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Abstract

We consider an inventory distribution system consisting of one warehouse and multiple retailers. The
retailers face random demand and are supplied by the warehouse. The warehouse replenishes its
stock from an external supplier. The objective is to minimize the total expected replenishment,
holding and backlogging cost over a finite planning horizon. The problem can be formulated as a
dynamic program, but this dynamic program is difficult to solve due to its high dimensional state
variable. It has been observed in the earlier literature that if the warehouse is allowed to ship negative
quantities to the retailers, then the problem decomposes by the locations. One way to exploit this
observation is to relax the constraints that ensure the nonnegativity of the shipments to the retailers
by associating Lagrange multipliers with them, which naturally raises the question of how to choose
a good set of Lagrange multipliers. In this paper, we propose efficient methods that choose a good set
of Lagrange multipliers by solving linear programming approximations to the inventory distribution
problem. Computational experiments indicate that the inventory replenishment policies obtained by
our approach can outperform several standard benchmarks by significant margins.
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1 Introduction

Many systems that involve storage and distribution of inventory operate in stages. A central warehouse
distributing the inventory for the whole system may form the highest stage, several regional distribution
centers supplied by the central warehouse may lie in the middle and the lowest stage of the system may
be composed of a number of retailers that serve the end customer demand. Clearly, there are tradeoffs
when deciding how much inventory should be stored at different stages. On one hand, there are lead
times associated with shipping inventory from one stage to another and storing the inventory closer
to the lower stages allows responding to the retailers more quickly. On the other hand, storing the
inventory closer to the higher stages provides more flexibility. It may be difficult to ship inventory from
one retailer to another, but the inventory stored at a regional distribution center may be used to serve
the demand at a variety of retailers. Due to these tradeoffs, operating an inventory distribution system
requires careful planning with a view of the overall system.

In this paper, we consider an inventory distribution system consisting of a single warehouse and
multiple retailers. The retailers face random demand from the end customers and the unsatisfied demand
at the retailers is backlogged. The warehouse supplies the retailers and replenishes its inventory from
an external supplier. Inventory can be stocked both at the warehouse and at any of the retailers. We
want to find a policy for the warehouse to supply the retailers and replenish itself so as to minimize
the total expected cost over a finite planning horizon. We begin by formulating the problem as a
dynamic program, which is computationally difficult to solve due to the high dimensionality of the
state variable. However, this formulation allows us to observe that if the warehouse is allowed to ship
negative quantities to the retailers, then the problem decomposes by the locations and can be solved
by focusing on one location at a time. To exploit this observation, we relax the constraints that ensure
the nonnegativity of the shipments to the retailers by associating Lagrange multipliers with them. In
this case, we obtain an approximate solution to the dynamic programming formulation of the problem
by solving a sequence of smaller dynamic programs, each involving a scalar state variable keeping track
of the inventory position at one location.

The approach outlined above naturally brings up the question of what values to use for the Lagrange
multipliers. Indeed, one of our main goals in this paper is to develop methods for choosing a good set
of Lagrange multipliers in an efficient manner. The methods that we develop are based on linear
programming approximations to the inventory distribution problem. In these linear programs, there
are constraints that ensure the nonnegativity of the shipments to the retailers and we use the optimal
values of the dual variables associated with these constraints as our Lagrange multipliers. We use
two flavors of linear programming approximations. In the first flavor, we formulate a linear program
under the assumption that the demand random variables take on their expected values. This way of
choosing the Lagrange multipliers is quick to implement and solve, but it clearly ignores the inherent
uncertainty in the demand random variables. In our second flavor, we formulate a linear program
under the assumption that the realizations of the demand random variables are known a priori. The
difficulty in this case is that the optimal values of the dual variables depend on what realizations we
use for the demand random variables. We address this difficulty by solving the linear programming
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approximation for many demand realizations. Each realization provides a set of optimal values for the
dual variables and we use the average of the dual variables as our Lagrange multipliers. Since the set of
dual variables that we obtain depend on the distributions of the demand random variables, the second
method effectually uses the distribution information.

1.1 Positioning and Literature Review

Our work here draws on two lines of research. The first line of research is on inventory distribution
problems. There is a long line of work that is built on the observation that the dynamic programming
formulations of inventory distribution problems decompose when we relax the constraints that ensure
the nonnegativity of the shipments to the retailers. Clark and Scarf (1960) appear to be the first to
make this observation and Eppen and Schrage (1981) and Federgruen and Zipkin (1984b) revive this
observation two decades later. Gallego, Ozer and Zipkin (2007) give a recent and rigorous overview
of the literature revolving around this observation. One common point made in these papers is that
we obtain lower bounds on the value functions when we relax the nonnegativity requirement of the
shipments to the retailers and we can obtain high quality inventory replenishment policies by using
these lower bounds as approximations to the value functions. However, these papers either do not use
Lagrange multipliers of any kind to penalize the violations of the relaxed constraints or do not give
general purpose methods to compute Lagrange multipliers for any demand distribution.

Kunnumkal and Topaloglu (2008) build on the work described in the paragraph above by relaxing
the constraints that ensure the nonnegativity of the shipments to the retailers, but they use Lagrange
multipliers to explicitly penalize the violations of the relaxed constraints. Their contribution is to
give a general purpose method that chooses a good set of Lagrange multipliers by solving a convex
optimization problem. The computational experiments in Kunnumkal and Topaloglu (2008) indicate
that the quality of the lower bounds and the performance of the inventory replenishment policies can be
improved by associating Lagrange multipliers with the relaxed constraints. However, the unfortunate
aspect of the work in Kunnumkal and Topaloglu (2008) is that solving the aforementioned convex
optimization problem to find a good set of Lagrange multipliers is a computationally intensive and
complex process. Solving their convex optimization problem through subgradient optimization requires
calibrating the step size parameter and devising a stopping criterion, for which there are no hard
and fast rules. Furthermore, computing a subgradient of their objective function requires a large
amount of matrix algebra. The computational overhead associated with the large amount of matrix
algebra, combined with a large number of iterations required for subgradient optimization, results
in extensive computation times. Our interactions with supply chain practitioners indicate that the
approach proposed by Kunnumkal and Topaloglu (2008) is theoretically interesting, but may not be
practically attractive. In particular, extensive computation times may not only prevent dealing with
industrial size systems, but may also prevent doing quick what if analyses.

One of our goals is to address the shortcomings of Kunnumkal and Topaloglu (2008). We propose
efficient methods to obtain a good set of Lagrange multipliers. Our methods require solving linear
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programs and can easily be implemented by using commercial linear programming software. It turns out
that the methods that we propose can provide computation time improvements by about a factor of ten
when compared with the work of Kunnumkal and Topaloglu (2008). However, our work is not limited to
addressing the computational difficulties of Kunnumkal and Topaloglu (2008). We show that our linear
programming approximations provide lower bounds on the optimal total expected cost. Furthermore,
our computational experiments indicate the total expected costs incurred by our approach can be better
than those incurred by Kunnumkal and Topaloglu (2008) by up to 7.62%. Therefore, our approach can
provide improvements over Kunnumkal and Topaloglu (2008) in terms of both shorter computation
times and better total expected costs.

The second line of research that we draw on is related to network revenue management. In the
network revenue management literature, it is customary to formulate deterministic approximations by
assuming that the demand random variables take on their expected values. This approach results
in a linear program that is easy to solve and one can use the dual variables associated with the seat
availability constraints to estimate the opportunity cost of a seat on a flight. Talluri and van Ryzin (2005)
give a comprehensive overview of the literature revolving around this idea. Our linear programming
approximations that work with expected values of the demand random variables are motivated by
this literature. On the other hand, observing that a deterministic linear program does not capture
the stochastic aspects of network revenue management problems, Talluri and van Ryzin (1999) use a
randomized linear program that uses realizations of the demand random variables instead of the expected
values. The authors solve the randomized linear program for many demand realizations and estimate
the opportunity cost of a seat on a flight by averaging the optimal values of the dual variables obtained
from different demand realizations. Our linear programming approximations that work with multiple
samples of the demand random variables are motivated by the randomized linear programming approach
of Talluri and van Ryzin (1999). To our knowledge, ours is the first application of the randomized linear
programming idea outside network revenue management.

There is substantial literature on inventory distribution systems. In their seminal paper, Clark
and Scarf (1960) initiate the study of inventory distribution problems. They point out that the optimal
policy can be quite complex and proceed to developing an approximation method. Their approximation
method hinges on the balance assumption, which is regarded as one of the pillars of the inventory control
literature. In particular, the balance assumption amounts to assuming that it would never be desirable
to redistribute the total amount of inventory available at the retailers even if it were allowed to do
so. Clark and Scarf (1960) show that the optimal inventory replenishment policy under the balance
assumption can be obtained in a tractable manner by focusing on one installation at a time, rather
than the whole system. Federgruen and Zipkin (1984b) propose relaxing the constraints that ensure
the nonnegativity of the shipments to the retailers. Under this relaxation, it is also possible to show
that the optimal inventory replenishment policy can be obtained by focusing on one installation at a
time. Furthermore, both the balance assumption of Clark and Scarf (1960) and the relaxation strategy
of Federgruen and Zipkin (1984b) provide lower bounds on the value functions and these lower bounds
can be useful to assess the optimality gap of any suboptimal policy. The papers by Federgruen and
Zipkin (1984a) and Federgruen and Zipkin (1984c) follow up on the idea of relaxing the constraints
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that ensure the nonnegativity of the shipments to the retailers and consider a variety of assumptions,
including the finiteness of the planning horizon and the ability to hold stock at the warehouse.

The balance assumption has been employed and tested by many researchers. Eppen and Schrage
(1981) use the balance assumption for a distribution system with a stockless warehouse and normally
distributed end customer demands. Jackson (1988) extends this work to allow storing inventory at
the warehouse. Axsater (2003) reviews the literature related to the balance assumption. Aviv and
Federgruen (2001) consider a stockless warehouses with unknown demand distributions that need to be
learned through observations. Gallego and Ozer (2003) and Ozer (2003) incorporate advance demand
information into inventory systems with multiple echelons. Dogru (2005) and Dogru, de Kok and van
Houtum (2005) provide extensive computational experiments that test the inventory replenishment
policies obtained under the balance assumption. Federgruen (1993) gives a unified overview of the
settings in which the relaxation strategy can be employed. Gallego et al. (2007) test the performances
of different approximation strategies for inventory distribution systems, including the relaxation strategy
of Federgruen and Zipkin (1984b). That paper also emphasizes the importance of computational
tractability and performance speedup from the perspective of practical implementation.

