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Abstract

In this paper, we use an agent-based simulation model to investigate how coordi-
nated exploration by multiple specialists, as in new product development, is
different from individual search. We find that coordinated exploration is subject to
two pathologies not present in unitary search: mutual confusion and joint myopia.
In joint search, feedback to one agent’s actions is confounded by the actions of
the other agent. Search therefore leads to increasing mutual confusion because
agents are unable to learn from feedback to correct their faulty mental models of
the search space. Incorrect beliefs held by one agent lead to mistakes, and
because it is unclear which agent was wrong, this confuses the other agent,
either into revising (correct) beliefs or holding on to (incorrect) beliefs. Sharing
knowledge aligns specialists’ mental models and counters mutual confusion by
inducing coordination around particular search regions. Yet that very effort
increases joint myopia, as agents prematurely reinforce each other into choosing
from an increasingly narrow portion of the search space. In the extreme, high
levels of shared knowledge induce agents to abandon their distinct search
approach in favor of a lower common denominator. In coordinated exploration,
increasing coordination efforts (such as by increasing communication) reduces
mutual confusion but simultaneously increases joint myopia. Efforts to reduce
joint myopia, such as by slow learning or lower levels of knowledge transfer,
however, automatically increase mutual confusion. As modeled in our simulation,
successful joint search needs to balance these two effects. Our results suggest
that because unitary-searcher models abstract from epistemic interdependence,
their predictions are potentially misleading for coordinated exploration.
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Models of search and learning are foundational to the behavioral theory of orga-
nizations (March and Simon, 1958). Typical models of organizational search
consider firms to be unitary actors whose behavior is constrained by cognitive
limitations (Cyert and March, 1963; Nelson and Winter, 1982). Their objective is
to identify tall peaks on a search landscape—optimal choices—by balancing
exploration of new domains and exploitation of known domains (Levinthal,
1997; Siggelkow and Levinthal, 2003; Ethiraj and Levinthal, 2004). These
models’ assumption that organizational search involves one actor is a useful
abstraction and baseline that has facilitated a thorough examination of prob-
lems and solutions related to balancing exploration and exploitation. But such
models fail to take into account that organizational search often involves a joint
effort by specialists from different domains who need to coordinate their
search efforts. These are problems of coordinated exploration.

In coordinated exploration, whereas the specialists are responsible for
search in their own domains, their payoffs depend on the choices of other spe-
cialists. In traditional game theory, interdependent actors know all their choices,
the choices available to others, and all joint payoffs. Boundedly rational actors,
however, know neither all the available choices in their own or in others’
domains nor their payoffs. For this reason, the choices of each can influence
joint outcomes in ways that the specialists can neither anticipate nor under-
stand fully, giving rise to the problem of coordinated exploration. Models of
search performed by single actors ignore the influence of interdependence
between agents that is fundamental to a theory of search involving multiple
actors, and therefore they offer few insights into problems of coordinated
exploration.

Problems of coordinated exploration are ubiquitous in organizations. New
product development involving multiple specialists working together is an
important example. Consider the problem of designing windmills. Rotor blade
design is critical for the efficiency of a windmill and involves finding the right
combination of structural and aerodynamic characteristics to achieve desired
performance. Structural properties enable blades to withstand adverse weather
conditions. Good aerodynamics is critical for efficiently converting wind energy
to power. Light, curved blades generally have good aerodynamics but poor
strength. Two specialists jointly solve this innovative search problem: a struc-
tural mechanics engineer and an aerodynamics engineer who have little knowl-
edge of each other’s domains.

Product positioning is another example of coordinated exploration. Marketing
experts typically explore the domain of identifying the customer, dividing a mar-
ket into segments that respond in homogenous ways to changes in the market-
ing mix, such as product, price, promotion, and place. At the same time,
product experts explore the domain of what the firm can offer its customers,
devising product or service offerings that deliver different combinations of
costs and features. A value proposition lies at the intersection of these
choices and needs to be discovered jointly by the two departments. Other
organizational problems that display the properties of coordinated exploration
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include balancing synergies vs. responsiveness between business units that
operate in different markets, and managing interagency service delivery dur-
ing disaster situations.

The essential feature of these problems is that their solutions involve more
than one actor, each searching in a different aspect of the problem space, and
the actors’ separate decisions are integrated to generate a joint payoff matrix
that the actors do not know and cannot conceive in advance. Coordinated
exploration therefore involves solving two interdependent problems: (1)
search—the specialist problem of searching for new valuable alternatives in a
particular domain, and (2) coordination—the problem of choosing an alternative
from a particular domain that is jointly attractive to all agents, though it may not
be optimal for any one of them.

Organizations frequently engage in problems of coordinated exploration
because attempting to benefit from the division of labor is one of the funda-
mental reasons to organize. As soon as the environment becomes too complex
for a single individual to comprehend, organizations take advantage of the
economies of specialization offered by the division of labor. But the division of
labor simultaneously generates the need for integration, or knowledge sharing.
Typically, organizations rely on differentiation and then integration to manage
this tradeoff (Lawrence and Lorsch, 1967). In these cases, experts or specia-
lized organizational units search in individual domains and then integrate their
results into a joint solution and observe its payoff.

Prior work in organization theory has implicitly assumed that results from
individual search models can be generalized to problems of coordinated explo-
ration. When multiple agents are engaged in coordinated exploration, however,
it is a case of epistemic interdependence, a situation in which one agent’s opti-
mal choices depend on accurately predicting another agent’s actions (Puranam,
Raveendran, and Knudsen, 2012). It is well known that communication, or
more generally shared knowledge, is necessary to coordinate epistemic inter-
dependence, which has led prior theorists to suggest that coordinated explora-
tion is nothing but individual search coupled with high levels of communication
between the agents (cf. Tushman and Nadler, 1978). But empirical work sug-
gests that a high level of communication between specialists is not reliably
associated with good outcomes (Montoya-Weiss and Calantone, 1994; Brown
and Eisenhardt, 1995; Sine, Mitsuhashi, and Kirsch, 2006). Therefore it is
unclear how epistemic interdependence influences boundedly rational organiza-
tional search. In this sense, prior work on joint search is fundamentally incom-
plete because it does not account for epistemic interdependence or how
coordination is achieved.

In contrast, models in game theory do take into account epistemic interde-
pendence, but they neglect search. Game-theoretic models typically assume
that agents make a choice over a known state-space and do not consider condi-
tions in which the agents’ knowledge of the nature of the state-space is evol-
ving. Typical game-theoretic work does not model evolving game structures,
which is an important property in many real-world problems. Models by
Lounamaa and March (1987) and Puranam and Swamy (2011), though bound-
edly rational because actors do not know the actions/payoffs available to the
interdependent agent, also assume that actors know all actions available to
them. We thus have little knowledge about coordinated exploration, even
though it is an important problem for organizations. While prior theory has
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concentrated on the impact of integration mechanisms—ways of knowledge
sharing—on coordination among multiple specialists, here we use our model to
explore the impact of integration on search itself to better understand coordi-
nated exploration.

ORGANIZING SEARCH FOR COORDINATED EXPLORATION

Organization scholars have studied how to manage the specialization–
coordination tradeoff for over 50 years. March and Simon (1958) suggested
that organizations achieve coordination by two generic means: plan and feed-
back. When interdependence is stable and predictable, plan-based coordination
mechanisms such as standard operating procedures, rules, and routines are
effective and efficient. When the nature of interdependence is unknown or
unstable, coordination is achieved by feedback or mutual adjustment
(Thompson, 1967). Coordinated exploration is important only when the nature
of interdependence is unknown (or even unknowable) because of bounded
rationality.

The information processing view of organizations builds on these fundamen-
tal insights to understand how organizations can be designed to operate effec-
tively in situations with differing levels of interdependence and uncertainty.
This view suggests that the coordination capacity of the organization must
match its coordination needs (Galbraith, 1977), and therefore highly interdepen-
dent work must be structured to maximize opportunities for information trans-
fer (Lawrence and Lorsch, 1967; Tushman and Nadler, 1978).

