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Abstract 
 

This paper presents a novel intelligent bidding system, called SOABER (Simultaneous Online 

Auction BiddER), which monitors simultaneous online auctions of high-value fine art items. It supports 

decision making by maximizing bidders’ surplus and their chances of winning an auction. One key 

element of the system is a dynamic forecasting model, which incorporates information about the speed of 

an auction's price as well as about the level of competition within and across other auctions. Other 

elements are a wallet estimator, which gauges bidders' willingness to pay, and a bid strategizer that 

embeds the forecasting model into a fully automated decision system. We illustrate the performance of 

our intelligent bidding system on an authentic dataset of online art auctions for Indian contemporary art. 

We compare our system with several simpler ad-hoc approaches and find it to be more effective in terms 

of extracted surplus and the resulting winning percentage. 
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Introduction 

During the last decade, the world art market has undergone a tremendous amount of transition 

with reports of better returns on investment compared to stock markets. According to Artprice.com, art 

prices have seen a growth of 80% during the last decade. The increasing interest in art in general has also 

helped popularize emerging art markets such as Indian contemporary art, Chinese art, and Russian art. 

Moreover, with the current tumult of the financial markets, art markets may see an even further boost of 

popularity as, historically, art has prospered in times of economic hardship.  

While art markets have become very popular, the barriers of entry for buyers are higher compared 

to traditional stock markets due to the difficulty in evaluating art pieces accurately and objectively. Every 

piece of art is unique and often of extremely high value, which makes pricing difficult compared to 

classical investments. Auctions are therefore the typical way for selling art, and they are conducted 

regularly by auction houses such as Christies and Sotheby’s. In recent years, online auctions have become 

very popular in the art marketplace, and much of their popularity can be attributed to the success of eBay. 

According to Forrester Research Reports, online auction sales will reach $65 billion by 20101, a large 

share of the total US auction market of $270 billion (NAA Industry Report 2007).  Reasons for the 

popularity of online auctions are their worldwide reach and borderless and timeless nature. The auction 

mechanism also generates a fair price to both seller and buyer. Moreover, many people find entertainment 

value in the auction mechanism. 

Fine art is typically sold in a simultaneous online auction (SOA) setting. These art auctions are 

held by specialized online auction houses dedicated to selling only one type of art genre (e.g., 

SaffronArt.com and BidandHammer.com sell only Indian contemporary art, Attinghouse.com sells only 

Chinese art and Southeast Asian art) with a price tag ranging from a few thousands to a few millions of 

US dollars. Although these auctions are similar to those on eBay, they differ both in terms of the auction 

design and the types of items that they sell. SOAs sell multiple objects simultaneously in a first-price 

ascending auction format. This means that auctions start and end at the same time for all items. Since 

                                                       
1http://www.forrester.com 
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many items are highly complementary, bidders are usually interested in purchasing more than one item, 

which increases competition among participants. In contrast, items on eBay are sold in a variant of the 

second-price sealed-bid auction (Krishna 2003) and are held independently of each other. While eBay 

bidders also have the opportunity to bid on more than one item at a time, competition across these 

auctions is typically of smaller scale since eBay bidders’ typically do not compete against each other on 

multiple auctions at the same time. Moreover, eBay masks bidder identities (especially for high-valued 

items), thereby making it difficult for bidders to identify their competitors. Another difference between 

eBay auctions and SOAs is the type of closing rule. While eBay auctions close at a fixed time point2 (e.g., 

exactly 7 days after the auction starts), SOAs tend to have soft-closing rules where the time automatically 

extends after the last bid. A soft-close auction format not only encourages bidders to bid early (Roth and 

Ockenfels 2002), but also discourages sniping3 in the last moments. Finally, SOAs are organized by a 

single seller, i.e., the auction house, whereas eBay provides an auction platform for many different sellers.  

In online auctions, and in particular in SOAs, bidders often face information overload. Competing 

auctions, competing bidders, and sometimes even competing auction formats (Anthony and Jennings 

2003; Haruvy et al. 2008) make the decision process extremely hard and confusing. Bidders who want to 

maximize their surplus and winnings are likely to be overwhelmed by the large amount of streaming 

bidding information on the multiple simultaneous auctions. Therefore, there is a need for data-driven 

decision-support mechanisms that can assist bidders in deciding on which items to bid and how much to 

bid on each item. Such a system must capture all of the streaming data, convert it into decisions, and 

update the decisions as new information becomes available. In this paper, we introduce SOABER (SOA 

BiddER system), an intelligent bidding system based on dynamic forecasting that can facilitate SOA 

bidders to maximize their surplus and optimize their bidding strategies.  