1.2 Summary of Contributions and Organization of the Paper

In this paper, we make the following research contributions. 1) We develop tractable methods to make
the replenishment decisions in inventory distribution systems. We exploit the dynamic programming
formulation of the problem and use Lagrange multipliers to relax the constraints that ensure the
nonnegativity of the shipments to the retailers. We develop new methods that choose a good set of
Lagrange multipliers by solving linear programming approximations. Our methods are more tractable
than the subgradient optimization idea used by Kunnumkal and Topaloglu (2008). Tractability is
particularly crucial considering that the computational experiments in Kunnumkal and Topaloglu (2008)
demonstrate that their relaxation strategy can provide significant improvements over several standard
benchmarks, but the computation times are not short enough to allow what if analyses. 2) We prove
that the methods that we develop provide lower bounds on the value functions. 3) Computational
experiments on 483 test problems indicate that the inventory replenishment policies obtained by our
methods can be significantly better than those obtained by standard benchmarks. We use the balance
assumption of Clark and Scarf (1960) and the relaxation strategies of Federgruen and Zipkin (1984b)
and Kunnumkal and Topaloglu (2008) as benchmarks and report significant improvements.

The rest of the paper is organized as follows. In Section 2, we formulate the inventory distribution
problem as a dynamic program. In Section 3, we briefly review the Lagrangian relaxation strategy of
Kunnumkal and Topaloglu (2008) and explain the portions of their results that are crucial to our work. In
Section 4, we develop new methods that can be used to obtain a good set of Lagrange multipliers and
show that these methods provide lower bounds on the value functions. In Section 5, we describe how
we can apply the inventory replenishment policies obtained by our approach. In Section 6, we present
our computational experiments. In Section 7, we conclude.
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2 Problem Formulation

Our problem formulation is standard and it is similar to the ones in Federgruen (1993) and Kunnumkal
and Topaloglu (2008). We consider an inventory distribution system with a single warehouse supplying
multiple retailers. We use φ to denote the warehouse and I to denote the set of retailers. Throughout
the paper, we use the term installation whenever we need to refer to the warehouse or a retailer without
making a distinction. The problem takes place over the finite planning horizon T =

{
1, . . . , τ

}
. The

demand at retailer i at time period t is given by the random variable dit. We let dφt =
∑

i∈I dit so that
we can also speak of the demand at the warehouse at time period t.

For notational clarity, we assume that the lead times for all replenishments are zero. In particular,
the replenishment order shipped to a certain installation at a certain time period reaches its destination
at the same time period. This assumption is only for notational brevity and all of our development in
the paper extends in a straightforward and tractable manner to cover the case where the lead times
are nonzero. The computational experiments that we present in Section 6 are indeed carried out under
the assumption that the lead times are nonzero. Assuming that the lead times for all replenishments
are zero, the following sequence of events take place at a particular time period. 1) The warehouse
places its replenishment order to the external supplier. 2) Considering the inventory positions at the
warehouse and at the retailers, the warehouse ships the replenishment orders to the retailers. 3) The
warehouse receives its replenishment order from the external supplier and the retailers receive their
replenishment orders from the warehouse. 4) The demand at the retailers is observed. The excess
demand is backlogged by incurring a backlogging cost. The warehouse and the retailers incur holding
costs for the inventory that they carry to the next time period.

We use xit to denote the echelon inventory position at installation i at the beginning of time period
t. For retailer i, the echelon inventory position is the difference between the inventory on hand and
backlogs at this retailer. For the warehouse, the echelon inventory position is the inventory on hand
at the warehouse, plus the inventory on hand at all of the retailers, minus the backlogs at all of the
retailers. Noting that the echelon inventory position at the warehouse contains the inventory on hand
and backlogs at all of the retailers, the warehouse has xφt −

∑
i∈I xit units of inventory on hand at

the beginning of time period t. On the other hand, we use yit to denote the echelon inventory position
at installation i after receiving the replenishment quantity at time period t. Therefore, the difference
yit − xit gives the replenishment quantity shipped to installation i at time period t. Since the retailers
receive their replenishment orders before the demand at the retailers is observed, retailer i has yit units
of inventory to serve the demand at time period t. We refer the reader to Clark and Scarf (1960) and
Federgruen (1993) for further details of the echelon inventory concept.

We let hit be the per unit holding cost at installation i at time period t and bit be the per unit
backlogging cost at retailer i at time period t. The expected holding and backlogging cost incurred by
the whole inventory distribution system at time period t can be written as

hφt

[
xφt −

∑

i∈I
xit + (yφt − xφt)−

∑

i∈I
(yit − xit)

]
+

∑

i∈I
hit E

{[
yit − dit

]+}
+

∑

i∈I
bit E

{[
dit − yit

]+}
,
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where we use [·]+ = max{·, 0}. We compute the expected holding cost at the warehouse by noting that
xφt−

∑
i∈I xit gives the inventory on hand at the warehouse at the beginning of time period t, yφt−xφt

gives the replenishment quantity shipped to the warehouse at time period t and
∑

i∈I(yit − xit) gives
the total replenishment quantity shipped out of the warehouse at time period t. Since the warehouse
does not face the customer demand, there is no backlogging cost associated with the warehouse. If we
let Lφt(yφt) = hφt yφt and

Lit(yit) = −hφt yit + hit E
{[

yit − dit

]+}
+ bit E

{[
dit − yit

]+}
,

then we can succinctly write the expected holding and backlogging cost incurred by the whole inventory
distribution system at time period t as

∑
i∈I∪{φ} Lit(yit). This is a standard way of accounting for the

expected holding and backlogging cost in inventory distribution systems.

Since the warehouse has xφt−
∑

i∈I xit units of inventory on hand at the beginning of time period
t and we ship a total of

∑
i∈I(yit − xit) units of inventory out of the warehouse at this time period,

the replenishment quantities satisfy the constraint
∑

i∈I(yit − xit) ≤ xφt −
∑

i∈I xit, which can be
written as

∑
i∈I yit ≤ xφt. On the other hand, since yit − xit is the replenishment quantity shipped to

installation i at time period t, the nonnegativity of the replenishment quantities impose the constraint
yit − xit ≥ 0 for all i ∈ I ∪ {φ}. Using xt =

{
xit : i ∈ I ∪ {φ}} as the state variable at time period t,

yt =
{
yit : i ∈ I ∪ {φ}} as the decision variable at time period t and dt =

{
dit : i ∈ I ∪ {φ}} to denote

the vector of demand random variables at time period t, the optimal inventory replenishment policy
that minimizes the total expected cost over the planning horizon can be found by computing the value
functions

{
Vt(·) : t ∈ T }

through the optimality equation

Vt(xt) = min
∑

i∈I∪{φ}
cit

[
yit − xit

]
+

∑

i∈I∪{φ}
Lit(yit) + E

{
Vt+1(yt − dt)

}
(1)

subject to
∑

i∈I
yit ≤ xφt (2)

yit ≥ xit i ∈ I ∪ {φ}. (3)

Noting that the echelon inventory position at the warehouse contains the inventory on hand and backlogs
at all of the retailers, the echelon inventory position at the warehouse at the beginning of time period
t + 1 is computed as yφt − dφt. Therefore, the term yt − dt in the argument of the value function
on the right side of the optimality equation above corresponds to the echelon inventory positions at
the different installations. Constraints (2) impose the inventory availability at the warehouse, whereas
constraints (3) ensure the nonnegativity of the replenishment quantities.

Due to the large number of dimensions of the state variable, it is computationally difficult to solve
the optimality equation in (1)-(3) through standard dynamic programming methods. Kunnumkal and
Topaloglu (2008) relax the constraints yit ≥ xit for all i ∈ I in problem (1)-(3) by associating Lagrange
multipliers with them. In this case, the optimality equation in (1)-(3) decomposes by the installations
and it can be solved by focusing on one installation at a time. In the next section, we briefly review
this idea. After this, we develop new methods to choose a good set of Lagrange multipliers.
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3 Lagrangian Relaxation Strategy

Associating the nonnegative Lagrange multipliers λ =
{
λit : i ∈ I, t ∈ T }

with the constraints yit ≥ xit

for all i ∈ I in problem (1)-(3), we propose solving the optimality equation

V λ
t (xt) = min cφt

[
yφt − xφt

]
+ Lφt(yφt) +

∑

i∈I

[
cit − λit

][
yit − xit

]
+

∑

i∈I
Lit(yit)

+ E
{
V λ

t+1(yt − dt )
}

(4)

subject to
∑

i∈I
yit ≤ xφt (5)

yφt ≥ xφt, (6)

where the superscript λ in the value functions emphasizes that the solution to the optimality equation
above depends on the Lagrange multipliers. Since yit − xit is the replenishment quantity of installation
i at time period t, relaxing the constraints yit ≥ xit for all i ∈ I is equivalent to relaxing the constraints
that ensure the nonnegativity of the shipments to the retailers.

Earlier work by Kunnumkal and Topaloglu (2008) gives two results that are useful for our work in
this paper. First, the optimality equation in (4)-(6) decomposes by the installations and it can be solved
by focusing on one installation at a time. Second, the value functions

{
V λ

t (·) : t ∈ T }
computed through

the optimality equation in (4)-(6) provide lower bounds on the value functions
{
Vt(·) : t ∈ T }

computed
through the optimality equation in (1)-(3). In this case, we can choose the Lagrange multipliers to make
the lower bounds provided by

{
V λ

t (·) : t ∈ T }
as tight as possible. In the remainder of this section, we

give short descriptions of these two results.