Though it is well accepted that shared knowledge is necessary to coordinate
under epistemic interdependence (March and Simon, 1958; Puranam,
Raveendran, and Knudsen, 2012), we also know that, in practice, it is very diffi-
cult to develop such shared knowledge among specialists (Cronin and
Weingart, 2007). This is because the boundaries of specialization are also natu-
ral interpretive barriers that make it difficult to generate shared knowledge
(Lawrence and Lorsch, 1967; Dougherty, 1992; Heath and Staudenmayer,
2000). Organizations use different kinds of ‘‘integration mechanisms’’ to
develop shared knowledge (Lawrence and Lorsch, 1967; Clark and Fujimoto,
1991; Iansiti, 1995; Hoopes and Postrel, 1999). But different integration devices
likely generate shared knowledge in different ways. For example, frequent
communication vs. infrequent communication may lead to different patterns of
shared knowledge over time. This means that the type of integration mechan-
ism used is likely to affect the outcomes from coordinated exploration in two
ways: (1) emergent shared knowledge will direct search, and (2) the resulting
sampling of the search space will influence what new knowledge is acquired
and shared (Denrell and March, 2001). The aggregation of these effects across
interdependent actors can fundamentally change joint search behavior from
individual search in ways that are currently undertheorized.

Prior work on search provides little guidance on these issues. As Knudsen
and Levinthal (2007) observed, most models of organizational search are non-
organizational—they assume a single actor. Prior models of multi-agent search
ignore epistemic interdependence and have sidestepped issues of coordination
(see Rivkin and Siggelkow, 2003; Siggelkow and Levinthal, 2003; Fang, Lee,
and Schilling, 2010). For example, these studies underscore the importance of
‘‘slow learning’’ in balancing exploration and exploitation, but the concept of
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shared knowledge that dominates the empirical literature is entirely absent
from extant models of joint search. Thus, in the case of mutual adjustment
between two agents, it is unclear if an increase in knowledge transfer between
these agents will increase or reduce their joint exploration and if it will improve
or reduce their chances of identifying the global peak. It is also unclear whether
agents’ efforts to explore via slow learning perturb their efforts to maintain
shared knowledge and achieve coordination. To answer these questions, we
need a model that takes into account how increasing shared knowledge affects
agents’ search behavior. Because prior joint search models do not formally
model agents’ knowledge or spell out the procedures by which agents influ-
ence each other’s knowledge, they do not offer any predictions about organiz-
ing coordinated exploration. We construct such a model and consider three
important elements that influence the level of shared knowledge: the level of
communication, the extent to which agents are specialists vs. generalists, and
the amount of exploration that agents engage in.

Effect of Communication between Agents

Lawrence and Lorsch (1967) argued that as task environments become more
complex, specialized ‘‘differentiated’’ units become necessary to attend to spe-
cific environmental attributes. Differentiation refers to the differences across
organizational subunits that arise as a consequence of their local adaptation to
unit-specific tasks and environments. Depending on the demands of the envi-
ronment, the actions of the differentiated units need to be more or less inte-
grated for the organization to achieve desirable outcomes. The most complex
environments demand both high levels of differentiation across subunits and
high levels of integration among these units, giving rise to the problem of coor-
dinated exploration.

According to the information-processing theory of organizations, highly inter-
dependent work must be organized such that there is a high level of communi-
cation between the agents (Galbraith, 1977; Tushman and Nadler, 1978), which
increases the level of shared knowledge among the agents, thereby promoting
coordination (Simon, 1947; Schelling, 1960; Srikanth and Puranam, 2011). Even
though this theory is about coordination rather than search, it has been exten-
sively used to make predictions about coordinated exploration. For example, it
is almost axiomatic in the new product development literature that a higher
level of information transfer between agents is associated with better perfor-
mance (see reviews by Brown and Eisenhardt, 1995; Krishnan and Ulrich,
2001). It should be noted that the arguments made by the information process-
ing theory concern efficiency; organizing work with greater amounts of informa-
tion transfer than necessary would be effective in uncovering good solutions
but more expensive (Thompson, 1967; Galbraith, 1977; Tushman and Nadler,
1978). The prediction from this stream of work can be summarized in the
hypothesis below:

Hypothesis 1a (H1a): In problems of coordinated exploration, specialist agents with
a higher level of communication will be more likely to identify high-value combina-
tions than specialist agents with a lower level of communication.
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The above prediction, however, is not uncontroversial. For example, empiri-
cal work in the new product development literature suggests that intense com-
munication between different specialists may lead to poor innovative outcomes
(Tyre and Hauptman, 1992; Hauptman and Hirji, 1996; Song and Montoya-
Weiss, 1998; Song, Thieme, and Xie, 1998; Song and Xie, 2000), though they
do not always clarify why this may the case.1 The literature on boundary span-
ners reaches similar conclusions, finding that projects with boundary spanners
tend to perform better than projects without them (Tushman and Katz, 1980;
Carlile, 2004), but even in large projects with high levels of interdependence,
very few boundary spanners are required to achieve good outcomes (Tushman
and Scanlan, 1981).

In contrast to H1a, these empirical findings suggest that a high level of infor-
mation transfer is unnecessary and perhaps even harmful in coordinated explo-
ration, but the mechanisms that underlie these findings are unclear. Many
large-sample studies have hypothesized that a high level of communication
should be associated with better performance but did not find that relationship.
A plausible mechanism is that the difficulty in aligning mental models of differ-
ent specialists leads to the pursuit of shortcuts and therefore lower perfor-
mance (Tyre and Hauptman, 1992). Because significant effort is needed to
transfer knowledge across specialists with incompatible mental models or
‘‘thought worlds’’ (Dougherty, 1992, 2001; Heath and Staudenmayer, 2000),
such efforts are likely to be prone to conflict and delays. As a consequence,
teams are more likely to pursue objectives that are minimally acceptable for all
team members rather than to explore broadly to achieve more rewarding out-
comes. For example, Davis and Eisenhardt (2011) explored innovations from
high-technology alliances and found that a consensual leadership style pro-
motes costly attempts at sharing information, which quickly leads these firms
to adopt a lowest-common-denominator approach. These observations suggest
the following competing hypothesis:

Hypothesis 1b (H1b): In problems of coordinated exploration, specialist agents with
a higher level of communication will be less likely to identify high-value combina-
tions than specialist agents with a lower level of communication.

Effect of Agents’ Skills as Specialists vs. Generalists

One approach to the differentiation–integration tradeoff and the difficulty of
communicating across specialists’ boundaries is to employ agents with
T-shaped skills—i.e., deep domain expertise in one domain, represented by the
vertical bar of the T, and adequate knowledge in other domains, represented
by the horizontal bar of the T (Iansiti, 1993; Leonard, 1995). Individuals with
T-shaped skills have the ability to search for solutions to problems not only
from their deep expertise but also taking into account how their choice is likely
to interact with other constraints that a joint solution needs to satisfy. In the

1 Montoya-Weiss and Calantone (1994) observed that few empirical studies use technological inno-

vativeness as a measure of new product development success; instead, market share, financial

success, and, most frequently, speed of development are used as proxies indicative of success.

When the success of new product development projects is measured in terms of innovativeness,

these studies suggest that facilitating very high levels of communication among the specialist

agents may be associated with poor performance.

414 Administrative Science Quarterly 59 (2014)

 at INDIAN SCHOOL OF BUSINESS on November 4, 2014asq.sagepub.comDownloaded from 

http://asq.sagepub.com/


context of the windmill example, if the structural mechanics engineers have
T-shaped skills, they are less likely to limit search for solutions to the strongest
materials, such as steel, because they recognize that these also tend to be
heavy and unlikely to generate much power. Employing individuals with
T-shaped skills is therefore likely to be associated with successful problem sol-
ving across multiple domains (Madhavan and Grover, 1998). This suggests that
agents with T-shaped skills are more likely to be successful than individual spe-
cialist searchers. Therefore we hypothesize:

Hypothesis 2 (H2): In problems of coordinated exploration, agents with T-shaped
skills will be more likely to identify high-value combinations than will specialists.