Recently, there has been a growing interest in the academic community in developing intelligent 

bidding systems and software agents to assist bidders in making rational and optimized bidding decisions, 

                                                       
2 Except for Buy-it-Now auctions 
3 Sniping is a strategic bidding activity where bids are submitted in the last moments of the auction to allow minimal time for other bidders to 

react to this bid. Such behavior is prominent in eBay auctions as the auction closes promptly at a specific time. 
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particularly in simultaneous auctions. Most of the current research uses various machine learning methods 

such as fuzzy neural network (He et al. 2003, 2004, 2006), supervised learning (Stone et al. 2003) or 

genetic algorithms (Anthony and Jennings 2003) to forecast the final auction price. Our work differs from 

this body of work both in terms of the problem setting and the bidding decision process. The majority of 

existing studies have used data from simultaneous auctions of flight tickets, hotel rooms, and 

entertainment events (using the TAC Ad auction game)4. Compared to fine art, these items possess less 

heterogeneity and are relatively low in value and thus involve lower monetary risk. Hence, the first 

difference is the context. Second, rather than relying on a single machine learning algorithm for 

forecasting the final price, our proposed system combines a forecaster, a wallet estimator, and a bid-

strategizer to produce suggestions as to which items to bid on, and how much to bid on each. The 

forecaster uses ongoing auction characteristics such as price dynamics and bidder competition to predict 

the final price dynamically. The wallet estimator estimates the bidders’ willingness to pay, and the bid 

strategizer uses information from the forecaster and the wallet estimator to make the final bidding 

decision. For each of these components we choose models and algorithms that are practical in terms of the 

available information, and at the same time capture as much of the relevant information as possible. These 

three system components are modular and can be replaced with alternatives, to allow flexibility in other 

types of SOAs. We use this modularity to compare the performance of our selected components with 

alternate configurations.  

In addition, our proposed system contributes by being the first dynamic predictive system for the 

art market. Although none of the extant literature on art market computation and prediction involve bid 

history analysis, two valuation methods, namely repeat sales index (Baumol 1986; Goetzmann 1993; Mei 

and Moses 2002; Pesando 1993) and hedonic price index (Chanel, Gerard-Varet and Ginsburgh 1996) are 

used to estimate the valuation of art items. Both these methods analyze previous sales data of artists to 

estimate the current value of their art works. Currently, most auction houses use one or both of these 

                                                       
4 http://tac.eecs.umich.edu/ 
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methods to generate pre-auction price estimates of the art works (Artnet 2010), but not for estimating or 

forecasting the final price of items. 

The rest of the paper is organized as follows. The next section describes the mechanism of 

simultaneous online art auctions and in particular that on SaffronArt.com. We describe and explore our 

data in section three. In section four, we introduce and describe the intelligent bidding system SOABER 

and its three components. Section five discusses performance evaluation. We set up several competing 

methods and several bidding scenarios. In section six, we apply SOABER to the data from 

SaffronArt.com and compare its performance to the alternative methods under the various bidding 

scenarios, showing its superiority. We conclude in section seven with managerial implications and future 

research directions. 

Simultaneous Online Art Auctions 

During the last decade, the global art market has gone through a tremendous amount of transition. 

Reports of better return on investment on art items (Mei and Moses 2002) as compared to stock markets 

have encouraged the establishment of many new art hedge funds and mutual funds. They have also 

encouraged new bidders and art enthusiasts to attend auctions with an intention to buy art items that they 

can enjoy and that can generate profit over time. According to Artprice.com, art prices have seen a growth 

of 80% during the last decade (1997-2007). The increasing interest in the overall art market has also 

helped popularize emerging art markets such as Indian contemporary art, Chinese art, and Russian art to 

new collectors and investors.  

Another prominent change in the art marketplace is the emergence of online auction houses such 

as SaffronArt.com and BidandHammer.com. These auction houses sell high quality, genuine art work 

comparable with the art sold by the traditional auction houses such as Christie’s and Sotheby’s. Among 

all the online auction houses, Saffronart.com has emerged as one of the leading auction houses for Indian 

contemporary art. From 2000-2009, Saffronart.com generated $107m (market share = 29.56%), which is 

more than Sotheby’s $70m (market share = 19.47%), and just second to Christie’s $114m (market share = 

31.69%) during that period. They sold more art items (n=3361) than Christie’s (n=1837), Sotheby’s (n= 
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1766) or any other auction houses selling Indian contemporary art. Saffronart.com online art auctions use 

a simultaneous auction format, which is popular when selling a wide range of high-priced items. 

