βn.
There exists an optimal solution ẑ = {ẑj : j = 1, . . . , n} to this problem that satisfies

ẑj =

{
1 if j < K̂

0 if j ≥ K̂
(44)

for an appropriately defined value of K̂ ∈ {1, . . . , n + 1}.

Proof As a function of ε, we let g(ε) be the optimal objective value of the linear program

max
1

ε + ρl
0

n∑

j=1

βj ρj zj (45)

subject to
n∑

j=1

ρj zj = ε (46)

0 ≤ zj ≤ 1 ∀ j = 1, . . . , n. (47)

It is easy to see that g(ε) is a continuous function of ε over the interval [0,
∑n

j=1 ρj ] and the optimal
objective value of the problem maxε∈[0,

Pn
j=1 ρj ]{g(ε)} is equal to the optimal objective value of the
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continuous relaxation of problem (43). We show the final result in two steps. The first step shows that
if ε =

∑K̂−1
j=1 ρj for some K̂ ∈ {1, . . . , n + 1}, then there exists an optimal solution to problem (45)-(47)

that has the same form as (44). The second step shows that there exists an optimal solution ε̂ to the
problem maxε∈[0,

Pn
j=1 ρj ]{g(ε)} that satisfies ε̂ =

∑K̂−1
j=1 ρj for some K̂ ∈ {1, . . . , n+1}. These two steps

show that the continuous relaxation of problem (43) has an integer optimal solution and this solution
has the same form as (44).

The first step immediately follows from the fact that problem (45)-(47) is a continuous knapsack
problem and an optimal solution can be found by sorting the items according to their utility to space
ratios. For the second step, it is enough to show that the derivative of g(·) does not change sign over
the interval (

∑K̂−1
j=1 ρj ,

∑K̂
j=1 ρj) for all K̂ ∈ {1, . . . , n}. We note that if ε ∈ (

∑K̂−1
j=1 ρj ,

∑K̂
j=1 ρj), then

an optimal solution to problem (45)-(47) can be obtained by letting ẑj = 1 for all j = 1, . . . , K̂ − 1,
ẑK̂ = ε/ρK̂ −∑K̂−1

j=1 ρj/ρK̂ and ẑj = 0 for all j = K̂ + 1, . . . , n. Therefore, we have

g(ε) =
1

ε + ρl
0

{
K̂−1∑

j=1

βj ρj + βK̂

[
ε−

K̂−1∑

j=1

ρj

]}
.

The derivative of g(·) is

1[
ε + ρl

0

]2

{
βK̂ ρl

0 −
K̂−1∑

k=1

βj ρj + βK̂

K̂−1∑

j=1

ρj

}

and its sign does not depend on the value of ε. 2

Therefore, we can find an optimal solution to problem (43) by sorting {βj : j = 1, . . . , n} and
checking n + 1 possible solutions. The values of {ρj : j = 1, . . . , n} do not play a role in the sorting
procedure and our proof clearly shows why this is the case.
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