Recent work, however, suggests that H2 may not always be true. Specifically,
though the single searcher with T-shaped skills is likely to be more successful
than the single specialist searcher, it is unclear whether a team of agents
with T-shaped skills is more likely to be successful than a team of specialists.
Recent empirical work finds that employing personnel with T-shaped skills
(as opposed to specialists) is not necessarily associated with new knowledge
creation or effective exploration in a new product development context (Lee
and Choi, 2003; Tsai and Huang, 2008). In fact, though these studies
hypothesized that employing personnel with T-shaped skills should have an
impact on performance, they failed to find such an impact in their data. This
suggests that H2 may not hold under some circumstances in problems of
coordinated exploration.

Effect of Agent Exploration

The contrasting effects argued above arise from two problems inherent in joint
search: the inability to coordinate and the lack of adequate exploration. Formal
work that models firms’ adaptation as search over a rugged landscape sug-
gests that local adaptation traps firms in local peaks, and exploration is crucial
for superior performance in such adaptation problems (Levinthal, 1997).
Exploration aims to provide a basis for better choices in the future, as opposed
to maximizing the immediate returns (Gittins, 1989). Unconstrained exploration,
however, also leads to poor outcomes because the agents never exploit the
promising alternatives that their exploration highlighted (Sutton and Barto,
1998). Studies of organizational search and learning have convincingly demon-
strated the need to balance exploration with exploitation for superior
performance.

Of course, agents need not explicitly engage in exploration activities.
Contexts that undermine efficient adaptation by disrupting action-outcome-
feedback linkages allow agents to ‘‘wander’’ in the search space, a process
that automatically promotes exploration (March, 1991; Denrell and March,
2001). These ‘‘slow-learning’’ effects are considered to be particularly beneficial
in complex environments that require broad exploration (March, 2006; Knudsen
and Levinthal, 2007). These studies suggest the following hypothesis:

Hypothesis 3a (H3a): In problems of coordinated exploration, the extent of explora-
tion has a curvilinear relationship to performance, such that agents who explore
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too little and agents who explore too much are less likely to find high-value
solutions.

It is unclear, however, whether the above prediction derived from models of
unitary search is accurate in problems of coordinated exploration, because the
epistemic interdependence that characterizes coordinated exploration leads to
two pathologies in search: mutual confusion and joint myopia. First, the feed-
back received by the agents is the joint payoff associated with both their and
the other agent’s actions. Therefore agents are unable to distinguish whether
the positive or negative feedback outcomes are a consequence of their own
action or the action of the interdependent other (Lounamaa and March, 1987;
Puranam and Swamy, 2011). This impedes adaptation because agents are
unable to learn from feedback to improve their mental models of action-
outcome linkages. In other words, ambiguity in feedback promotes mutual con-
fusion that in effect misleads agents into maintaining a flawed mental model of
the task environment. Such flawed mental models may never be corrected in
coordinated exploration because of enduring epistemic interdependence. This
is in sharp contrast to models of unitary search in which epistemic interdepen-
dence is absent, and correction of mental models is possible.

Second, reducing mutual confusion will increase joint myopia. Mutual confu-
sion can be countered if agents maintain mental models of the search space
that are fully aligned with each other at every point in time. Alignment of men-
tal models allows the interdependent actors to anticipate the others’ expected
actions, as in game-theoretic models. This is why it is commonly thought that
high levels of communication among interdependent agents can facilitate coor-
dination. But this comes at the cost of joint myopia—reducing exploration of
the search space so the agents focus on a narrow portion of the landscape that
both see as beneficial. As the agents receive more information about each
other, they are more likely to choose actions that reliably take into account the
others’ preferences, thereby limiting search to areas known to be mutually ben-
eficial. This narrowing of search, important for coordinating, necessarily comes
at a cost: a more superficial understanding of other regions in the landscape
that perhaps are more valuable. For example, behavioral economists have
demonstrated that in coordination games, it is very difficult for the group to
shift from a low-performing equilibrium to a high-performing equilibrium
because it requires a coordinated shift among all participants (Van Huyck,
Cook, and Battalio, 1997; Camerer, 2003). In the face of bounded rationality,
agents do not know if any other better equilibrium exists and therefore cannot
achieve a coordinated shift. According to theories of unitary search, such myo-
pia can always be overcome with deliberate exploration strategies, as sug-
gested by H3a. In problems of coordinated exploration, however, as in all
coupled learning problems, exploration has the consequence of increasing
mutual confusion by unintended interference in agents’ learning and therefore
is unlikely to lead to superior search outcomes. These arguments suggest the
following competing hypothesis:

Hypothesis 3b (H3b): In problems of coordinated exploration, agents who explore
individually are less likely to find high-value combinations than agents who do not
explore individually.
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The general mechanism that underpins our theory is the tradeoff between
the need for agents to align their mental models in the face of epistemic inter-
dependence and the need for adequate exploration. This tradeoff is challenging
because of bounded rationality. Lack of aligned mental models results in poor
performance because of mutual confusion, but alignment at the cost of joint
myopia also leads to suboptimal outcomes. The greater the alignment in men-
tal models, the more the team chooses options that are likely to result in a pos-
itive payoff given team members’ (accurate) understanding of what the other
actors are likely to choose. But this sensitivity to epistemic interdependence
stifles exploration of the search space (whose payoff potential is unknown) by
concentrating search efforts in the subspace that is of immediate mutual inter-
est to all agents.

Coordinated exploration therefore needs to balance mutual confusion against
joint myopia, which is likely influenced by the relationships among the following
elements: (1) the agents’ initial knowledge; (2) agents’ learning based on each
agent’s own search efforts and the extent of integration with the other agent;
and (3) the nature of the landscape. Understanding coordinated exploration
therefore requires a careful trace of the evolving relationships among integra-
tion mechanisms, individual mental models, and the level of shared mental
representations. As in much analysis of dynamic systems, a computational
model is a suitable method for tracing these feedback-driven interacting
relationships.

A MODEL OF COORDINATED EXPLORATION

To understand both the coordination and search aspects of coordinated explo-
ration, we need to model an agent’s knowledge or cognition as an information
structure that bears some resemblance to the potentially unknowable real
world. The agent’s choices are informed by this information structure, or men-
tal model, and it evolves over time with feedback. The heart of coordinated
exploration is that agents are constrained by epistemic interdependence. In a
dynamic perspective, this means that the evolution of one agent’s information
structure is significantly influenced by the actions of the other agent, which
may be unobservable. In order to take into account such epistemic interdepen-
dence in a model of coordinated exploration, we need an approach to represent
the current state of the agent’s information structure that can direct search
conditional on the actions of the other agent(s) and its evolution with feedback.

Partition Models: An Approach to Modeling Knowledge

The conception of knowledge as partitions in a state-space developed in
Samuelson (2004) provides us with a handy tool to model the agent’s evolving
information structure. As explained in Samuelson (2004), economists model
knowledge as a state-space, so what someone ‘‘knows’’ is represented as a
set of partitions of that space. The more the partitions in an agent’s information
structure, the greater his or her knowledge about the space. Knowledge repre-
sents category learning: in the space where an ignorant agent sees only one
category, a more knowledgeable agent can identify several nuanced categories,
for example, distinguishing wood as pine, cherry, or oak. In search models, the
task of the agent is to partition the information structure so that it is possible to
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identify elements in the knowledge space that likely correspond to objects that
are actually of high value. Search proceeds by going through the current infor-
mation partitions or if necessary by further partitioning the information
structure.

For example, in the windmill design problem, bounded rationality implies that
the two engineers do not know beforehand the full set of materials and shapes
they could recombine. For instance, the initial knowledge of the structural
materials engineer could be limited to three categories of candidate materials,
wood, metal, and other—that is, only three partitions. Out of these, the engi-
neer may select a promising candidate, say wood, and investigate it further—
for example, discovering that there are two different types of wood, hard and
soft. This represents an additional partitioning of his or her mental model of the
search space as it pertains to wood. Among hardwoods, the engineer may dis-
cover that the oak behaves differently from elm, which in turn is different from
pine. This increase in knowledge is represented as more partitions in the infor-
mation structure. Note that in this example, the engineer’s knowledge parti-
tions are becoming more fine-grained in the subspace pertaining to wood,
whereas his or her knowledge about other regions of the search space is
unchanged.