Examples are FCC radio spectrum auctions (Milgrom 1998), art auctions (Dass, Seymour and Reddy 

2010), U.S. Treasury bill auctions (Rothkopf, Pekec and Harstad 1998) and timber and car auctions 

(Kwasnica and Sherstyuk 2007). 

For this study, we collected the bid histories of all the auctions held on SaffronArt.com in their 

December 6-8, 2005 event. In this event the auctions lasted three days and 199 art items were sold. 

SaffronArt.com holds such 3-day auction events from three to five times a year. In such an event, all 

auctions start at the same date and time, but their closing times are sequential in the following way: 

Auctions are divided into 8 groups, with each group consisting of 20-30 auctions. After the third day, all 

auctions belonging to the same group close simultaneously, but each group closes sequentially, typically 

within 30 minutes from the previous group. This procedure gives bidders an opportunity to counter any 

late bids if they are competing across multiple groups of auctions.  Bidders interested in participating in 

SaffronArt.com auctions are required to go through an elaborate registration process. Unlike on eBay, 

where bidders merely need a valid email address and a credit card, bidders on SaffronArt.com go through 

a lengthy credit check and are required to provide names of references. Such a lengthy enrollment process 

increases participation of serious bidders. Like Christie's or Sotheby's, SaffronArt.com examines items 

that are offered to them by individual owners and then sells the items on the owners’ behalf. Since the 

complete auction is held online, the auction house arranges live viewing events prior to the auction date, 

where bidders are invited to attend and inspect the art items in person. This increases the legitimacy of 

and trust in the auction process.  

Data Used in this Study 

Like other online auction houses, SaffronArt.com posts detailed bid histories of items for sale on 

their website while the auction is in progress. The bid history includes information on each submitted bid, 

its time, amount and the bidder’s ID. Apart from the bidding activity information, each bid history also 
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includes information about the item: name of the artist, physical characteristics of the item (size and 

media), pre-auction estimates, the item’s expected value based on analyses by auction house art experts, 

and provenance of the item. The auction house also provides information about previous (and 

comparable) items sold by the same artist. Since all items are of high value, the auction house tries to 

provide as much information as possible in order to help bidders make rational bidding decisions. The 

auction house also supplies additional information about the auction format, the bidding rules, and the 

closing schedules. 

SaffronArt.com organizes from three to five auction events per year. In each of these events, they 

typically sell 100-200 contemporary Indian paintings and sculptures. Although the bid history is posted 

online during the auction, it is promptly removed as soon as the auction closes and there is no way of 

revisiting it afterwards (unlike eBay, where information is stored for at least 15 days after an auction 

closes). This policy complicates the data collection task. To overcome this obstacle, we developed a java-

based web agent that visits the bid history during the very last moments of the auction and captures the 

entire information automatically. Since the auction is extended after a late bid, our web agent is able to 

capture the complete bid history.  

 
 We collected all consecutive bids of auction data for the entire set of 199 art items (lots) from 70 

different artists. In this auction event, which took place between December 6-8, 2005, 256 bidders 

participated, posting 3060 bids. The average number of bids per item was 15 and the average number of 

bidders participating in an auction was 6. The average value realized for all 199 items was USD $62,065, 

ranging between $3,135 and $1,486,100. Other descriptive statistics of our data are shown in Table 1.  

------------------------------------------ 
Please Insert Table 1 about here 

--------------------------------------------- 
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SOABER (SOA Bidder System) 

We propose an intelligent bidding system with the goal of maximizing bidders’ surplus and their 

probability of winning an auction. The bidding system consists of three basic modules (see Figure 1): 

1. A forecasting module, 

2. A wallet estimating module,  

3. A bid strategizer module.  

------------------------------------------ 
Please Insert Figure 1 about here 

--------------------------------------------- 
   

  Our system works as follows: Consider an individual bidder who wants to make a bidding 

decision. This bidding decision involves two components. First, since several items are sold in 

simultaneous auctions, the bidder must decide which item to bid on. After deciding on the item, the 

second decision is how much to bid on that item. The first decision is more complex since it involves 

considering both the bidder’s own willingness to pay (WTP) (i.e., his/her own “ WTP wallet”) as well as 

estimating that of all competing bidders’ willingness to pay  (i.e., the competitors’ “WTP wallets”). 