As Proposition 1 in Kunnumkal and Topaloglu (2008) indicates, it is possible to use an induction
argument over the time periods to show that the optimality equation in (4)-(6) decomposes by the
installations. In particular, the value functions computed under the Lagrangian relaxation strategy are
separable functions of the form

V λ
t (xt) =

∑

i∈I∪{φ}
vλ
it(xit), (7)

where the value functions
{
vλ
it(·) : i ∈ I ∪ {φ}, t ∈ T }

can be computed by solving dynamic programs
with scalar state variables. In the expression above, the value functions

{
vλ
it(·) : t ∈ T }

for retailer i

are computed by solving the optimality equation

vλ
it(xit) = min

yit

{[
cit − λit

][
yit − xit

]
+ Lit(yit) + E

{
vλ
i,t+1(yit − dit)

}}
. (8)

This optimality equation computes the optimal inventory replenishment policy for retailer i under the
assumption that the warehouse has infinite supply, the replenishment quantities of retailer i can be
negative and the per unit replenishment cost at retailer i at time period t is deflated by λit. On the
other hand, noting that the optimal solution to problem (8) does not depend on xit and letting r̂λ

it be the
optimal solution to this problem, the value functions

{
vλ
φt(·) : t ∈ T }

for the warehouse are computed
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by solving the optimality equation

vλ
φt(xφt) = min

yφt≥xφt

{
cφt

[
yφt − xφt

]
+ Lφt(yφt) + E

{
vλ
φ,t+1(yφt − dφt)

}}
+ ∆λ

t (xφt), (9)

where the functions
{
∆λ

t (·) : t ∈ T }
are given by

∆λ
t (xφt) = min

∑

i∈I

[
cit − λit

][
yit − r̂λ

it

]
+

∑

i∈I
Lit(yit) +

∑

i∈I
E

{
vλ
i,t+1(yit − dit)

}

−
∑

i∈I
Lit(r̂λ

it)−
∑

i∈I
E

{
vλ
i,t+1(r̂

λ
it − dit)

}
(10)

subject to
∑

i∈I
yit ≤ xφt. (11)

The optimality equation in (9) computes the optimal inventory replenishment policy for the warehouse
under the assumption that the expected holding and backlogging cost at the warehouse at time period
t is inflated by the function ∆λ

t (·). Without the function ∆λ
t (·), the optimality equation in (9) would

compute the optimal policy for the warehouse with no regard to the retailers. It is possible to show
that ∆λ

t (xφt) is a convex function of xφt and gets larger as xφt gets smaller. Therefore, the role of
the function ∆λ

t (·) is to penalize small echelon inventory levels at the warehouse. Similar functions
appear in papers such as Clark and Scarf (1960), Chen and Song (2001) and Gallego and Ozer (2003)
that analyze inventory problems with multiple echelons. Gallego and Ozer (2003) use the term implicit
penalty function to refer to functions that play the role of ∆λ

t (·). Similar to {vλ
it(·) : i ∈ I, t ∈ T },

the value functions that Gallego et al. (2007) compute for the retailers are based on an infinite supply
assumption at the warehouse.

The significance of the optimality equations in (8) and (9) is that we can compute the value
functions

{
V λ

t (·) : t ∈ T }
by first computing the value functions

{
vλ
it(·) : i ∈ I, t ∈ T }

through the
optimality equation in (8). This allows computing

{
∆λ

t (·) : t ∈ T }
by solving problem (10)-(11). As

a last step, we can compute the value functions
{
vλ
φt(·) : t ∈ T }

through the optimality equation in
(9). In this case, we can obtain

{
V λ

t (·) : t ∈ T }
by noting (7). The fact that the optimality equation in

(4)-(6) decomposes by the installations has close ties with the earlier literature. Federgruen and Zipkin
(1984b) and Federgruen and Zipkin (1984c) show a similar decomposition result when one does not use
Lagrange multipliers to penalize the violations of relaxed constraints. Ozer (2003) uses a Lagrangian
relaxation strategy to compute optimal base stock levels after restricting attention to the class of policies
that order up to a fixed level. Aviv and Federgruen (2001) propose a decomposition strategy that is
applicable when no inventory is held at the warehouse, but they do not use Lagrange multipliers.

As Proposition 3 in Kunnumkal and Topaloglu (2008) indicates, it is possible to show that if
the Lagrange multipliers are nonnegative, then the value functions computed through the optimality
equation in (4)-(6) are lower bounds on the value functions computed through the optimality equation
in (1)-(3). In other words, we have V λ

t (xt) ≤ Vt(xt) for all t ∈ T whenever λ ≥ 0. As a function of the
initial echelon inventory positions x1, the optimal total expected cost over the planning horizon is given
by V1(x1). Since V1(x1) is bounded from below by V λ

1 (x1), we can solve the problem

max
λ≥0

{
V λ

1 (x1)
}

(12)
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to obtain the tightest possible lower bound on V1(x1). Letting λ∗ be the optimal solution to problem
(12), Kunnumkal and Topaloglu (2008) choose their Lagrange multipliers as λ∗. In practice, however,
solving problem (12) requires using subgradient optimization, which is computationally intensive and
dependent on calibrating a step size parameter. To remedy these shortcomings, in the next section, we
propose new methods that use linear programs to choose the Lagrange multipliers.

4 Choosing the Lagrange Multipliers

In this section, we describe new methods that can be used to choose a good set of Lagrange multipliers
in the Lagrangian relaxation strategy. These methods are based on solving linear programs and one
should view them as computationally appealing alternatives to solving problem (12). If we use d =
{dit : i ∈ I ∪ {φ}, t ∈ T } to denote the demand random variables over the whole planning horizon,
then we can approximate the total cost incurred by the optimal policy under the demand realization d

by using the optimal objective value of the problem

min
∑

t∈T

∑

i∈I∪{φ}
cit

[
yit − xit

]
+

∑

t∈T

∑

i∈I∪{φ}
Lit(yit) (13)

subject to
∑

i∈I
yit − xφt ≤ 0 t ∈ T (14)

yit − xit ≥ 0 i ∈ I ∪ {φ}, t ∈ T (15)

yit − xi,t+1 = dit i ∈ I ∪ {φ}, t ∈ T \ {τ} (16)

with the understanding that the values of the decision variables
{
xi1 : i ∈ I ∪ {φ}} are fixed by

the initial echelon inventory positions. In the problem above, the decision variable xit is the echelon
inventory position at installation i at the beginning of time period t, whereas the decision variable yit

is the echelon inventory position at installation i after receiving the replenishment order at time period
t. Since d is a random variable, the optimal objective value of problem (13)-(16) is a random variable as
well. Constraints (14) are similar to constraints (2) and they ensure that the total replenishment order
of the retailers does not exceed the inventory on hand at the warehouse. Constraints (15) are similar
to constraints (3) and they ensure the nonnegativity of the shipments to the installations. Constraints
(16) compute the echelon inventory positions at the next time period. We note that the computation
of

{
Lit(·) : i ∈ I, t ∈ T }

in the objective function of problem (13)-(16) uses the distributions of
the demand random variables. It is possible to replace Lit(yit) in problem (13)-(16) with −hφt

[
yit

]
+

hit

[
yit − dit

]+ + bit

[
dit − yit

]+, which only uses the demand sample d without taking expectations, but
this does not make problem (13)-(16) much easier to solve. Finally, if the demand random variables
take on discrete values, then

{
Lit(·) : i ∈ I, t ∈ T }

are piecewise linear convex functions and problem
(13)-(16) can be solved as a linear program.

One important feature of problem (13)-(16) is that it can be used to obtain lower bounds on the
optimal total expected cost. In particular, we let z∗LP (d) be the optimal objective value of problem (13)-
(16) as a function of the demand realizations d on the right side of constraints (16). In this case, the next
proposition shows that both E

{
z∗LP (d)

}
and z∗LP (E

{
d
}
) provide lower bounds on V1(x1) and the lower

10



bound provided by E
{
z∗LP (d)

}
is tighter than the one provided by z∗LP (E

{
d
}
). The lower bound provided

by z∗LP (E
{
d
}
) is relatively simple to compute since it requires replacing the right side of constraints

(16) with the expected values of the demand random variables and solving problem (13)-(16) once. In
contrast, the lower bound provided by E

{
z∗LP (d)

}
requires solving problem (13)-(16) for every possible

realization of the demand random variables d, storing z∗LP (d) and computing the expectation E
{
z∗LP (d)

}
.

Naturally, solving problem (13)-(16) for every possible realization of the demand random variables is not
tractable in general, but we can solve problem (13)-(16) for N sampled demand realizations d1, d2, . . . , dN

and use the sample average 1
N

∑N
n=1 z∗LP (dn) to estimate the expectation E

{
z∗LP (d)

}
.

Proposition 1 We have that z∗LP (E
{
d
}
) ≤ E{

z∗LP (d)
} ≤ V1(x1).

Proof By duality theory, z∗LP (d) is a convex function of d so that we obtain z∗LP (E
{
d
}
) ≤ E{

z∗LP (d)
}

by Jensen’s inequality. To show the second inequality, we let π∗ be the optimal policy characterized by
the solution to the optimality equation in (1)-(3). Given that the realizations of the demand random
variables are d, we let x∗(d) =

{
x∗it(d) : i ∈ I ∪ {φ}, t ∈ T }

be the sequence of states visited by policy
π∗ and y∗(d) =

{
y∗it(d) : i ∈ I ∪ {φ}, t ∈ T }

be the sequence of actions taken by policy π∗. Naturally,
both x∗(d) and y∗(d) are random processes. In this case, noting the cost components in the optimality
equation in (1)-(3), the total expected cost incurred by policy π∗ over the planning horizon is

∑

t∈T

∑

i∈I∪{φ}
cit E

{
y∗it(d)− x∗it(d)

}
+

∑

t∈T

∑

i∈I∪{φ}
E

{
Lit(y∗it(d))

}
. (17)

Since π∗ is the optimal policy and the total expected cost incurred by the optimal policy over the
planning horizon is given by V1(x1), the expression in (17) is equal to V1(x1).

Noting that the sequences of states visited and actions taken by policy π∗ satisfy the inventory
dynamics and constraints (2) and (3), we have x∗i,t+1(d) = y∗it(d)− dit for all i ∈ I ∪ {φ}, t ∈ T \ {τ},∑

i∈I y∗it(d) ≤ x∗φt(d) for all t ∈ T and y∗it(d) ≥ x∗it(d) for all i ∈ I ∪ {φ}, t ∈ T . Therefore, x∗(d) ={
x∗it(d) : i ∈ I∪{φ}, t ∈ T }

and y∗(d) =
{
y∗it(d) : i ∈ I∪{φ}, t ∈ T }

form a feasible but not necessarily
an optimal solution to problem (13)-(16), which implies that

z∗LP (d) ≤
∑

t∈T

∑

i∈I∪{φ}
cit

[
y∗it(d)− x∗it(d)

]
+

∑

t∈T

∑

i∈I∪{φ}
Lit(y∗it(d)).