The other interdependent agent in this task, the aerodynamics engineer,
likely has partitioned the joint search space differently, depending on shapes,
such as straight or curved. If the new partition available to the structural
mechanics engineer, hard wood vs. soft wood, is not available to the aerody-
namics engineer and vice versa, their knowledge partitions diverge. Because of
this incongruence in mental models, the two agents may come to different
conclusions about which region in the search space is attractive and therefore
can make mutually inconsistent choices as each selects a solution that appears
to be useful from one’s own point of view but may in fact be jointly useless.
This is the challenge of epistemic interdependence that agents involved in coor-
dinated exploration need to solve.

As agents increasingly partition their knowledge structure, their mental mod-
els become increasingly incongruent, and they need to expend more effort in
aligning their mental models. Partition models elegantly capture this tradeoff
that increasing differentiation, modeled as more fine-grained partitions of the
search space, requires increasing effort in integration, modeled as increasing
alignment of the agents’ partition structures.

Model Mechanics

To understand coordinated exploration, we model search in a two-dimensional
landscape, such as structural mechanics and aerodynamics in the windmill
example. The search landscape is a matrix in which each combination of the
two technologies defines a coordinate with an associated payoff, as shown in
figure 1. Two agents search in this landscape; the row agent chooses the row,
and the column agent chooses the column. In our example, to create the next
prototype of the new windmill, the structural mechanics engineer (row agent)
chooses the material, such as wood vs. metal, and the aerodynamics engineer
(column agent) chooses the shape, such as curved vs. straight. Once these
agents have chosen in their own dimensions, a prototype is created with these
joint properties (e.g., a windmill made of wood with straight blades), which is
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associated with a payoff. Figure 2 provides an overview of the baseline model
and table 1 an overview of the parameters of the simulation. These are
explained in greater detail below, and the parameters were chosen after
numerous robustness checks to fine-tune the model.

Initial conditions: The search space. As shown in figure 1, in the baseline
model, the search space is a matrix defined by 64 possible choices in two com-
plimentary dimensions (row, column), and each of these 64× 64 combinations
is associated with a payoff.2 We initially exercise our model with a landscape
that contains two peaks of varying heights as shown in figure 1. This landscape
emphasizes both search, because there are only two valuable peaks among
the possible 4,096 combinations, and coordination, because each peak acts as
a Nash equilibrium in this game. The shape of the landscape can materially
affect successful strategies for coordinated exploration, so we ensure robust-
ness using different landscapes that lay higher or lower emphasis on search
vs. coordination.

Initial conditions: The agent’s mental model of the search space. At
t = 0, agents are endowed with a mental model of the search space. This men-
tal model consists of two elements: (1) available decision choices and (2) pay-
offs associated with these choices. Our agents are boundedly rational and do
not see all the 64× 64 choices available to them beforehand, and as a conse-
quence they do not accurately know the associated payoffs.

At the beginning of the simulation, agents do not have fine-grained partitions
of the search space; they see only a very limited number of choices for each
dimension. Figure 3 provides an example in the context of the windmill

Figure 1. Task environment (one-quarter the size of the actual task environment).

Choices for Materials

(Structural Mechanics)
Choices for Shapes

(Aerodynamics)

2 It may be helpful to draw a brief analogy of our model with the NK modeling structure. In our

model, N = 2 because agents are searching only in two decision parameters, and K = 1. In the NK

model, agents have a dichotomous choice, 0 or 1, for each decision variable. In our model, agents

have 64 choices for each decision variable.
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example, in which (both) the agents see a 3× 2 choice set instead of reality
(the full 64× 64 matrix). The sharpness of the agents’ initial vision (knowl-
edge)—the number of choices in each dimension that an agent can see at the
beginning of the game—is specified as a parameter in the model and may vary
from 1 (most blurred) to 64 (sharpest) along each dimension. The agents’ lim-
ited vision of the choice set also limits their understanding of the performance
consequences of the choice set. The payoff the agents associate with each
perceived cell in the matrix is the average of payoffs for the ‘‘real’’ combina-
tions that are latent in that cell. For example, as shown in figure 4, for the
other-curved combination, they see the average for all other materials and all
curved shapes.3

Agents’ initial mental models get more refined with time as their knowledge
partitions become more fine-grained. As the choice set becomes more refined,
the payoff associated with each element in the choice set also becomes more
accurate.4 Refining mental models involves two actions: first choosing the por-
tion of the landscape to further explore (step 1) and then actually exploring
(gaining a sharper vision of) that region (steps 2 and 3). The switch operation

Table 1. Description of Simulation Parameters

Parameter Range Purpose

Search landscape 64× 64 The agents’ task environment. This is the total number of possible

combinations in which the agents search for innovations. In each

dimension (row, column), there are 64 possible alternatives the

agent can choose.

Initial granularity (own

dimension, other dimension)

1×1, 8×8, 2× 1,

4× 1, 8× 1,

16× 1, 24× 1

The agents’ information partitions at the start of search. The

number of initial choices the agent sees in each domain can vary

between 1 and 64 in each domain.

Exploration parameter

in switching

t: 0 – 0.1 The agents’ propensity to engage in explorative activity. This

governs the agent’s move between choices he or she is aware of.

The movement is governed by a Softmax algorithm. The higher the

parameter (t), the more uncorrelated the actual movement of the

agent with payoff differences.

Communication

frequency

0 – 0.5 Communication regulates the extent to which the agents’

knowledge partitions are aligned. For each dig attempt, this is the

probability with which the row (or column) agent receives new

knowledge provided by the column (or row) agent. When the

probability is zero, agents do not communicate. When the

probability is 0.5, agents communicate approximately every other

round.

Propensity to partition

in other dimension

0 – 0.5 The agent’s ability to bring forth new information in the

complementary dimension. This is the probability with which a row

(or column) agent’s dig attempt results in a partition in the search

space in the column (or row) dimension.

3 By assumption, agents have correct expectations about the attractiveness of each choice they

see. This treatment is similar to the payoff matrix seen by agents in Gavetti and Levinthal (2000). In

addition, agents have commensurate mental models. They agree that there are two dimensions,

and they both see the same payoffs for identical subspaces, with no idiosyncratic distortions or fil-

tering errors.
4 We do not model noise in payoffs. When our agent achieves perfect vision of the choice set, the

agent simultaneously achieves perfect information about the payoffs of each choice set.
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chooses the region for further exploration, and the dig operation refines the
agents’ current mental model in the specific location determined by switch.

Step 1: Switch to attractive subspace given current knowledge.
Switching captures the logic of how agents change the focus of their atten-
tion from one region in the landscape to another. Initially, our agents are posi-
tioned at random in the landscape. They observe the payoff to their current
choice and the payoff to all the other choices available to them based on their
current mental model. Our agents are profit seeking and therefore switch to
the most promising alternative they currently perceive. This is similar to
Simon’s (1962) conception of choosing between branches of the search tree
for further exploration depending on the agents’ expectations about which

Figure 2. Baseline search algorithm.

Initial conditions. Agent is 

endowed with an initial mental 

model of the search space

2. Sample from chosen subspace

1. Switch to an attractive

subspace given current

knowledge

3a. Dig in current subspace to

understand it better (create new

partitions in that subspace)

4. Recalculate payoffs for all

subspaces currently visible

3. Is current payoff in line 

with agent’s 

expectation? 

No

Yes (3b)
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branch appears most attractive. For instance, in figure 4, the agent currently
positioned in other–curved may instead choose to focus on the option wood–
straight for further investigation based on the perceived payoffs. Note that
the agents’ perceptions of attractiveness depend on their current (imperfect)
mental models and, as shown in figure 4, they may switch away from a
region that contains the global peak.

Switch is accomplished as follows. Assuming that both the row and the column
agent start with identical mental models, as shown in figure 4, the row agent
chooses wood for material and the column agent chooses straight for shape

Figure 3. Perfect vs. imperfect initial vision of task environment (one-quarter of actual size).