Rational behavior dictates that a bidder will only bid in an auction if his/ her WTP wallet is larger than the 

current high-bid; a bidder will also avoid auctions that are expected to close at a higher price than his/ her 

own WTP wallet. We estimate an auction’s expected final price using the forecasting module. Moreover, 

a bidder will take into account the competition’s ability to outbid him/ her. If a bidder suspects that a 

competitor’s WTP wallet is much larger than his own, his chances of winning are low and, as a 

consequence, that item does not present a good bidding opportunity. In other words, a bidder will choose 

to bid on items for which competitors’ WTP wallets are not (much) larger than his own WTP wallet. The 

second component of our bidding system therefore estimates the competitors’ WTP wallets.  

   As for the second decision of how much to bid, the bidding system decides on the bid-amount using the 

output from the forecasting module. The bid-strategizer combines price forecasting and WTP wallet size 
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estimation to arrive at an automated decision process, determining which item to bid on and how much to 

bid. 

Forecasting Module 

Our intelligent bidding system relies on real-time dynamic price forecasts. Wang et al. (2008) 

show that dynamics in online auctions matter and that they lead to improved real-time forecasting. We 

therefore adopt the dynamic forecasting ideas and extend them to the SOA context by integrating 

additional information on within- and across-auction competition and dynamics. 

Price forecasting in online auctions, and particularly in SOAs, is challenging due to their dynamic 

environment. One aspect of this environment is the changing bid density, where the number of bids per 

time unit changes dramatically throughout the auction (Roth and Ockenfels 2002; Rothkopf, Pekec and 

Harstad 1998; Shmueli, Russo and Jank 2007). The resulting unequally-spaced time-series of bids deem 

traditional forecasting models (which assume evenly spaced measurements) inadequate. Furthermore, 

price dynamics across different auctions follow different price paths. In other words, the speed at which 

the price travels during the auction and the rate at which this speed changes varies across auctions. 

Therefore, traditional forecasting models, which do not account for such instantaneous change, fail to 

accurately predict auction prices.  To incorporate the dynamic nature into a forecasting model, we take a 

functional data modeling approach.  

Functional Data Analysis (FDA) is a statistical methodology that operates on functional 

observations such as the price curves in online auctions. While FDA has received a lot of enthusiasm 

within the statistics literature, it is only slowly entering the information systems literature s (Bapna, Jank 

and Shmueli 2008; Jank and Shmueli 2006; Reddy and Dass 2006; Steward, Darcy and Daniel 2006). In 

this paper, we employ FDA to capture the dynamic components of an SOA and to build a real-time 

forecasting model for price. The underlying idea is to represent the price path during an auction as a 

continuous curve. Then, following functional principles, the price curves of individual auctions are 

estimated using smoothing techniques (Ramsay and Silverman2005). From the price curves, price 
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dynamics are estimated via curve derivatives. The first derivative measures price velocity, or how fast the 

price changes during the auction.  The second derivative measures price acceleration. See Jank and 

Shmueli (2006) for a more detailed discussion of price dynamics. The price curves and price dynamics 

are subsequently incorporated into the forecasting model, in addition to other auction information, to 

produce real-time price forecasts. 

A Basic Forecaster 

The smooth price curves and their dynamics serve as the basis for our dynamic forecaster. 

Following the ideas of Wang et al. (2008), we capture 3 conceptually different pieces of information: 

static and time-varying information, the price path until time of prediction, and the price dynamics 

information. The dynamic forecasting model of price at time t ( ( ))y t is given as: 

 ( )

1 1 1

( ) ( ) ( ) ( ) ( )
Q J L

j
i i j l

i j l

y t x t D y t y t l t    
  

         (1) 

where 1( ),..., ( )Qx t x t is a set of static (pre-auction) and time-varying predictors, ( ) ( )jD y t denotes the thj

derivative of price at time t, and ( )y t l is the thl price lag. In our context, the static predictors, which do 

not change over the course of the auction, include the opening bid, item characteristics (size of the item 

and type of art work), and artist characteristics (artist type, average price per sq. inch of the artist’s sold 

items in the previous year’s auction); time-varying predictors, which do change as the auction progresses, 

include the number of bids. A brief description of all model-components is given in Table 2.  