In this case, the second inequality in the statement of the proposition follows by taking expectations in
the expression above and noting that the expression in (17) is equal to V1(x1). 2

Another important feature of problem (13)-(16) is that it can be used to choose the Lagrange
multipliers in our Lagrangian relaxation strategy. As a function of the demand realizations d, we let
λ∗(d) =

{
λ∗it(d) : i ∈ I, t ∈ T }

be the optimal values of the dual variables associated with the constraints
yit − xit ≥ 0 for all i ∈ I, t ∈ T in problem (13)-(16). Since these constraints are analogous to the
constraints yit − xit ≥ 0 for all i ∈ I, t ∈ T in the optimality equation in (1)-(3), we can build on the
dual variables

{
λ∗it(d) : i ∈ I, t ∈ T }

to choose the Lagrange multipliers. One idea is to solve problem

11



(13)-(16) after replacing the right side of constraints (16) with the expected values of the demand
random variables to obtain the Lagrange multipliers λ∗(E

{
d
}
) =

{
λ∗it(E

{
d
}
) : i ∈ I, t ∈ T }

. This
approach requires solving problem (13)-(16) only once. Another idea is to solve problem (13)-(16) for
every possible realization of the demand random variables d, store λ∗(d) and compute the expectation
E

{
λ∗(d)

}
=

{
E

{
λ∗it(d)

}
: i ∈ I, t ∈ T }

. Similar to E
{
z∗LP (d)

}
, solving problem (13)-(16) for every

possible realization of the demand random variables is not tractable in general, but we can approximate
the expectation E

{
λ∗(d)

}
by the sample average 1

N

∑N
n=1 λ∗(dn), where d1, d2, . . . , dN are N sampled

demand realizations. The next proposition shows that if we choose the Lagrange multipliers as λ∗(E
{
d
}
)

or E
{
λ∗(d)} and compute V

λ∗(E{d})
1 (x1) or V

E{λ∗(d)}
1 (x1) by solving the optimality equation in (4)-(6),

then we obtain lower bounds on the optimal total expected cost. Furthermore, the lower bound provided
by V

λ∗(E{d})
1 (x1) is at least as tight as the one provided by z∗LP (E

{
d
}
).

Proposition 2 We have that V
λ∗(E{d})
1 (x1) ≤ V1(x1) and V

E{λ∗(d)}
1 (x1) ≤ V1(x1). Furthermore, the

lower bound provided by V
λ∗(E{d})
1 (x1) is at least as tight as the one provided by z∗LP (E

{
d
}
) in the sense

that z∗LP (E
{
d}) ≤ V

λ∗(E{d})
1 (x1).

Proof By dual feasibility to problem (13)-(16), we have λ∗(d) ≥ 0 for any demand realization d. Thus,
we have λ∗(E

{
d
}
) ≥ 0 and E

{
λ∗(d)

} ≥ 0. On the other hand, Kunnumkal and Topaloglu (2008) show
that maxλ≥0 V λ

1 (x1) ≤ V1(x1). Therefore, the first two inequalities in the proposition follow from the
fact that V

λ∗(E{d})
1 (x1) ≤ maxλ≥0 V λ

1 (x1) ≤ V1(x1) and V
E{λ∗(d)}
1 (x1) ≤ maxλ≥0 V λ

1 (x1) ≤ V1(x1).

To show the third inequality in the proposition, we let d̄ = E
{
d
}

and λ̄∗ = λ∗(d̄) for notational
brevity. Thus, if we solve problem (13)-(16) after replacing the right side of constraints (16) with
d̄ =

{
d̄it : i ∈ I ∪ {φ}, t ∈ T }

, then the optimal objective value of the problem is z∗LP (d̄) and the
optimal values of the dual variables associated with constraints yit − xit ≥ 0 for all i ∈ I, t ∈ T are
λ̄∗ =

{
λ̄∗it : i ∈ I, t ∈ T }

. In this case, by duality theory, the optimal objective value of the problem

min
∑

t∈T
cφt

[
yφt − xφt

]
+

∑

t∈T
Lφt(yφt) +

∑

t∈T

∑

i∈I

[
cit − λ̄∗it

][
yit − xit

]
+

∑

t∈T

∑

i∈I
Lit(yit) (18)

subject to
∑

i∈I
yit − xφt ≤ 0 t ∈ T (19)

yφt − xφt ≥ 0 t ∈ T (20)

yit − xi,t+1 = d̄it i ∈ I ∪ {φ}, t ∈ T \ {τ} (21)

is equal to z∗LP (d̄). We now proceed to consider the optimality equation in (4)-(6) with the Lagrange
multipliers λ̄∗. We let πλ̄∗ be the policy characterized by the solution to this optimality equation,
xλ̄∗ =

{
xλ̄∗

it : i ∈ I ∪ {φ}, t ∈ T }
be the sequence of states visited by policy πλ̄∗ and yλ̄∗ =

{
yλ̄∗

it :
i ∈ I ∪ {φ}, t ∈ T }

be the sequence of actions taken by policy πλ̄∗ . Clearly, both xλ̄∗ and yλ̄∗ are
random processes. In this case, noting the cost components in the optimality equation in (4)-(6), the
total expected cost incurred by policy πλ̄∗ over the planning horizon can be written as
∑

t∈T
cφt E

{
yλ̄∗

φt
− xλ̄∗

φt

}
+

∑

t∈T
E

{
Lφt(yλ̄∗

φt )
}

+
∑

t∈T

∑

i∈I

[
cit − λ∗it

]
E

{
yλ̄∗

it − xλ̄∗
it

}
+

∑

t∈T

∑

i∈I
E

{
Lit(yλ̄∗

it )
}
. (22)
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On the other hand, since V λ̄∗
1 (x1) corresponds to the optimal total expected cost over the planning

horizon in the optimality equation in (4)-(6), the total expected cost incurred by policy πλ̄∗ over the
planning horizon is also equal to V λ̄∗

1 (x1). Therefore, the expression in (22) is equal to V λ̄∗
1 (x1).

Since the sequences of states visited and actions taken by policy πλ̄∗ satisfy the inventory dynamics
and constraints (5) and (6), we have xλ̄∗

i,t+1 = yλ̄∗
it − dit for all i ∈ I ∪ {φ}, t ∈ T \ {τ}, ∑

i∈I yλ̄∗
it ≤ xλ̄∗

φt

for all t ∈ T and yλ̄∗
φt ≥ xλ̄∗

φt for all t ∈ T with probability 1. In this case, letting x̄it = E
{
xλ̄∗

it

}
and

ȳit = E
{
yλ̄∗

it

}
, we observe that

{
x̄it : i ∈ I ∪ {φ}, t ∈ T }

and
{
ȳit : i ∈ I ∪ {φ}, t ∈ T }

form a feasible
solution to problem (18)-(21) and we obtain

z∗LP (d̄) ≤
∑

t∈T
cφt

[
ȳφt − x̄φt

]
+

∑

t∈T
Lφt(ȳφt) +

∑

t∈T

∑

i∈I

[
cit − λ∗it

][
ȳit − x̄it

]
+

∑

t∈T

∑

i∈I
Lit(ȳit)

≤
∑

t∈T
cφt

[
ȳφt − x̄φt

]
+

∑

t∈T
E

{
Lφt(yλ̄∗

φt )
}

+
∑

t∈T

∑

i∈I

[
cit − λ∗it

][
ȳit − x̄it

]
+

∑

t∈T

∑

i∈I
E

{
Lit(yλ̄∗

it )
}
.

The first inequality follows by the fact that the optimal objective value of problem (18)-(21) is equal
to z∗LP (d̄), and

{
x̄it : i ∈ I ∪ {φ}, t ∈ T }

and
{
ȳit : i ∈ I ∪ {φ}, t ∈ T }

form a feasible but not
necessarily an optimal solution to problem (18)-(21). The second inequality follows by the fact that
Lit(E

{
yλ̄∗

it

}
) ≤ E{

Lit(yλ̄∗
it )

}
by Jensen’s inequality. The result follows by noting that the last expression

in the chain of inequalities above is the same as (22), which is, in turn, equal to V λ̄∗
1 (x1). 2

5 Applying the Greedy Policies

In this section, we describe the inventory replenishment policies that we obtain by using the value
functions

{
V λ

t (·) : t ∈ T }
computed through the optimality equation in (4)-(6) as approximations to

the value functions
{
Vt(·) : t ∈ T }

computed through the optimality equation in (1)-(3). We begin by
noting that whether we choose the Lagrange multipliers by solving problem (12) as in Kunnumkal and
Topaloglu (2008) or by solving problem (13)-(16) as in this paper, the value functions computed through
the optimality equation in (4)-(6) are separable functions of the form V λ

t (xt) =
∑

i∈I∪{φ} vλ
it(xit).

Furthermore, it can be shown that
{
vλ
it(·) : i ∈ I ∪ {φ}, t ∈ T }

are convex function.

To make the inventory replenishment decisions, we replace
{
Vt(·) : t ∈ T }

in the right side of the
objective function of problem (1)-(3) with

{
V λ

t (·) : t ∈ T }
and solve this problem. In this case, since{

V λ
t (·) : t ∈ T }

are separable by the installations, problem (1)-(3) decomposes into two subproblems,
one for the retailers and one for the warehouse. The subproblem for the retailers has the form

min
∑

i∈I
cit

[
yit − xit

]
+

∑

i∈I
Lit(yit) +

∑

i∈I
E

{
vλ
i,t+1(yit − dit)

}
(23)

subject to
∑

i∈I
yit ≤ xφt (24)

yit ≥ xit i ∈ I, (25)

whereas the subproblem for the warehouse has the form

min
yφt≥xφt

{
cφt

[
yφt − xφt

]
+ Lφt(yφt) + E

{
vλ
φ,t+1(yφt − dφt)

}}
. (26)
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Problem (23)-(25) computes the replenishment orders of all of the retailers while ensuring that the
total replenishment order of the retailers does not violate the availability at the warehouse and the
replenishment order of each retailer is nonnegative. Problem (26) computes the replenishment order
of the warehouse while ensuring the nonnegativity of the replenishment order. If the demand random
variables take on discrete values, then it is possible to show that both

{
Lit(·) : i ∈ I ∪ {φ}, t ∈ T }

and{
vλ
it(·) : i ∈ I ∪{φ}, t ∈ T }

are piecewise linear convex functions, in which case problems (23)-(25) and
(26) can be solved as linear programs.

The idea of constructing a policy by replacing the value function in the optimality equation with
an approximation is frequently used in the literature. Bertsekas (2001) refers to the resulting policy as
the greedy policy with respect to the value function approximation. Federgruen and Zipkin (1984b) and
Gallego et al. (2007) use greedy approaches similar to ours in inventory distribution problems, but the
computation of their value function approximations does not use Lagrange multipliers.

6 Computational Experiments

In this section, we compare the performances of the inventory replenishment policies obtained by our
approach with those obtained by various benchmark methods.