Perceived 

choices for 

materials

(structural 

mechanics)

Perfect Vision. Perceived choices for

shapes (aerodynamics)

Payoff = 100

Payoff = 50

In perfect vision, all the 16 choices in the row and column dimension and the

256 (16x16) associated payoffs are visible to the agents. In imperfect vision, the

agents only see a 3x2 matrix instead of the 16x16 matrix.

Perceived 

choices for 

materials

(structural 

mechanics)

OTHER

METAL

WOOD

Imperfect Vision. Perceived choices for 

shapes (aerodynamics)

CURVED STRAIGHT
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because each independently believes that this is the best subspace. When each of
the agents makes their choice, they jointly switch to the wood–straight subspace.

In the baseline model, as illustrated in figure 4, the agents switch to the sub-
space with the highest perceived payoff, conditional on their mental model. In
other specifications, we relax this assumption by allowing the agents to
explore—sometimes they investigate subspaces that are not the most attrac-
tive as they currently see them. The higher the exploration parameter, the
more the agents choose to investigate spaces at random without regard to
their immediate attractiveness.5 This is implemented using a Softmax algo-
rithm.6 The temperature t in the Softmax algorithm is the exploration
parameter—it determines the probability with which agents choose an alterna-
tive that does not have the maximum payoff as they currently perceive.

Figure 4. The agents’ vision and switching operation to a more promising alternative (one-

quarter of actual size).

●

●

Initial 

Position

Agent switches 

to this subspace 

(step 1)

Perceived 

choices for 

materials

(structural 

mechanics)

Perceived choices for shapes (aerodynamics)

CURVED STRAIGHT

OTHER

METAL

WOOD

Payoff = 100/(12*8) = 1.04

(as perceived by agent)

Payoff = 0/(12*4) = 0 

Payoff = 0 

Payoff = 0 

Payoff = 0 

Payoff = 50/

(4*4) = 3.125

Agent samples a 

specific combination 

from this subspace 

(step 2)

5 This implements the typical strategy for modeling exploration in individual search models. We sys-

tematically vary this exploration parameter to understand the effect of individual exploration on joint

search outcomes.
6 The Online Appendix (http://asq.sagepub.com/supplemental) provides further mathematical

details.
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Step 2: Sample from chosen subspace. When both agents switch to their
chosen subspace, they sample a combination from within that subspace.
Because each alternative the agent is aware of (e.g., wood) contains multiple
latent coordinates (e.g., oak, pine, cherry, etc.), sampling is achieved by placing
the agent at random in one of these latent coordinates (e.g., oak for the row
agent and a specific shape for the column agent; see figure 4). Because agents
do not have any knowledge of the specific coordinates that make up a sub-
space, they have no control of their actual location within the chosen (coarse-
grained) search space.

Step 3: Is current payoff in line with agents’ expectations? With sam-
pling, the agents become aware of the payoff to their joint solution. Each com-
bination within a given coarse partition maps onto a particular payoff. Unlike
game-theoretic models, our agents have less-than-perfect knowledge of any
given subspace, and the payoffs they expect may be different from the payoff
they receive from the particular combination they sample. This is because the
expectation is the average of the payoffs of all the latent choices within that
subspace. For example, in figure 4, the agent expects a payoff of 3.125, but
the specific payoff actually received is zero.

Step 3a: If payoff is not in line with expectation, dig in current subspace
to understand it better. The agents realize that any significant mismatch
between expected and received payoff is a consequence of their
imperfect knowledge of the subspace, which they then try to improve. We
refer to an agent’s propensity to gain further fine-grained partitions (sharper
vision) in the chosen subspace as dig.7 Dig implies that the agent expends
effort in uncovering new knowledge such as by thinking about the problem,
reading about it, or talking to others. Increased partitions allow the agent to
distinguish between more nuanced categories. The idea is similar to
Simon’s (1962) conception of choice set expansion or refinement of the
search tree.

In our model, when an agent decides to dig, a new knowledge partition
occurs in the agent’s mental model. In the windmill example, if the row
agent decides to invest in understanding the subspace ‘‘Wood’’ more minutely,
the subspace splits into hardwood and softwood (see figure 5), i.e., a new
knowledge partition occurs. The increased partitions imply that the agent’s
mental model of the subspace is now more fine-grained in the row dimension.
In figure 5, the agent now perceives four subspaces (hardwood–straight,
hardwood–curved, softwood–straight, softwood–curved and the four associ-
ated payoffs) when earlier only two were perceived (wood–straight, wood–
curved).

Similarly, when the column agent digs, the column dimension splits
into two. Note that the new partition uncovered by the row agent is not
visible to the column agent and vice versa. In figure 4, both the row and column
agent perceive a 3× 2 matrix. After dig, the row agent perceives a 4× 2 matrix
(as in figure 5), and the column agent would perceive a 3× 3 matrix. Over time,

7 In the baseline model, we implemented a surprise-driven search function (Cohen and Axelrod,

1984). In robustness checks, we implemented a version of the model in which the agent digs only

when the payoff is less than the aspiration level (March, 1988). Our results are qualitatively

unchanged.
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as the agents become aware of more partitions in the search space, their men-
tal models increasingly diverge unless the agents take specific steps to align
them.

To preserve bounded rationality and the logic of discovery in our model, we
have imposed the following restrictions on the way digging leads to the refine-
ment of mental maps. In the baseline model, each dig operation splits a sub-
space in two along the agent’s specialist dimension (row or column). The exact
point at which the split occurs in the subspace is chosen at random because
the agent has no prior access to the latent choices within that subspace. Also,
agents do not know when they have reached maximum granularity of vision in
that subspace. When this is achieved, the agent may dig but does not become
aware of any new partitions.

Step 3b: If payoff is in line with expectation, move back to step 1. If the
actual payoff meets expectations, the agent does not expend effort in further
partitioning the subspace but simply searches again, moving back to step 1. In
the baseline model, under this condition, the agent samples again in the current
subspace. Resampling is accomplished by placing the agent in a random

Figure 5. Dig operation: New information revealed to row agent.
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combination within the current subspace (as explained in step 2 above).8 In the
baseline model, the agents effectively stop digging when their expected payoff
is equal to what they actually receive, which happens only if they have identi-
fied the precise subspace that contains the peak. This implies that the agents
have achieved perfect granularity in that subspace, but it is unlikely that they
have maximal granularity in any other region of the landscape. An alternative
assumption to the baseline is that if the received payoff exceeds the expected
payoff, the agent decides not to search any further. We examined this alterna-
tive and found that our results are robust to this assumption.

Step 4: Recalculate payoffs to all subspaces currently visible. The agent
recalculates expected payoffs for all known choices. If the dig operation in step
3a results in new partitions, the agent now has more choices available, and the
payoffs the agent imputes to these choices have also grown more accurate, as
shown in figure 5. At this point, the agent retraces the sequence of steps from
step 1. The simulation ends after 500 discrete time steps. The value of 500
time steps was chosen because by then all simulations had approached a
steady state.9

Organizing Joint Search

In unitary search, one agent searches in both dimensions and therefore auto-
matically has fully aligned mental maps, as well as aligned actions. In joint
search, however, there is a division of labor, and the dig operation leads to
asymmetric mental models between these interdependent agents. To coordi-
nate, the agents need to align their mental models. Different organization
designs engender different patterns of interaction among the specialists, which
determines the rate and the level of mental model alignment over time. This, in
turn, affects agents’ subsequent search locations (Denrell and March, 2001).
We adopted three of the integration conditions proposed by Gavetti (2005),
autonomous, top-down, and coordination, to understand their effects on coordi-
nated exploration.10 In all these conditions, the row agent determines the row
position and the column agent the column position, and the agents switch to
the portion of the matrix identified by their joint choice.

8 Further sampling randomly repositions the agents within a subspace because agents who locate

in a subspace have no knowledge about the underlying latent combinations. The agent is limited by

its current granularity and consequently has no control over positioning within the chosen subspace.

We can think of this as if the agents are performing experiments, but because experimental noise

is not entirely eliminated (imperfect granularity), they get different results every time. Random repo-

sitioning allows the agent to continue search—if it happens to locate in a combination whose payoff

is different enough from what is expected, the agent digs and is rewarded with more knowledge

(more partitions). This procedure implements behavior that is consistent with the knowledge condi-

tions we impute to agents. In principle, an agent cannot choose to stick to a particular point within

a subspace unless the agent can actually see that point.
9 We applied difference tests to the values of behavioral variables, as well as obtained payoffs.