 Using equation (1), the resulting h-step ahead forecast, given information until time T, is given 

by: 

 ( )

1 1

ˆˆ ˆ ˆ( | ) ( | ) ( | ) ( 1| )
Q J L

j
i i j l

i i j l

y T h T x T h T D y T h T y T h T   
  

                  (2) 

The above equation (1.2) faces two challenges. First, the price dynamic components ( ) ( )jD y t are 

coincident indicators, and therefore must be forecasted prior to their use in equation (2). We solve this by 

forecasting the price dynamics using a polynomial-trended linear regression model with static and time-
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varying predictors and autoregressive (AR) residuals. The second challenge is that the static predictors do 

not change during the auction, and therefore their estimated coefficients are confounded with the price 

function. We solve this by transforming the static variables into time varying predictors by considering 

each static variable’s impact on the price evolution. This is done by fitting a functional regression model 

of price on each of the static predictors and then using their resulting time-varying estimated coefficient 

as a time-varying predictor in equation (1). For more details, see Wang et al. (2008). 

------------------------------------------ 
Please Insert Table 2 about here 

 ------------------------------------------- 

Extending the basic forecaster to SOAs 

As pointed out earlier, one important distinction between SOAs and traditional online auctions is 

the high level of competition that SOAs induce. We therefore set out to include the extent of competition 

into our forecasting model. To that end, we first define suitable measures of bidder competition. Bidder 

competition can manifest itself in two different forms: competition within the same auction and 

competition across different auctions. We thus term these two competition types as within-auction 

competition and across-auction competition, respectively (Dass 2008).  

We gauge within-auction competition via the number of sequential bids (head-to-head rivalry) 

between two bidders. Although there may be other forms of bidder competitions in the auctions such as 

triadic competitions (competition among 3 bidders) or competition among bidder subgroups, we only 

consider dyadic bidder competition, which is the fundamental level of bidder competition. For every 

auction, we first determine the number of unique pairs of bidders ( ,j k ) participating in that auction. 

Then for each of these bidder pairs, we count the number of times ( jkn ) the two bidders bid sequentially 

(e.g., ABA). We then measure within-auction competition as the maximum of this count (across all 

bidder pairs). Within-auction competition (wa) for auction i can thus be written as 

  max  for 1 1,  and 1i jk i iwa n j B k j B       (3) 
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where iB  denotes the number of bidders in auction i, and jkn  is the number of sequential bids between 

bidder j and bidder k. 

In contrast to within-auction competition, across-auction competition measures the competitive 

reach of a bidder pair across several auctions. Like the previous measure, we first determine the number 

of unique bidder pairs. Then, for each bidder pair, we count the number of auctions in which the pair is 

competing simultaneously. For each auction, we subsequently compute the maximum count across all 

pairs. Therefore, across-auction competition (aa) for auction i is given by  

  max  for 1 1,  and 1i jk i iaa cl j B k j B       (4) 

where iB  denotes the number of bidders in auction i and jkcl  the number of common auctions bid by 

bidders j and k. This across-auction competition measure uses similar underlying concept as used by 

Gupta (2002), but extends it to represent the competitive intensity at dyadic bidder level. 

We include our two competition measures into Equation 1 as follows: 

( )

1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
Q Q QJ L

j
i i j i i i i l

i j i i l

y t x t D y t wa t aa t y t l t      
    

             (5) 

   In the next section we discuss how we implement the dynamic forecaster within the intelligent bidding 

system.  

Implementing the Dynamic Forecaster on SOA art data 

Our process starts with first estimating the functional objects related to an auction’s price path. To 

that end, we use monotone smoothing splines (Ramsay and Silverman 2005; Simonoff 1996), which 

guarantee continuous and monotonically non-decreasing price representations. See Appendix A for 

further details on smoothing. The smoothed price curves and their first derivatives (i.e., price velocity) for 

our 199 auctions are shown in Figure 2. The average price and price velocity plots show that the price 

formation is fast at the beginning and near the end of the auction. Also note that the average price velocity 
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(i.e., the rate of change in price) nearly doubles towards the end of the auction compared to the beginning 

of the auction.  

To estimate our forecaster’s coefficients, we randomly partition the data into a training set (70% 

or 137 auctions) and a holdout set (30% or 59 auctions), where the training set is used to estimate the 

model, and the holdout set is later used to measure predictive accuracy. The resulting estimated 

coefficients for the forecaster are shown in Table 3. Further, we test the sensitivity of our forecaster to 

different training and holdout set proportions by gradually moving from a 10% training-90% holdout 

configuration to a 90% training-10% holdout allocation. Results (Figure 2) show that our forecaster's 

performance is rather unaffected by the proportions of training and holdout sets. In fact, the MAPE 

remains almost constant for configurations 50%-50%, 60%-40%, 70%-30%, 80%-20%. and 90%-10%. 