6.1 Benchmark Methods

We use the following five benchmark methods in our computational experiments.

Lagrangian relaxation with deterministic linear program (DL) This is the solution method described in
Section 4 and it is based on the idea that solves problem (13)-(16) only once. We solve problem (13)-
(16) after replacing the right side of constraints (16) with the expected values of the demand random
variables and let λ̄∗ =

{
λ̄∗it : i ∈ I, t ∈ T }

be the optimal values of the dual variables associated
with the constraints yit ≥ xit for all i ∈ I, t ∈ T . We compute

{
vλ̄∗
it (·) : i ∈ I ∪ {φ}, t ∈ T }

by
solving the optimality equations in (8) and (9) with the Lagrange multipliers λ̄∗. In this case, DL
makes the inventory replenishment decisions by solving problems (23)-(25) and (26) after replacing{
vλ
it(·) : i ∈ I ∪ {φ}, t ∈ T }

with
{
vλ̄∗
it (·) : i ∈ I ∪ {φ}, t ∈ T }

.

Lagrangian relaxation with randomized linear program (RL) This is the solution method described in
Section 4 and it is based on the idea that solves problem (13)-(16) with multiple demand realizations. We
solve problem (13)-(16) for N demand realizations and let λ∗(dn) =

{
λ∗it(d

n) : i ∈ I, t ∈ T }
be the

optimal values of the dual variables associated with the constraints yit ≥ xit for all i ∈ I, t ∈ T when we
use the demand realization dn. Letting λ̄it = 1

N

∑N
n=1 λ∗it(d

n) and λ̄ =
{
λ̄it : i ∈ I, t ∈ T }

, we compute{
vλ̄
it(·) : i ∈ I ∪ {φ}, t ∈ T }

by solving the optimality equations in (8) and (9) with the Lagrange
multipliers λ̄. In this case, RL makes the inventory replenishment decisions by solving problems (23)-
(25) and (26) after replacing

{
vλ
it(·) : i ∈ I ∪ {φ}, t ∈ T }

with
{
vλ̄
it(·) : i ∈ I ∪ {φ}, t ∈ T }

. We use
N = 25 in all of our computational experiments.
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Lagrangian relaxation with subgradient optimization (SG) This is the solution method described in
Kunnumkal and Topaloglu (2008). Except that it chooses the Lagrange multipliers by solving problem
(12), the implementation of SG is the same as that of DL and RL. When solving problem (12) through
subgradient optimization, we use the step size parameter 20/

√
k at iteration k and stop after 1,000

iterations. This is the same step size and stopping rule used in Kunnumkal and Topaloglu (2008).

Balance assumption of Clark and Scarf (BA) Clark and Scarf (1960) establish that if their widely
known balance assumption is satisfied, then the value functions

{
Vt(·) : t ∈ T }

computed through the
optimality equation in (1)-(3) are separable functions of the form Vt(xt) =

∑
i∈I∪{φ} vit(xit). BA makes

the inventory replenishment decisions by using the separable functions
{∑

i∈I∪{φ} vit(·) : t ∈ T }
as

value function approximations. In this case, one can see that BA makes the inventory replenishment
decisions by solving problems that look very much like those in (23)-(25) and (26). Furthermore, it is
possible to show that the value functions computed under the balance assumption provide lower bounds
on the optimal total expected cost over the planning horizon. We do not go into the further details of
the balance assumption here and refer the reader to Clark and Scarf (1960).

Relaxation strategy of Federgruen and Zipkin (RS) The relaxation strategy of Federgruen and Zipkin
(1984b) relaxes the constraints yit ≥ xit for all i ∈ I in problem (1)-(3), but it does not associate
Lagrange multipliers with them. Therefore, the implementation of RS is the same as that of DL,
RL and SG, but RS sets all of the Lagrange multipliers to zero. This is to say that we compute{
v0
it(·) : i ∈ I ∪ {φ}, t ∈ T }

by solving the optimality equations in (8) and (9) with all of the Lagrange
multipliers set to zero. In this case, RS makes the inventory replenishment decisions by solving problems
(23)-(25) and (26) after replacing

{
vλ
it(·) : i ∈ I ∪ {φ}, t ∈ T }

with
{
v0
it(·) : i ∈ I ∪ {φ}, t ∈ T }

.

6.2 Experimental Setup

In our computational experiments, we work with distribution systems with identical as well as
nonidentical retailers. For the setting with identical retailers, we start with a base case consisting
of 21 test problems. In the base case, we have an inventory distribution system with three retailers
and a planning horizon of 50 time periods. The holding and backlogging costs are hφt = 0.6, hit = 1
and bit = 19 for all i ∈ I, t ∈ T . The replenishment order shipped to a certain installation at a
certain time period reaches the installation at the next time period. This is in contrast with our earlier
assumption that the lead times for all replenishments are zero. We assume that the demand at retailer
i at time period t has a Poisson distribution with mean αit and we generate three different demand
profiles by generating

{
αit : i ∈ I, t ∈ T }

in three different ways. The demand profiles primarily
differ in the degree of nonstationarity of the demand. For demand profile D0, we simply generate
αit from the uniform distribution over [5, 15]. This demand profile represents a situation where the
demand is relatively stationary and the goal of the other two demand profiles is to introduce additional
nonstationarity. For demand profile D1, we set αit = 10 with probability 1/2 and have αit = 0 otherwise.
For demand profile D2, we set αit = 0 with probability 1/2, but otherwise, generate αit from the uniform
distribution over [5, 15]. Both demand profiles D1 and D2 are examples of zero-inflated Poisson processes
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described in Lambert (1992), but we note that demand profile D2 yields additional nonstationarity over
demand profile D1. We generate seven instances of each demand profile by using seven random seeds
to generate

{
αit : i ∈ I, t ∈ T }

. This approach provides the 21 test problems in the base case.

For each instance of the demand profiles, we vary one problem parameter at a time to be able
to investigate how that problem parameter affects the performances of the benchmark methods. In
particular, we vary the holding cost at the warehouse, the backlogging cost at the retailers, the
probability with which αit is equal to 0 in demand profiles D1 and D2, the number of retailers, the
length of the lead times and the number of time periods in the planning horizon.

For the setting with nonidentical retailers, we consider an inventory distribution system with two
retailers and a planning horizon of 50 time periods as the base case. The retailers are nonidentical in the
sense that the mean demand at the second retailer is 90% of the mean demand at the first retailer. The
remaining problem parameters are the same as for identical retailers. In particular, we have hφt = 0.6,
hit = 1, bit = 19 for all i ∈ I, t ∈ T and it takes one time period for the replenishment order shipped
to a certain installation to reach that installation. The demands at the retailers and the warehouse are
generated according to demand profiles D1 and D2 with the understanding that we now have α2t = 9
with probability 1/2 for demand profile D1 and α2t is generated from the uniform distribution over
[4.5, 13.5] with probability 1/2 for demand profile D2.

Similar to our approach for the setting with identical retailers, we vary one problem parameter at a
time to investigate how that problem parameter affects the performances of the benchmark methods. In
particular, we vary the relative sizes of the two retailers as measured by the ratio of their mean demands
and the relative holding costs and backlogging costs at the two retailers.

6.3 Computational Results with Identical Retailers

We first describe the results of our computational experiments on the test problems with identical
retailers. Table 1 shows the total expected costs incurred by the five benchmark methods for the
21 test problems in the base case. Each row corresponds to a particular instance of a demand
profile. The first column shows the demand profile and the instance number. The second to sixth columns
respectively show the total expected costs incurred by DL, RL, SG, BA and RS. We estimate these
total expected costs by simulating the performances of the inventory replenishment policies obtained
by the benchmark methods under multiple demand realizations. The seventh to tenth columns show
the percent performance gaps between RL and the remaining four benchmark methods. We use RL
as a reference point since it turns out to be one of the better benchmark methods. We simulate the
performances of the inventory replenishment policies for enough number of demand realizations so that
any performance gap above 1% is statistically significant at 5% level. It is not possible to guarantee
that smaller performance gaps are statistically significant, since there are some test problems where the
benchmark methods perform very similarly and making a statistically significant distinction between
them requires a very large number of demand realizations.
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Table 1 indicates all of the benchmark methods perform very similarly under demand profile D0,
which is the demand profile that yields relatively stationary demand. However, when we move to
demand profiles D1 and D2, we observe that RL can perform significantly better than DL, RS and
BA. The performance gap between RL and DL can be as high as 21.20%, whereas the performance
gap between RL and RS can be as high as 36.87%. This indicates that it is important to address the
uncertainty in the demand random variables when choosing the Lagrange multipliers rather than just
using the expected values of the demand random variables as in DL, and using the trivial value of zero
for the Lagrange multipliers as in RS can result in poor performance. BA lags behind RL and RL can
reduce the total costs by as much as 19.57% when compared to BA. Moreover, as we move from demand
profile D0 to D1 and from D1 to D2, we introduce additional nonstationarity and the performance gap
between RL and BA increases. The performance of RL is comparable with that of SG. Although RL
does not perform better than SG uniformly, it provides a small improvement over SG in many of the
test problems. The results are quite encouraging, since implementing SG is much more complicated
than implementing RL and the runtimes for SG are significantly longer. We compare the runtimes at
the end of this section.

Table 2 shows the lower bounds on the optimal total expected cost provided by the five benchmark
methods for the 21 test problems in the base case. The first column shows the demand profile and the
instance number. Letting λ∗DL, λ∗RL and λ∗SG respectively be the Lagrange multipliers chosen by DL,
RL and SG, and noting that z∗LP (d) is the optimal objective value of problem (13)-(16), the second to
fourth columns respectively show V

λ∗DL
1 (x1), max

{
E

{
z∗LP (d)

}
, V

λ∗RL
1 (x1)

}
and V

λ∗SG
1 (x1). Propositions

1 and 2 show that E
{
z∗LP (d)

}
and V

λ∗RL
1 (x1) are lower bounds on the optimal total expected cost. We

use the tightest of these as the lower bound provided by RL. Proposition 2 shows that both z∗LP (E
{
d
}
)

and V
λ∗DL
1 (x1) are lower bounds on the optimal total expected cost and the lower bound V

λ∗DL
1 (x1)

is at least as tight as the lower bound z∗LP (E
{
d
}
). Therefore, we use V

λ∗DL
1 (x1) as the lower bound

provided by DL. The fifth column in Table 2 shows V BA
1 (x1), where

{
V BA

t (·) : t ∈ T }
are the value

functions obtained under the balance assumption. The sixth column shows V 0
1 (x1), which is the lower

bound obtained by using the trivial value of zero for the Lagrange multipliers. The seventh to tenth
columns simply show the percent gaps between the lower bounds provided by RL and the remaining
four benchmark methods.