When these tests approach constant values for differences between successive time steps, the

dynamics approach steady state.
10 The fourth type of integration mechanism proposed by Gavetti (2005), ‘‘circulation of cognition,’’

is not very meaningful in our setting because it involves complete transfer of knowledge from one

agent to another.
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Autonomous. In this case, the agents search in parallel but do not make any
attempt to align their mental models.

Top-down. In this case, we consider the situation in which two agents search
in parallel and senior management attempts to achieve coordination by imposing
the same mental model on both the agents. This is accomplished such that both
agents have identical (fully aligned) partitions of the search space initially (at t =
0). This initial alignment ensures that both agents begin by identifying the same
region in the landscape as attractive and concentrate their search efforts in that
region. After this initial alignment, search is identical to the autonomous regime.
The initial partitioning is fairly limited and made at random, which allows us to
understand the impact of initial shared knowledge on joint search.

Coordination. In this case, we consider the situation in which two agents
search in parallel but make some attempt to align their mental maps of the
search space. Coordination is an attempt by one agent to understand the world
precisely as viewed by the other agent. In this condition, agents attempt to par-
tition the search space in identical divisions by communicating their knowledge
partitions to each other.

Coordination is modeled as follows: the row agent requests new knowledge
about the column dimension from the column agent. With each request, the
column agent provides the row agent with one new column partition that the
row agent does not already know.11 The more frequent these requests, the
more aligned the knowledge partitions become. But there is an opportunity cost
to communication. Because gaining new knowledge, by digging or by communi-
cating, takes effort, each time an agent requests information from the other
agent, the requesting agent forgoes the opportunity to further improve granular-
ity in his or her own dimension in that time period. That is, an agent can improve
the granularity in only one dimension at a time.12 The frequency of communica-
tion is a parameter in the model and does not change with time. In this setup,
we assume that communication effectively increases the alignment of mental
maps. By assumption, there is no fundamental incongruence between agents’
mental maps; differences between the two actors’ knowledge partitions are the
only source of misalignment. With infrequent communication, coordination
approaches the autonomous case, whereas it approaches the opposite—fully
shared knowledge structures—with increasing communication.13

11 It works identically if the column agent initiates the request for a new partition from the row

agent. Empirically communication between specialists is very difficult as knowledge does not easily

transcend the different thought worlds that these specialists occupy (Dougherty, 1992; Iansiti,

1995). Therefore we have restricted communication to provide the agent with only one new knowl-

edge partition. If agents communicated every partition they know about every time they communi-

cated, they would no longer be specialists. If this were possible, mental models would be fully

aligned in every time period, and the problem of mutual confusion would vanish, though the prob-

lem of joint myopia might still exist.
12 In robustness checks, we relaxed this assumption and found that it does not qualitatively change

our results.
13 We model only perfect communication. The degree to which mental maps overlap is strictly gov-

erned by the frequency of communication. The autonomous case logically approximates imperfect

communication.
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FINDINGS

Tables 2–4 summarize the final payoffs received by the agents in the different
treatment conditions in this simulation model while searching the two-peaks
landscape as shown in figure 1. In all of the results, the exploration parameter
t = 0. Initial granularity is set at 1× 1 in all results except for the top-down
search regime, where it is set at 8× 8. Results are obtained at T = 500.
Reported results are averages obtained from 300 runs for each condition, and
reported differences are statistically significant at conventional levels. In gen-
eral, the findings are inconsistent with the traditional hypotheses (H1a, H2a,
H3a) that were derived from theory developed for search by a single agent.

Specialists with low (non-zero) levels of communication perform
better than agents with high levels of communication. Table 2 shows that
frequency of communication between specialists has a non-monotonic
relationship with search outcomes. No communication between the agents
(autonomous search) results in very poor outcomes (payoff of 0.70), while
communicating only once in 20 rounds results in quite favorable outcomes
(payoff of 0.97). Communicating very frequently (once in two rounds) results in
comparatively poorer outcomes (payoff of 0.91). These results are consistent
with H1b.

We find this pattern because no communication results in mutual confusion
and lack of coordination whereas too much communication causes joint

Table 2. Impact of Level of Communication on Joint Search Performance by Specialists

Search regime Propensity to partition in other dimension Communication frequency Final payoff (at t)

Coordination 0 0 0.70

0 0.05 0.97

0 0.10 0.93

0 0.50 0.91

Table 3. Unitary vs. Joint Search Performance by Specialists vs. Agents with T-shaped Skills

Search regime Propensity to partition in other dimension Communication frequency Final payoff (at t)

Unitary search 0 N/A 0.01

0.50 N/A 0.90

Autonomous 0 0 0.70

0.50 0 0.60

Table 4. Impact of Coordination by Hierarchy on Joint Search Performance by Specialists vs.

Agents with T-shaped Skills

Search regime Propensity to partition in other dimension Communication frequency Final payoff (at t)

Top-down 0 0 0.85

0.50 0 0.85
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myopia—a premature focus on local peaks. As argued before, we find that
there is a tradeoff between search and coordination. Because specialists do
not partition in the other dimension, if they do not communicate, then their
choices are not coordinated. Communicating enables some alignment of
mental maps and allows the agents to coordinate their choices. The more
the mental maps are aligned, however, the more the agents influence each
other in concentrating on a narrow portion of the landscape that both see as
beneficial, but at the necessary cost of blurred vision of other regions in the
landscape. Communication influences the region in which sharper vision is
achieved because it regulates where knowledge partitions are increased.
Therefore once a promising region is jointly identified, the agents concen-
trate on increasing their knowledge of that specific subregion and neglect
exploration.

Premature focus is a powerful detriment to search because it prevents
agents from exploring the high-value region, which is a natural attractor.
We find that in the low-communication case, the agents quickly identify an
interesting region from their own viewpoint and then slowly try to understand
the space from the other’s viewpoint. This enables them to explore
effectively; we find that their probability of digging is above zero even after 250
time steps. The high-communication condition, in contrast, stifles exploration.
We find that agents’ probability of increasing granularity is about the same in
both dimensions. Because of this, agents converge very quickly on a mutually
desirable solution and cease exploration; the probability of digging falls to
almost zero within 50 time steps. This leads to suboptimal search outcomes in
this case.

T-shaped skills are useful for unitary search but problematic when
agents are interdependent. Table 3 shows the average payoff of a unitary
searcher who is a specialist vs. an agent with T-shaped skills. For specialists,
the propensity to partition in the other dimension is 0; for agents with T-shaped
skills it is 0.50. As expected, the agent with the T-shaped skills performs much
better. Whereas the specialist agent achieves a payoff of 0.01, an agent with
T-shaped skills achieves a payoff of 0.90; on average, 80 percent of the agents
identify the high peak (= 1.00) and 20 percent of agents identify the low peak
(= 0.50). Figure 6 shows the location of agents over time. The top graph shows
that no agent with T-shaped skills has a final payoff of zero; they reliably iden-
tify one of the two valuable peaks.14

Table 3 shows the results for coordinated exploration achieved by teams a
team of specialist agents vs. a team of agents with T-shaped skills. First, for
specialists, table 3 shows, as expected, that when agents are autonomous,
their payoff (0.70) is higher than the unitary specialist searcher but lower than
the unitary searcher with T-shaped skills. The bottom of figure 6 shows that
several agents achieve a payoff of zero because one agent focuses on the
tall peak whereas the other agent focuses on the short peak; they confuse
each other and jointly land on a solution that has zero value.