------------------------------------------ 
Please Insert Figure 2 and 3 about here 
--------------------------------------------- 

------------------------------------------ 
Please Insert Table 3 about here 

--------------------------------------------- 
  As the primary goal of this paper is predictive, our main emphasis is on the forecasting 

performance of the models, rather than on inference. From Table 3, we see that four static predictors are 

significant: opening bid (at the 5% level), previous auction history of the artist, size of the art item, and 

media of art (i.e. canvas or paper work) (at the 1% level). The effect of these static predictors on the final 

price has already been shown in prior research. In particular, the positive effect of the opening bid reflects 

the direct relation between an item’s value and the choice of the starting price. This is in accordance with 

findings from prior studies (Bajari and Hortacsu 2003; Czujack, Flores and Ginsburgh 1996). The 

negative effect of an artist’s previous year’s values on this year’s price could imply that bidders are 

looking for “bargains” (i.e., artists that had low values in the previous year) and are willing to bid rather 

aggressively for them. We also find a negative effect of the size of the art works on price, which is in 

accordance with the findings of Czujack et al. (1996).  Prior study on the effect of the art medium on the 

price formation process (Reddy and Dass 2006) found no significant effect of canvas on price, but 

interestingly, we do find a significant negative effect of the predictor.  
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In addition to static predictors, our model also has dynamic components such as time-varying 

coefficients and static variables that are transformed into time varying predictors via functional regression 

weighting. The impact of each of these predictors can now be assessed at different times of the auction. 

Figure 4 displays the time-varying coefficient-curves (together with associated confidence bands). 

Examining the different coefficients, we see that size has a significant negative effect at the beginning of 

the auction, but becomes positive only at the end of the auction. This indicates that smaller art objects are 

more expensive than bigger ones, in accordance with the findings of Czujack et al. (1996), and that 

bidders take this into consideration early in the auction. The auction history is found to have an initial 

negative effect, but becomes positive as the auction progresses. This indicates that while bidders may be 

shopping for “bargains” early on, as the auction comes to a close they trust more artists who have 

previously done well. We also find the art medium (i.e., works on canvas) to have a negative effect early 

in the auction, but it becomes positive as the auction progresses. Interestingly, this is different from what 

an earlier study found with a different auction dataset (Reddy and Dass 2006), where no significant effect 

was found on the price formation. Finally, we find that the opening bid has an initial positive effect that 

later switches to a negative effect at the auction end. This finding is similar to that of Reddy and Dass 

(2006) and suggests that bidders initially draw information from the opening bid, but then gradually 

discount this information as more signals come in from competing bidders. 

Note that the effects of within-auction competition on price are significantly positive in the earlier 

part of the auction, but later become insignificant. This result is in line with the findings from earlier 

studies on bidder competition (Ariely and Simonson 2003; Dass 2008; Heyman, Orhun and Ariely 2004). 

We also find a negative effect of across-auction competition in the first part of the auction, in line with the 

findings of Gupta (2002) and Dass (2008). Our estimated model for price velocity is a linear regression 

with quadratic trend (K=2) and three static predictors. Figure 5 illustrates the accuracy of the price 

velocity prediction for four randomly selected auctions (#12, #26, #39 and #54).  For each of these 

auctions we see that the true and forecasted price curves are close for all but auction #39, where the 

velocity is under-predicted.  
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To evaluate predictive accuracy we use the mean absolute percentage error (MAPE) computed on 

the holdout set. MAPE is computed as the difference between the forecasted curve and the true curve. 

Figures 7a and 7b compare the predictive power of our model (denoted DF) with other competing 

forecasting models (DF-0, DF-I) which we will discuss in later sections. Recall that we observe the first 

75% (or 54 hours) of the 3-day auction, and forecast the last 25% (or 18 hours). Figure 6 shows price 

forecasts for the same four auctions as in Figure 5. We see that while the velocity (Figure 5) is forecasted 

very accurately for auction #12, its price is not. More importantly, we can see that the forecaster 

accomplishes dynamic and real-time forecasts, and “customizes” its forecast for each individual auction, 

depending on that auction’s dynamic environment. 

------------------------------------------ 
Please Insert Figures 4, 5, 6, 7a and 7b about here 

--------------------------------------------- 

Robustness of the Dynamic Forecaster  

The intelligent bidding system requires ongoing forecasts during the entire SOA duration. In the 

above analysis we forecast the last T=18 hours. We now evaluate the robustness of our results to the 

choice of T. Intuitively, the forecast accuracy should decrease as we forecast further into the future. To 

this end, we compare several values of T: forecasting only the last T=7 hours prior to the end of the 

auction (10% time remaining), the last 11 hours (15%), 14 hours (20%), 22 hours (30%) and 29 hours 

(40%). For each of these time periods, we proceed exactly as in Figure 6. The results are shown in Figure 

8, where we also compare the robustness of our model to the competing models. We find that the 

predictive accuracy is nearly unaffected by T. We conclude that our forecasting model achieves very high 

prediction accuracy. In the next section, we explain how we can use this predictive power for making 

bidding decisions.  