The results in Table 2 indicate that all of the benchmark methods provide very similar lower
bounds under demand profile D0. It is also important to emphasize that under this demand profile,
the lower bounds in Table 2 are essentially equal to the total expected costs in Table 1. Therefore, all
of the benchmark methods obtain essentially the optimal policy for the test problems under demand
profile D0. We see differences between the benchmark methods when we move to demand profiles D1

and D2. SG provides the tightest lower bounds and is followed by RL, DL and BA. RS consistently
provides the loosest lower bounds. SG can improve upon the lower bounds provided by RL by up
to 1.59%. However, we also observe test problems where RL provides a slightly tighter lower bound
than SG. Since λ∗RL ≥ 0, we trivially have V

λ∗RL
1 (x1) ≤ maxλ≥0

{
V λ

1 (x1)
}

= V
λ∗SG
1 (x1). Therefore,

for RL to provide a tighter lower bound than SG, we need to have E
{
z∗LP (d)

} ≥ V
λ∗SG
1 (x1) so that

we can get max
{
E

{
z∗LP (d)

}
, V

λ∗RL
1 (x1)

} ≥ V
λ∗SG
1 (x1). This indeed happens to be the case for some
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test problems. RL can improve upon the lower bounds provided by DL, BA and RS by as much as
2.51%, 3.93% and 14.83%, respectively. We also note that under demand profiles D1 and D2, there are
significant gaps between the lower bounds in Table 2 and the total expected costs in Table 1. Therefore,
there is still some progress to be made in terms of either tightening the lower bounds or improving the
total expected costs. Throughout the rest of this section, we omit the results for demand profile D0 and
focus on demand profiles D1 and D2. Under demand profile D0, all of the benchmark methods continue
to perform very similarly and the results are not discriminative.

In Tables 3 to 9, we show how the five benchmark methods perform when we vary different problem
parameters. We begin by varying the holding cost at the warehouse in Table 3. For economy of space in
Tables 3 to 9, we only show the average results over seven instances of a particular demand profile. More
specifically, the two portions of Table 3 respectively focus on demand profilesD1 andD2. In each portion,
the first column shows the holding cost at the warehouse. The second to fifth columns show the percent
gaps between the total expected costs incurred by RL and the remaining four benchmark methods,
averaged over seven instances of a particular demand profile. The sixth to ninth columns do essentially
the same thing as the previous four columns, but they compare the lower bounds on the optimal total
expected cost provided by RL with those provided by the remaining four benchmark methods. The
percent gaps are calculated in such a manner that positive values always favor RL and negative values
favor the other benchmark methods. We also note that averaging does not change the interpretation
of the results significantly. This is to say that if the average performance of a benchmark method is
noticeably better than that of another benchmark method, then the performance is generally better
over all of the seven instances.

Table 3 indicates that RL performs better than BA and the average performance gap between RL
and BA increases as the holding cost at the warehouse increases. We interpret this trend shortly in this
section. The performance of RL remains comparable with that of SG throughout. DL can perform well
when the holding cost at the warehouse is very low, but it performs worse than RL otherwise. Overall,
the quality of the lower bounds provided by RL is reasonable when compared with the other benchmark
methods and RL can provide the tightest lower bounds in certain cases.

Table 4 varies the backlogging cost at the retailers. BA incurs the lowest total expected costs
among all of the benchmark methods when the backlogging cost at the retailers is 1. Nevertheless,
a backlogging cost of 1 is quite low noting that the holding cost at the retailers is also 1. As the
backlogging cost at the retailers increases, the performance of RL starts dominating the performance of
BA. We shortly give an interpretation for this trend as well.

Table 5 varies the probability with which αit is equal to zero. Using p = P{αit = 0} to denote this
probability, under demand profiles D1 and D2, we have E{dit} = (1− p)10 and Var(dit) = (1 − p)(1 +
10p)10. Therefore, the relative variation as measured by the coefficient of variation is an increasing
function of p. Table 5 indicates that the performance gap between RL and the other solution methods
increases with p. We note that setting p = 0 for demand profile D1 corresponds to the case of stationary
demand. In that case, we see that all the benchmark methods perform equally well.
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Table 6 varies the number of retailers in the system. The average performance gap between RL and
BA increases as the number of retailers increases. When there are five retailers, the average performance
gap between RL and BA can be as high as 16.66%. Clark and Scarf (1960) show that BA obtains the
optimal policy when there is only one retailer in the system. RL does not have such a guarantee and it
performs slightly worse than BA for the test problems with one retailer.

Table 7 varies the lead time for the replenishments of the warehouse and Table 8 varies the lead time
for the replenishments of the retailers. As the lead time for the warehouse increases, the performances
of RL, SG and BA become comparable. RL continues to provide substantial improvements over DL
and RS. RL maintains its advantage over BA under a variety of lead times for the retailers. The
performances of RL and SG become comparable as the lead times for the retailers increase.

Table 9 varies the number of time periods in the planning horizon. There does not appear to be a
systematic change in the relative performances of the benchmark methods as we vary the length of the
planning horizon. The overall performance of RL is quite satisfactory and RL performs significantly
better than BA, DL and RS. Under demand profile D2, RL has a small advantage over SG.

To sum up, RL provides advantages compared with the remaining benchmark methods when
the demand distributions involve significant nonstationarity or have a high coefficient of variation. In
addition to these factors, high holding cost at the warehouse and high backlogging cost at the retailers
appear as two other factors that may improve the relative performance of RL. When the holding cost
at the warehouse and the backlogging cost at the retailers are high, a naive policy has the tendency to
push the inventory to the retailers so as not to incur the high holding cost at the warehouse and the
high backlogging cost at the retailers. This results in keeping a relatively small amount of inventory
at the warehouse and a large amount of inventory at the retailers. Since the inventory at a particular
retailer can only be used at that retailer, whereas the inventory at the warehouse can be shipped to any
of the retailers, this situation ultimately damages the flexibility of the system. RL appears to overcome
the tendency of a naive policy to push the inventory to the retailers.

6.4 Computational Results with Nonidentical Retailers

For the test problems with nonidentical retailers, the base case has two retailers and the mean demand
at the second retailer is 90% of the mean demand at the first retailer. We use the mean demand as
a proxy for the size of the retailer so that the second retailer is the smaller retailer. Table 10 shows
the total expected costs incurred by the five benchmark methods for the 14 test problems in the base
case. The rows and columns have the same interpretation as in Table 1. Table 10 indicates that RL
provides the best performance, followed by SG. The performances of BA and DL are comparable. RS
consistently performs the worst among the benchmark methods.

Table 11 shows the lower bounds on the optimal total expected costs provided by the five benchmark
methods for the 14 problems in the base case with nonidentical retailers. SG provides the tightest lower
bounds followed by BA. RL generates tighter lower bounds than DL and RS.
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Table 12 varies the relative sizes of the two retailers as measured by the ratio of the mean demand
at second retailer with respect to the first retailer. RL continues to provide substantial improvements
over the other benchmark methods. We note that we have identical retailers when the ratio of the mean
demands at the two retailers is equal to one. The performance gap between RL and DL gets larger as
the relative sizes of the retailers become more different, but there does not appear to be a systematic
change in the other performance gaps. Overall, RL continues to provide significant improvements over
all of the other benchmark strategies.

Table 13 varies the holding cost at the second, smaller retailer. We note that when the holding
cost is 0.6, it costs the same to hold a unit of inventory at the second retailer as at the warehouse. On
the other hand, when the holding cost is 1.2, the second retailer incurs the highest holding cost in the
distribution system. The performance gap between RL and the other benchmark methods increases as
the holding cost at the second retailer decreases. The performances of BA and RS seem to deteriorate
significantly as the holding cost at the second retailer decreases. This phenomenon is also observed
by Dogru et al. (2005), who refer to it as the forwarding to the small retailer effect. Table 14 varies
the backlogging cost at the second retailer. RL performs significantly better than the other benchmark
methods and the performance gap increases as the backlogging cost at the second retailer gets larger.
The average performance gap between RL and SG can be as high as 4.64% while that between RL and
BA can be as high as 14.67%.

To sum up, RL provides advantages over the other benchmark methods when the smaller retailer
has a low holding cost or a high backlogging cost. When the smaller retailer has a low holding cost and
a high backlogging cost, a naive policy has the tendency to push the inventory from the warehouse to
the smaller retailer. Since the smaller retailer experiences a lower mean demand, this results in build
up of inventory at the smaller retailer. RL appears to overcome this tendency of a naive policy.

To give an overall statistic, RL incurs the lowest total expected cost in 268 of our 483 test
problems. Of the 215 test problems where RL does not incur the lowest total expected cost, there
are 115 test problems where there is a statistically significant difference between the performances
of RL and the best performing benchmark method. Table 15 compares RL with the remaining four
benchmark methods over all of our test problems. The second to fifth columns respectively correspond
to DL, SG, BA and RS. The first row shows the number of test problems where RL performs better than
a particular benchmark method and the performance gap is statistically significant. The second row
shows the number of test problems where there is no statistically significant performance gap. The third
row shows the number of test problems where RL performs worse than a particular benchmark method
and the performance gap is statistically significant. When we compare RL with SG, which is its closest
competitor, there are only 74 test problems where RL performs worse than SG and the performance
gap is statistically significant. In the remaining 409 test problems, either RL performs better than SG
or there is no statistically significant performance gap between the two benchmark methods. These
observations indicate that RL is a very strong competitor of SG. Similar observations apply when we
compare RL with DL, BA and RS.
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All of our computational experiments were carried out on an Intel Xeon server with 3 GHz CPU and
4 GB RAM running Windows Server 2003. Table 16 shows the CPU seconds required by the different
benchmark methods to compute one set of value function approximations. The top and bottom portions
of this table respectively show the CPU seconds as a function of the number of time periods in the
planning horizon and the number of retailers in the system. RS and BA have the shortest CPU seconds
and they are followed by DL. SG has the longest CPU seconds. The CPU seconds for RL lie somewhere
between those for SG and DL. RL essentially solves the same linear programming approximation solved
by DL for 25 demand samples, but the CPU seconds for RL are about five times the CPU seconds for
DL. This is due to the fact that when solving the linear programming approximation for one demand
sample, RL starts from the optimal basis obtained for the previous demand sample. This warm start
significantly boosts the CPU seconds for RL. The CPU seconds for RL are noticeably shorter than those
for SG and the CPU seconds for RL and SG can differ by almost a factor of ten. Furthermore, solving
problem (12) for SG requires solving a nonsmooth constrained convex optimization problem, which, in
turn, requires calibrating the step size parameter and devising a stopping criterion in a subgradient
search procedure. On the other hand, RL solves the linear program in (13)-(16) for multiple demand
samples and this can be done by using commercial linear programming software. Given that the
performance of RL is comparable or superior to the performance of SG for a large majority of our test
problems, and RL can perform significantly better than the other benchmark methods, RL appears to
be a viable approach to solve inventory distribution problems. Furthermore, its ease of implementation
and relatively short CPU seconds enable RL to carry out quick what if analyses, and hence, make RL
quite appealing to the practitioners.