14 An individual searcher need not be equally good in both dimensions. In robustness checks, we

found that a searcher who partitions in the other dimension approximately only once every twenty

rounds achieves approximately the same final payoff as one who partitions in the other dimension

once every two rounds.
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This evidence is consistent with our argument that agents in coupled learn-
ing problems are subject to mutual confusion, a condition that allows agents to
persist with a flawed mental model of the search space. In this condition, at
steady state, the dig probability of the average specialist agent is almost 0.9,
that is, the agents are still attempting to find the valuable combination despite
the negative feedback. Such confounding is impossible in search by a unitary

Figure 6. Average position of agents in the two-peaks landscape.
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agent. Because agents do not realize when maximal granularity is reached,
they continue to experiment in the hope of finding better solutions.15

We argued that agents with T-shaped skills, though possessing superior
knowledge of the landscape, are still subject to mutual confusion. Table 3
shows that their performance, with a payoff of 0.60, is worse than the autono-
mous specialist searchers. This finding demonstrates the challenge of episte-
mic interdependence in coordinated exploration. Because these two agents do
not have aligned knowledge partitions, they are unable to make choices that
are jointly valuable. This occurs even though both agents have almost as fine-
grained partitions of the search space (average of 8.4× 8.4) as the unitary
searcher (8.6× 8.4) has at steady state. In other words, the agents achieve
very poor outcomes in joint search even though they are equipped with traits
that give them the same potential as the individual searcher to acquire knowl-
edge. This result is an interesting contrast to joint search models without epis-
temic interdependence. In prior work, joint searchers reached good solutions if
they both had very good processing power (i.e., power to consider also the
complementary dimension) as long as they did not prematurely weed out solu-
tions (Rivkin and Siggelkow, 2003; Siggelkow and Rivkin, 2006).

Hierarchy as a coordination device. The problem of mutual confusion in
coupled learning problems should lessen when agents are provided with a
coordination device that gives them some ability to align their mental models of
the search space. Communication is one means of aligning mental models.
Another is hierarchy, which may impose identical mental models on the
agents.

We implemented hierarchy following the top-down model proposed by
Gavetti (2005) by providing two specialist agents with identical partitions in
both dimensions at the beginning of search but having them search autono-
mously. Table 4 shows that when these agents are provided with an 8× 8
partition space, they are able to achieve a payoff of 0.85, which is closer to the
payoff achieved by the unitary searcher (0.90) and higher than the payoffs for
two autonomous specialist searchers (0.70). The initial vision of the subspace
in this case is sufficiently fine-grained for both the autonomous agents to target
the same peak, and consequently the agents are less likely to mutually confuse
each other. Similar results were achieved also for the agents with T-shaped
skills.

This shows that integration mechanisms that rely on setting up an initial
shared frame of reference, such as common culture or common processes,
can be a powerful coordinating mechanism even under conditions of uncer-
tainty. This finding is inconsistent with some of the earlier work that suggests
that only feedback is useful for coordinating in situations of uncertainty
(Galbraith, 1977; Tushman and Nadler, 1978) but consistent with more recent
work that suggests that shared frames of reference help in coordinating by

15 Situations in which agents continue to invest effort without realizing that a search region is use-

less are fairly common. Examples include the astronomers who spent their lives tweaking the geo-

centric model of the universe or the chemists who based their experiments on the phlogiston

theory. Perhaps the most famous example is Pasteur, who tried to create a vaccine for rabies by

using blood samples from infected animals, an ultimately fruitless quest because the rabies virus

did not travel by blood like anthrax and the other pathogens he had worked with previously.
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increasing the predictability of actions (Okhuysen and Bechky, 2009; Srikanth
and Puranam, 2011).

Impact of exploration on unitary search vs. coordinated exploration. An
agent explores when he or she chooses actions without regard to the immedi-
ate payoff. In our model, we investigated the impact of exploration by varying
the exploration parameter, t. As t increased, the agent was more likely to
switch between subspaces without regard to the immediate expected payoff
from that subspace.

The first result we observed is that agents with t = 0 outperform agents
with t > 0 across all conditions; the higher the exploration (t), the worse the
performance. Whereas the unitary searcher suffers relatively less than joint
searchers for all values of t tested, the performance of the autonomous spe-
cialists decreases the most. The results further suggest that the negative con-
sequences of increasing mutual confusion dominate the slow-learning effect as
agents’ exploration increases (starting from low values of t). Our results also
support our intuition that increasing the alignment of mental models should
help reduce mutual confusion. As agents increase exploration, the top-down
condition performs better relative to the autonomous condition, and agents
who communicate more frequently outperform those who communicate less
often. These results are consistent with our argument in hypothesis 3b, at least
for the two-spike landscape.

Robustness checks. As described in Online Appendix B, we performed a
number of checks to assess the robustness of the findings to our assumptions
and to clarify the underlying mechanisms. Specifically, we checked our results
for (1) different types of landscapes, (2) different initial conditions, and (3) differ-
ent search algorithms. These robustness checks in general strengthened our
intuition about the above results.

DISCUSSION

Organizations exist to manage the tradeoff that arises with the division of labor:
benefits from increasing specialization vs. losses arising from the need for coor-
dination. Coordinated exploration—the condition in which specialist searchers
need to coordinate their choices—is a significant problem for organizations but
it is inadequately addressed by prior work. Prior theories on coordination ignore
search, while prior work on organizational search has ignored the need for coor-
dination; the bulk of this work characterizes the organization as a unitary actor
(Cyert and March, 1963; Levinthal and March, 1981; Levinthal, 1997). Neither
approach is helpful in understanding coordinated exploration.

Our contention is that predictions from prior theories are incorrect when
applied to situations of coordinated exploration because the simplifying
assumptions used abstract away from the fundamental problem posed by the
coupling of uncertainty and epistemic interdependence. Theories of coordina-
tion assume that the specialist agents have complete knowledge in their own
search domains and recommend strategies that swiftly increase common
ground to achieve high performance (Galbraith, 1977; Tushman and Nadler,
1978). They ignore the effect of increasing common ground on subsequent
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search, i.e., increasing joint myopia that actually decreases performance in
coordinated exploration. Similarly, theories of organizational search suggest
that slow learning, which promotes moderate exploration, is important for
achieving good search outcomes (Denrell and March, 2001; Siggelkow and
Levinthal, 2003; Ethiraj and Levinthal, 2004; Knudsen and Levinthal, 2007;
Fang, Lee, and Schilling, 2010). These theories ignore the effect of individual
exploration on coordination, i.e., mutual confusion.

Managing the Scylla and Charybdis of mutual confusion vs. joint myopia dis-
tinguishes problems of coordinated exploration from problems of unitary search
and from pure coordination problems. Mutual confusion arises because feed-
back to interdependent searchers confounds the consequences of their actions
with the actions of others, preventing them from forming accurate mental mod-
els of the search space. Aligning mental models has the consequence of reduc-
ing mutual confusion but at the cost of increasing joint myopia, which is
agents’ tendency to concentrate on that portion of the landscape that is per-
ceived as jointly attractive while ignoring the need to broadly explore the search
space.

Limitations

Although we have developed an informative model of coordinated search, this
work is subject to a number of limitations. First, the landscape of innovation is
exogenous to the model. Because the optimal organization of joint search is
contingent on the type of innovation landscape, how do managers know what
type of landscape they are searching in? We do not address this, but prior work
on belief formation may be helpful here, such as the work on analogical reason-
ing (Gavetti and Rivkin, 2007). Second, we have assumed that agents can
switch seamlessly anywhere in the landscape, which may not be feasible
because of limited rationality. A related problem is that knowledge of the agent
sequentially increases—there is no forgetting in this model. Third, we have not
systematically modeled the performance of agents with asymmetric abilities.
We have also not explored sequencing, such as first searching with generalists
and then with specialists, or coordinating by one type first and then by the
other type. This is interesting future work. Fourth, we have not modeled hierar-
chy, which may be an important mechanism to align mental models or direct
search without such alignment. Our top-down form of coordination is related
but can be extended. As a final limitation, our analysis is focused on joint
search involving two specialists. There is no reason to believe that including
more dimensions would alter the results, though the analysis would be more
complicated. Future research could examine whether the dynamics we identify
remain unaltered for higher-dimensional problems.

Contributions and Future Research

Despite its limitations, our model makes some important contributions.
Significant organizational phenomena call for the need to jointly consider the
search for solutions by individuals with diverse knowledge (i.e., a specialist
activity) and achieving coordination between these interdependent searchers.
Our novel contribution is to extend prior theory on organizational search to
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include problems of coordinated exploration and understand the mechanisms
by which problems of coordinated exploration differ from unitary search.