------------------------------------------ 
Please Insert Figure 8 about here 

------------------------------------------ 
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Wallet Estimating Module 

To build an intelligent bidding system, it is important not only to determine how much one should 

bid, but also whether one bidder will have better odds of winning an auction compared to another  (i.e., 

which auction to bid on). To that end, it is essential to understand one’s competition. In particular, it is 

essential to understand the competitions’ financial willingness to pay. We refer to the amount that a 

competitor is capable of spending as the competitors’ WTP wallet size (or simply, wallet). See also 

Perlich and Rosset (2008).   

There are two ways for gathering information about competitors’ wallets: 1) participating bidders 

can either voluntarily provide this information at the beginning of the auction or 2) we can estimate this 

information from the bid history. Although the first approach is likely more accurate, it is not always 

feasible since individuals may view their WTP wallet as competitive advantage and may be unwilling to 

reveal this information. Our intelligent bidding system therefore assumes that a bidder knows his own 

willingness to pay, but that he has to estimate competitors’ WTP from the available bid history.  

We estimate competitors’ WTP wallets in the following way. Using the training set, we first 

determine, for each bidder, the number of auctions that he participates in simultaneously. Then, for each 

of these simultaneous auctions, we determine the bidder’s maximum bid. The sum of maximum bids 

across all simultaneous auctions measures a bidder’s total WTP wallet (since he would be held 

responsible by the auction house for exactly that amount in case of winning all auctions where he places a 

bid); in similar vein, the average of maximum bids measures the bidder’s average WTP wallet. We apply 

this procedure to all bidders in the training set, which yields wallet estimates of all competitors 

individually. However, in an auction, a bidder competes against all competitors simultaneously. As a 

result, the bidder will only win that auction if his WTP is larger than the maximum of all competitors’ 

average WTP wallets; we refer to the resulting value as the maximum competitors’ auction WTP wallet, 

or auction wallet, for short. The distribution of the auction wallet is shown in Figure 9. 

The ‘auction wallet’ is the amount a bidder must match in order to have a realistic chance of 

winning that auction. However, the auction wallet depends on the value of the item (i.e., the maximum 
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competitor’s willingness to pay will be larger in auctions selling more valuable items). In order to adjust 

the auction wallet relative to an item’s value, we regress it on the pre-auction estimate. An items’ pre-

auction estimate is an estimate of the item’s value, provided by several art experts and published by the 

auction house before the start of the auction. It indicates the quality of an item and bidders typically use it 

as a reference point to select the auctions they want to participate in. We use this regression model to 

predict the auction wallet for the holdout sample. Given this prediction, a bidder will only place a bid if 

his own WTP is not (significantly) smaller then the estimated auction wallet of all competitors.  

Bid Strategizer Module 

The third component in our intelligent bidding system is responsible for placing the price 

forecaster and the wallet estimator into a decision framework. The system first creates a priority list by 

ranking all auctions from lowest to highest anticipated price, and it then sequentially moves down the list. 

If the forecasted price of an auction is less than the bidder’s own WTP and if the bidder’s own WTP is 

larger than the auction wallet of all competitors, then the system will place a bid5. Otherwise the system 

will not bid in that auction and it will move on to the next auction in the list. If the system places a bid, it 

will bid the forecasted price. See Figure 1 for a flowchart of the process. We call this process an 

“intelligent strategy”. 

 
------------------------------------------ 
Please Insert Figure 9 about here 

--------------------------------------------- 

Bidding System Evaluation 

     

The goal of the intelligent bidding system is to optimize bidders’ use of their own WTP wallets 

and to increase their chances of winning an auction. We therefore evaluate our system using two key 

performance indicators: bidder surplus and percentage of items won. The latter indicator is directly 

available from the bidding system, which computes the number of auctions each bidder wins. We define a 
                                                       

5 We also explored a strategy where the bidder’s WTP wallet is not highest than the maximum of the competitors’ WTP wallets, but rather 
higher than the 75th and 90th percentiles. See Appendix B for details. 
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“win” if the forecasted price (i.e., the amount the system bids on behalf of the bidder) is higher than the 

actual realized price of the auction. Bidder surplus is computed as the difference between the forecasted 

price and the bidder’s average WTP wallet size; i.e., his average financial commitment per item. We 

examine the performance of the intelligent bidding system under four different forecasters (DF-00, DF-0, 

DF-I, DF), and under four types of bidding strategies (intelligent, early bidding, late bidding, and risk-

averse). We describe each of these forecasters and bidding strategies below. 