7 Conclusions

In this paper, we developed a tractable method to make the inventory replenishment decisions in a
distribution system. Our approach is based on the dynamic programming formulation of the inventory
distribution problem, but due to the high dimensionality of the state variable, the dynamic programming
formulation ends up being difficult to solve. We relax the constraints that ensure the nonnegativity of
the shipments to the retailers by associating Lagrange multipliers with them. As a result of this
relaxation, the dynamic programming formulation of the inventory distribution problem decomposes by
the installations and can be solved by focusing on one installation at a time. This approach naturally
brings up the question of how to choose the Lagrange multipliers. To answer this question, Kunnumkal
and Topaloglu (2008) solve a nonsmooth constrained convex optimization problem, but their method
can be difficult to implement in practice and can require excessive computation time. In this paper, we
proposed alternative methods for choosing a good set of values for the Lagrange multipliers. One method
solves a linear programming approximation to the inventory distribution problem that is formulated
under the assumption that the demand random variables take on their expected values, whereas the
other method solves a linear programming approximation that is formulated under the assumption
that the realizations of the demand random variables are known a priori. Computational experiments
demonstrated that the Lagrange multipliers provided by especially the second method can perform
significantly better than several standard benchmarks. In particular, the total expected costs incurred
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by our second method can be better than those incurred by Kunnumkal and Topaloglu (2008) by up
to 7.62%. Furthermore, both of our methods can easily be implemented by using commercial linear
programming software and their computation times can be shorter than those for the method proposed
by Kunnumkal and Topaloglu (2008) by about a factor of ten. Thus, given their ease of implementation,
short computation time and superior solution quality, the methods that we propose in this paper form
viable alternatives for making the inventory replenishment decisions in distribution systems.
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Table 1: Total expected costs incurred by the benchmark methods for the 21 test problems in the base
case with identical retailers.
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Test Lower bound Percent gap with RL
prob. DL RL SG BA RS DL SG BA RS

(D0, 1) 2,651 2,650 2,651 2,651 2,651 -0.04 -0.04 -0.04 -0.04
(D0, 2) 2,560 2,558 2,560 2,560 2,560 -0.08 -0.08 -0.08 -0.08
(D0, 3) 2,680 2,679 2,680 2,680 2,680 -0.04 -0.04 -0.04 -0.04
(D0, 4) 2,659 2,657 2,659 2,659 2,659 -0.08 -0.08 -0.08 -0.08
(D0, 5) 2,714 2,712 2,714 2,714 2,714 -0.07 -0.07 -0.07 -0.07
(D0, 6) 2,675 2,673 2,675 2,675 2,675 -0.07 -0.07 -0.07 -0.07
(D0, 7) 2,694 2,693 2,694 2,694 2,694 -0.04 -0.04 -0.04 -0.04

Average 0.00 0.00 0.00 0.00

(D1, 1) 1,406 1,425 1,428 1,389 1,234 1.31 -0.20 2.52 13.39
(D1, 2) 1,536 1,539 1,561 1,533 1,407 0.21 -1.45 0.36 8.60
(D1, 3) 1,476 1,490 1,496 1,465 1,328 0.95 -0.44 1.67 10.84
(D1, 4) 1,162 1,192 1,195 1,163 1,015 2.51 -0.28 2.44 14.83
(D1, 5) 1,374 1,393 1,401 1,359 1,210 1.40 -0.59 2.44 13.18
(D1, 6) 1,397 1,424 1,422 1,392 1,246 1.86 0.09 2.22 12.51
(D1, 7) 1,486 1,510 1,513 1,486 1,356 1.56 -0.23 1.56 10.20

Average 1.40 -0.44 1.89 11.94

(D2, 1) 1,393 1,399 1,411 1,378 1,237 0.39 -0.89 1.49 11.56
(D2, 2) 1,511 1,510 1,534 1,503 1,376 -0.07 -1.59 0.46 8.83
(D2, 3) 1,372 1,402 1,395 1,368 1,236 2.17 0.55 2.42 11.86
(D2, 4) 1,292 1,323 1,319 1,286 1,132 2.35 0.28 2.76 14.42
(D2, 5) 1,366 1,386 1,378 1,332 1,181 1.47 0.58 3.93 14.81
(D2, 6) 1,351 1,376 1,371 1,335 1,186 1.83 0.33 2.96 13.81
(D2, 7) 1,447 1,458 1,463 1,425 1,288 0.81 -0.34 2.26 11.72

Average 1.28 -0.15 2.33 12.43

Table 2: Lower bounds on the optimal total expected cost provided by the benchmark methods for the
21 test problems in the base case with identical retailers.

D1

Total exp. cost Lower bound
Hld. percent gap with RL percent gap with RL
cst. DL SG BA RS DL SG BA RS

0.1 -4.94 -1.16 3.67 30.42 2.50 1.52 -1.03 25.52
0.3 0.87 0.96 8.14 29.08 1.94 0.06 -0.62 18.41
0.6 8.27 0.48 14.74 29.78 1.40 -0.44 1.89 11.94
0.9 13.83 -0.14 21.88 28.13 1.11 -0.53 5.78 8.26

D2

Total exp. cost Lower bound
Hld. percent gap with RL percent gap with RL
cst. DL SG BA RS DL SG BA RS

0.1 -5.41 0.56 4.53 25.93 2.21 1.58 -0.85 26.09
0.3 0.81 1.01 9.59 26.15 1.72 0.31 -0.29 18.94
0.6 6.82 1.64 15.63 27.50 1.28 -0.15 2.33 12.43
0.9 12.86 -0.48 21.55 25.83 1.04 -0.24 6.14 8.62

Table 3: Effect of the holding cost at the warehouse on the performance of the benchmark methods.
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D1

Total exp. cost Lower bound
Bck. percent gap with RL percent gap with RL
cst. DL SG BA RS DL SG BA RS

1 24.30 2.35 -2.19 2.62 3.47 -1.72 -5.56 -1.71
9 18.38 0.36 5.55 17.27 3.56 -0.99 -0.87 8.40
19 8.27 0.48 14.74 29.78 1.40 -0.44 1.89 11.94
29 0.78 0.22 20.23 36.70 0.73 -0.27 2.89 13.07
39 -1.16 1.13 26.95 46.55 0.50 0.09 3.74 13.81

D2

Total exp. cost Lower bound
Bck. percent gap with RL percent gap with RL
cst. DL SG BA RS DL SG BA RS

1 8.75 1.97 -2.29 2.15 0.55 -1.61 -5.73 -1.59
9 14.96 0.64 5.94 15.83 3.32 -0.61 -0.32 9.26
19 6.82 1.64 15.63 27.50 1.28 -0.15 2.33 12.43
29 2.12 1.95 22.44 36.11 0.66 -0.03 3.24 13.24
39 -2.13 2.15 30.71 43.93 0.41 0.10 3.71 13.46

Table 4: Effect of the backlogging cost at the retailers on the performance of the benchmark methods.

D1

Total exp. cost Lower bound
Pr(αit = 0) percent gap with RL percent gap with RL

DL SG BA RS DL SG BA RS

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 6.00 -0.81 3.83 7.61 0.24 -0.75 -0.04 3.54
0.50 8.27 0.48 14.74 29.78 1.40 -0.44 1.89 11.94
0.75 26.58 7.62 19.45 48.85 6.24 0.40 1.18 20.67

D2

Total exp. cost Lower bound
Pr(αit = 0) percent gap with RL percent gap with RL

DL SG BA RS DL SG BA RS

0.00 0.00 0.00 0.00 0.00 -0.06 -0.06 -0.06 -0.06
0.25 7.36 -0.43 4.37 8.28 0.17 -0.89 -0.18 3.46
0.50 6.82 1.64 15.63 27.50 1.28 -0.15 2.33 12.43
0.75 13.54 6.29 19.24 44.61 4.99 0.95 2.05 20.25

Table 5: Effect of the probability with which αit is equal to zero on the performance of the benchmark
methods.
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D1

Total exp. cost Lower bound
No. percent gap with RL percent gap with RL
ret. DL SG BA RS DL SG BA RS

1 1.71 -1.02 -1.00 -0.10 -0.84 -2.81 -3.43 5.93
2 6.44 3.32 10.02 26.50 0.85 -2.75 -1.55 8.76
3 8.27 0.48 14.74 29.78 1.40 -0.44 1.89 11.94
4 9.23 -1.39 17.21 30.18 1.53 0.69 3.91 13.49
5 8.74 -2.41 16.08 27.30 1.69 1.31 5.09 14.29

D2

Total exp. cost Lower bound
No. percent gap with RL percent gap with RL
ret. DL SG BA RS DL SG BA RS

1 5.59 -1.44 -1.47 -0.72 1.18 -3.36 -4.01 6.69
2 4.45 3.03 9.48 20.31 0.83 -2.32 -1.12 9.13
3 6.82 1.64 15.63 27.50 1.28 -0.15 2.33 12.43
4 7.30 -1.02 16.08 27.09 1.30 0.72 4.13 14.13
5 7.54 -1.12 16.66 26.26 1.40 1.30 5.55 15.51

Table 6: Effect of the number of retailers on the performance of the benchmark methods.