This is one of the first efforts to model search by considering both the cogni-
tion and organization of multiple agents and their joint impact on search out-
comes. It is not possible to understand the role of epistemic interdependence
on search without modeling agents’ cognition. We show that joint search is not
scaling up of individual search but is qualitatively different. By employing a
richer modeling strategy, we were able to refine predictions from previous the-
ory and illustrate a novel mechanism—the tradeoff between mutual confusion
and joint myopia—that makes joint search problems very different from individ-
ual search. Moreover, our mechanism is robust to a number of checks, includ-
ing the nature of the landscape (Rivkin and Siggelkow, 2007), differences in the
initial cognition of the agents (Gavetti, 2005), and the specific assumptions of
the search algorithm—surprise-driven vs. payoff-driven (Simon, 1962; Cohen
and Axelrod, 1984; March, 1988). As a methodological contribution, we also
provide an alternative modeling platform in which it is possible to understand
the consequences of different kinds of assumptions about common knowl-
edge. Finally, our work has some very interesting implications for game theory.
Prior games have considered either perfect information or imperfect informa-
tion to the extent that payoffs to action choices are noisy. Our model can be
interpreted as a game whose structure unfolds with time. This feature of
games is rather unexplored, though search is fundamental to organizations.

The novel mechanisms explicated in this study throw some light on resol-
ving long-standing empirical contradictions and offer some novel predictions.
Some empirical work in new product development suggests that high levels of
communication improve innovativeness in performance, whereas other studies
suggest the opposite (Tyre and Hauptman, 1992; Montoya-Weiss and
Calantone, 1994). This contingency effect is not well understood theoretically.
We offer novel predictions by suggesting a contingency when this relationship
between communication volume and innovation performance is true. Our simu-
lation results suggest that the effect of communication depends on the nature
of the task environment. The more the landscape emphasizes search over
coordination, the more detrimental are the effects of too much communication.
In contrast, the more the landscape emphasizes coordination over search, the
greater the need for communication. Future empirical research should take into
account the nature of the problem space when determining the impact of orga-
nizational mechanisms that promote high levels of interaction, such as cross-
functional teams, on new product development performance.

Our simulation model also suggests that the impact of communication vol-
ume on innovation performance depends on the initial knowledge held by the
agents. The more knowledgeable the specialist agents are in their own
domains, the less need for search and the more the joint search problem
resembles a coordination problem. Under these conditions, more communica-
tion should have a beneficial effect. This suggests that the more deep special-
ists communicate, the greater the likelihood of achieving a highly innovative
outcome, whereas the reverse should hold true for ‘‘shallow’’ specialists. From
an analysis of patent data, Fleming (2007) suggested precisely such a relation-
ship. Future empirical work could test this relationship in other contexts.

Our results may also have interesting implications for the organization of
innovation. Srikanth and Puranam (2014) argued that higher levels of common
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ground are found within firm boundaries than across them. Coupled with the
findings from our study, this suggests that alliances or other market-based
organizations may be a more effective way to organize innovations that require
significant levels of search, whereas organization under hierarchy and tight
communication may be more effective for innovations that require high levels
of coordination. For example, Kotha and Srikanth (2013) argued in the context
of Boeing’s 787 program that greater coordination effort between suppliers
would help balance the need for both innovation and coordination. This argu-
ment is consistent with our model, though it is contrary to popular opinion that
perhaps Boeing should not have outsourced the critical design tasks.16

Clarifying these relationships could be an interesting avenue for future work.
Despite a family resemblance, the mechanism we identify is distinct from

slow learning in typical exploration–exploitation models involving unitary agents
(Denrell and March, 2001; Knudsen and Levinthal, 2007; Fang and Levinthal,
2009). The slow-learning result is typically achieved by decreasing the sensitiv-
ity of agents’ actions to their performance consequences. In our model, how-
ever, this strategy leads to poor outcomes because of mutual confusion. We
also find that reducing communication improves performance by reducing joint
myopia, though only in landscapes that require exploration. Unlike prior work
(Lounamaa and March, 1987; Puranam and Swamy, 2011), our result is not
achieved because agents’ sensitivity to payoffs decreases but because search
precedes coordination. Lazer and Friedman (2007), in a model of network search
based on the NK framework, reached a conclusion similar to ours with respect
to frequency of communication. In their model, actors would mimic other suc-
cessful actors, and when there was no one to mimic, they would attempt to
adapt their status quo configuration. Their core result was that systems with
higher levels of connectivity and communication frequency would perform bet-
ter in the short run, at the expense of long-run performance. While we reach a
similar conclusion about communication frequency, the underlying mechanism
is very different. In Lazer and Friedman’s (2007) model, actors could learn from
each other about what does and does not work, but it was a pure search model
without the need to coordinate actions in the face of epistemic interdepen-
dence. In contrast, our model captures not just the evolution of mental models
but also their convergence in a coordination process and the impact on subse-
quent exploration. Typical slow-learning models do not capture these dynamics.

The contrast with slow-learning models does raise the question of why the
agents are unable to acquire more information and then use this information in
a sensible or optimal way to guide both exploration and coordination. The
answer to this question lies in the assumptions we make: (1) agents initially
have few partitions, i.e., they initially have little (or no) understanding of the
task environment; (2) agents have limited overlap in their partitions, i.e., they
see the search space from different positions; (3) agents have no common
knowledge, i.e., even when they have overlapping partitions, they do not know
that they do; (4) agents act in parallel, i.e., there is no principal–agent relation-
ship so that one agent can explicitly guide the other; and (5) agents do not
know what the optimal payoff is.

16 For example, see ‘‘Why Boeing’s 787 was a nightmare waiting to happen’’ (The Guardian, 18

Feb. 2013, http://www.theguardian.com/business/2013/jan/18/boeing-787-dreamliner-grounded)

and ‘‘Nightmareliner’’ (The Economist, 3 Sept. 2011, http://www.economist.com/node/21528275).
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To use information to optimize both exploration and coordination, one or
more of these assumptions must be lifted. For example, if the agents faced
a task environment with known maximum payoffs, they could simply use this
information to define a sensible stopping point (not necessarily the global
maximum). As our robustness results show, if the agents have very high
levels of initial knowledge about the search space, coordination concerns
outweigh exploration concerns, and this tradeoff can be managed. But this
‘‘explore, then coordinate’’ approach can be fairly time consuming, poten-
tially expensive (some experiments are costly to conduct), and perhaps
inconclusive (what is a very high level of knowledge in the real world, and
where did it come from?).

If agents had common knowledge about their knowledge partitions, they
perhaps could keep taking samples from the wider space to see if some distant
points were superior. Our results suggest that exploration with overlapping
knowledge partitions, but without common knowledge, leads only to mutual
confusion. But establishing such common knowledge in effect implies the lack
of specialization. One way to prevent this may be if the agents were to estab-
lish a principal–agent relationship or rules for sequential search (e.g., see Selten
and Warglien, 2007). We have not further examined this option because it
would dramatically increase the configuration space of the model. This is an
excellent avenue for future research.

A related question is whether hierarchy can simply solve these coordination
problems. We investigated the top-down condition, in which a superior directs
search by aligning mental models up front, which has only a limited impact on
improving performance because the hierarchy needs to be informed in advance
either of the location of the global peak or of the emergent knowledge (new
partitions) of both the specialists to coordinate effectively. The first condition
implies that search is largely unnecessary. The second puts extreme demands
on the coordination capacity of the organization; it is perhaps easier to inform
the other specialist directly than to inform the supervisor who then in turn
directs the search efforts. Hierarchy cannot simply solve problems of coordi-
nated exploration, for the simple reason that the specialist agents have much
more immediate knowledge than the supervisor, and this knowledge is difficult
to transmit. Hierarchy could potentially have a role in solving these problems
either by sequencing actions or by appointing agents with different skills at
different stages of the problem. Examining these options is a good avenue for
future research. We hope that our model and its conclusions will encourage
others to examine the role of hierarchy and further broaden our understanding
of the relationship between organization and joint search.
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