D1

Total exp. cost Lower bound
Wh. percent gap with RL percent gap with RL
l.t. DL SG BA RS DL SG BA RS

1 8.27 0.48 14.74 29.78 1.40 -0.44 1.89 11.94
2 27.21 0.95 6.41 19.68 1.45 -3.21 -2.99 6.85
3 31.94 -0.24 1.84 12.95 1.86 -5.53 -6.04 3.30

D2

Total exp. cost Lower bound
Wh. percent gap with RL percent gap with RL
l.t. DL SG BA RS DL SG BA RS

1 6.82 1.64 15.63 27.50 1.28 -0.15 2.33 12.43
2 25.42 -0.15 6.88 17.31 1.33 -2.95 -2.57 7.38
3 30.53 -0.66 1.92 11.62 1.48 -5.45 -5.90 3.57

Table 7: Effect of the lead time for the replenishments of the warehouse on the performance of the
benchmark methods.
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D1

Total exp. cost Lower bound
Ret. percent gap with RL percent gap with RL
l.t. DL SG BA RS DL SG BA RS

1 8.27 0.48 14.74 29.78 1.40 -0.44 1.89 11.94
2 1.99 -0.56 10.58 16.44 0.39 -0.02 1.79 6.40
3 0.11 0.31 7.65 10.50 0.18 -0.12 0.93 3.18

D2

Total exp. cost Lower bound
Ret. percent gap with RL percent gap with RL
l.t. DL SG BA RS DL SG BA RS

1 6.82 1.64 15.63 27.50 1.28 -0.15 2.33 12.43
2 0.35 0.05 9.98 14.84 0.61 0.09 1.78 6.37
3 0.97 0.30 6.33 8.78 0.35 0.00 0.84 3.12

Table 8: Effect of the lead time for the replenishments of the retailers on the performance of the
benchmark methods.

D1

Total exp. cost Lower bound
Pln. percent gap with RL percent gap with RL
hor. DL SG BA RS DL SG BA RS

25 8.12 -0.38 12.89 28.77 1.30 -0.16 1.64 9.87
50 8.27 0.48 14.74 29.78 1.40 -0.44 1.89 11.94
75 6.83 -0.18 14.52 28.78 1.32 -0.57 1.73 11.79
100 6.45 0.53 14.96 30.82 1.19 -0.70 1.88 12.78

D2

Total exp. cost Lower bound
Pln. percent gap with RL percent gap with RL
hor. DL SG BA RS DL SG BA RS

25 12.39 1.16 13.66 25.80 1.42 0.16 2.31 11.36
50 6.82 1.64 15.63 27.50 1.28 -0.15 2.33 12.43
75 6.49 0.20 15.64 28.75 0.99 -0.80 1.62 12.34
100 5.51 0.83 15.10 29.57 1.26 -0.47 2.36 13.81

Table 9: Effect of the length of the planning horizon on the performance of the benchmark methods.
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Test Total exp. cost Percent gap with RL
prob. DL RL SG BA RS DL SG BA RS

(D1, 1) 1,240 1,182 1,190 1,267 1,444 4.89 0.66 7.18 22.16
(D1, 2) 1,260 1,212 1,259 1,309 1,490 3.96 3.88 8.02 22.96
(D1, 3) 1,098 1,046 1,060 1,123 1,355 5.01 1.42 7.42 29.56
(D1, 4) 1,076 1,019 1,021 1,097 1,233 5.63 0.25 7.63 21.05
(D1, 5) 1,077 963 1,000 1,082 1,265 11.85 3.83 12.41 31.35
(D1, 6) 1,355 1,139 1,198 1,252 1,575 18.94 5.15 9.93 38.21
(D1, 7) 1,207 1,152 1,199 1,290 1,484 4.80 4.08 11.99 28.85

Average 7.87 2.75 9.22 27.73

(D2, 1) 1,089 1,082 1,080 1,168 1,330 0.72 -0.14 7.99 22.96
(D2, 2) 1,296 1,240 1,280 1,376 1,532 4.53 3.22 10.92 23.50
(D2, 3) 1,229 1,193 1,199 1,237 1,323 3.02 0.53 3.75 10.88
(D2, 4) 1,071 928 971 1,031 1,163 15.35 4.64 11.06 25.29
(D2, 5) 1,397 1,200 1,243 1,318 1,434 16.47 3.60 9.84 19.55
(D2, 6) 1,001 952 1,012 1,092 1,248 5.16 6.36 14.72 31.12
(D2, 7) 1,205 1,144 1,198 1,268 1,378 5.33 4.72 10.85 20.47

Average 7.23 3.27 9.88 21.97

Table 10: Total expected costs incurred by the benchmark methods for the 14 test problems in the base
case with nonidentical retailers.

Test Lower bound Percent gap with RL
prob. DL RL SG BA RS DL SG BA RS

(D1, 1) 971 973 1,002 988 887 0.17 -2.97 -1.50 8.81
(D1, 2) 1,040 1,045 1,069 1,058 973 0.51 -2.28 -1.23 6.95
(D1, 3) 868 879 899 895 813 1.29 -2.28 -1.80 7.50
(D1, 4) 828 841 864 857 768 1.54 -2.70 -1.92 8.66
(D1, 5) 771 778 804 790 696 0.89 -3.39 -1.58 10.54
(D1, 6) 874 888 913 896 785 1.48 -2.91 -0.97 11.54
(D1, 7) 963 973 1,001 993 899 0.94 -2.94 -2.13 7.53

Average 0.97 -2.78 -1.59 8.79

(D2, 1) 852 855 881 867 771 0.40 -2.96 -1.36 9.86
(D2, 2) 1089 1101 1120 1111 1030 1.16 -1.68 -0.85 6.48
(D2, 3) 1025 1032 1054 1046 959 0.68 -2.14 -1.37 7.07
(D2, 4) 712 724 749 740 637 1.74 -3.37 -2.09 12.07
(D2, 5) 968 971 993 977 876 0.29 -2.33 -0.61 9.80
(D2, 6) 742 760 773 763 664 2.37 -1.78 -0.45 12.56
(D2, 7) 1003 1008 1032 1026 936 0.51 -2.39 -1.83 7.11

Average 1.02 -2.38 -1.22 9.28

Table 11: Lower bounds on the optimal total expected cost provided by the benchmark methods for
the 14 test problems in the base case with nonidentical retailers.
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D1

Total exp. cost Lower bound
Rel. percent gap with RL percent gap with RL
size. DL SG BA RS DL SG BA RS

0.5 12.96 3.38 9.37 23.21 1.04 -3.13 -2.09 8.18
0.6 12.24 3.73 10.31 26.84 1.22 -2.99 -1.89 8.64
0.7 9.69 3.17 9.58 25.37 0.66 -2.86 -1.72 8.74
0.8 8.08 2.75 9.64 25.53 0.87 -2.83 -1.69 8.77
0.9 7.87 2.75 9.22 27.73 0.97 -2.78 -1.59 8.79
1.0 6.44 3.32 10.02 26.50 0.85 -2.75 -1.55 8.76

D2

Total exp. cost Lower bound
Rel. percent gap with RL percent gap with RL
size. DL SG BA RS DL SG BA RS

0.5 9.99 2.09 9.79 21.74 1.15 -2.72 -1.70 9.26
0.6 8.79 2.08 9.34 21.05 1.04 -2.53 -1.46 9.29
0.7 9.83 2.36 9.24 21.59 0.99 -2.45 -1.28 9.47
0.8 7.83 2.28 9.14 22.06 0.90 -2.38 -1.14 9.49
0.9 7.23 3.27 9.88 21.97 1.02 -2.38 -1.22 9.28
1.0 4.45 3.03 9.48 20.31 0.83 -2.32 -1.12 9.13

Table 12: Effect of the relative sizes of the retailers on the performance of the benchmark methods.

D1

Total exp. cost Lower bound
Hld. percent gap with RL percent gap with RL
cst. DL SG BA RS DL SG BA RS

0.6 5.00 3.25 37.64 39.28 0.45 -2.52 0.95 6.64
0.8 7.60 3.05 14.43 31.58 0.68 -2.53 -0.53 7.97
1.0 7.87 2.75 9.22 27.73 0.97 -2.78 -1.59 8.79
1.2 7.60 2.53 7.23 24.65 1.18 -2.93 -2.36 9.41

D2

Total exp. cost Lower bound
Hld. percent gap with RL percent gap with RL
cst. DL SG BA RS DL SG BA RS

0.6 6.73 1.74 25.97 26.26 0.46 -2.07 1.07 7.14
0.8 6.52 2.56 12.81 23.21 0.79 -2.19 -0.31 8.39
1.0 7.23 3.27 9.88 21.97 1.02 -2.38 -1.22 9.28
1.2 7.26 1.94 8.15 19.75 1.29 -2.51 -1.90 9.94

Table 13: Effect of the holding cost at the smaller retailer on the performance of the benchmark methods.
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D1

Total exp. cost Lower bound
Bck. percent gap with RL percent gap with RL
cst DL SG BA RS DL SG BA RS

1 27.49 2.63 -0.80 5.24 1.29 -1.28 0.26 8.68
9 10.61 0.80 5.98 21.04 1.83 -3.05 -2.49 7.70
19 7.87 2.75 9.22 27.73 0.97 -2.78 -1.59 8.79
29 4.84 3.36 12.15 28.96 0.58 -2.34 2.27 12.52
39 3.39 4.64 14.67 34.28 0.46 -2.04 6.08 16.10

D2

Total exp. cost Lower bound
Bck. percent gap with RL percent gap with RL
cst. DL SG BA RS DL SG BA RS

1 29.28 1.09 1.29 7.03 0.95 -1.02 0.70 9.57
9 8.78 1.19 6.45 17.00 1.77 -2.80 -2.09 8.30
19 7.23 3.27 9.88 21.97 1.02 -2.38 -1.22 9.28
29 4.48 2.81 11.67 24.34 0.67 -2.07 2.74 13.07
39 3.00 3.45 13.13 25.66 0.43 -1.80 6.62 16.74

Table 14: Effect of the backlogging cost at the smaller retailer on the performance of the benchmark
methods.
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No. test
prob. with DL SG BA RS

RL better 381 230 421 447
No difference 66 179 36 34

RL worse 36 74 26 2

Table 15: Comparison of RL with the remaining four benchmark methods over all of our test problems.

Pln. CPU seconds
hor. DL RL SG BA RS

25 3 14 182 0.2 0.2
50 10 55 422 0.8 0.5
75 23 94 850 0.9 0.8
100 31 150 944 1.1 1.0

No. CPU seconds
ret. DL RL SG BA RS

1 1 7 109 0.2 0.2
2 5 31 351 0.3 0.4
3 10 55 422 0.8 0.5
4 18 89 722 0.9 0.6
5 30 137 985 1.0 1.0

Table 16: CPU seconds required by the benchmark methods to compute one set of value function
approximations as a function of the number of time periods and the number of retailers.
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