 We assume that our bidding system makes a recommendation for a randomly selected bidder (and 

only for one bidder at a time) bidding on a randomly selected auction from the holdout sample. Since 

different bidder WTP wallets (large vs. small) can have a different impact on the performance of our 

bidding system, we draw a bidder’s WTP wallet randomly from the bidder WTP wallet distribution as 

shown in Figure 11b. This bidder now bids according to the different bidding strategies.  

Alternative Forecasters 

Our forecaster is one that incorporates both static and dynamic information about price, 

competition and other auction components. We call this forecaster DF (Dynamic Forecaster). To evaluate 

the effectiveness of the dynamic forecaster on the performance of the intelligent bidding system, we 

compare it to three simpler forecasters:  The first, DF-I, is identical to our dynamic forecaster in terms of 

the information that it uses, except that it excludes the price dynamics component. The second forecaster, 

DF-0, is a regression-based forecaster that takes into account only information that is known at the start of 

the auction (Lucking-Reiley et al. 2007) but adds to that the price at the time of forecasting. The third 

forecaster, DF-00 assumes that data in the past are correlated with data in the future, but it does not make 

explicit use of any auction characteristics. In this case, we compute the average (final) price of all the 

auctions in the training set and forecast every auction from the holdout set using that number. Since our 

bidding system is modular, we can simply exchange, say, DF by DF-I, DF-0, or DF-00 and measure the 

corresponding results.  
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Alternative Bidding Strategies  

To evaluate the usefulness of our automated and intelligent bidding system, we consider and 

simulate three alternative bidding strategies that are often observed in online auctions: early bidding, late 

bidding, and risk-averse bidding. These three strategies distinguish themselves from our approach in that 

they are not automatic and imitate human bidders. Early bidders are bidders who place bids at early stages 

of the auction. This is similar to Early Evaluators as classified by Bapna et al. (2004). Late bidders are the 

bidders who bid near the end of the auction (termed Opportunists by Bapna and his colleagues).  

Simulating Early-bidding (NAÏVE-I):  To simulate early bidding, the bidder is allowed to bid 

at the beginning of the auction with 90% of his average WTP wallet value (his/ her average 

financial commitment per item).  The bidder wins the auction if the bid amount is more than the 

final realized price of the auction and his/ her WTP wallet value is greater than the auction wallet 

for the item.  

Simulating Late-bidding (NAÏVE –II): To simulate late bidding, the bidder is allowed to bid 

after the second-last bid with an amount that is 20% more than the second last bid but less than 

the bidder’s average WTP wallet. The bidder wins the item if the amount is more than the 

realized price in the auction and his/ her WTP wallet value is greater than the auction wallet for 

the item.  

Simulating Risk-averse bidding (NAÏVE – III): Before an art auction starts, the auction house 

carefully prepares the event catalog which includes each item’s pre-auction estimate. These 

estimates are prepared by art experts and indicate the current market value of an item. If a bidder 

is risk-averse, s/he will only bid up to that pre-auction estimate. Therefore, we simulate a risk-

averse bidding strategy by allowing the bidder to bid on the item if his/ her average WTP wallet is 

greater than the pre-auction estimate and greater than the auction wallet for the item.  
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Results 
 

We implement the three alternative forecasters and three alternative bidding strategies on the 

holdout sample, using a forecasting window from T=0.76 (approx. 18 hours before the auction end) to 

T=0.99 (approx. 43 minutes before the end). We repeat the experiment 50 times. We find that SOABER 

(using the DF forecaster) outperforms all other combinations both in terms of bidder surplus and 

percentage of items won (Figure 10).  

------------------------------------------ 
Please Insert Figure 10 about here 

--------------------------------------------- 
 

Figure 9 suggests that bidder surplus tends to be higher for our intelligent bidding system (using 

the DF forecaster) compared to the DF-1, DF-0 and DF-00 forecasters and to the three naïve bidding 

strategies. Interestingly, the winning percentage of our system is very close to that of the late bidding 

strategy (naïve –II)6. This is not too surprising because late bidding is an aggressive bidding strategy 

aimed at maximizing wins (but not necessarily surplus) and also found to be a  popular and successful 

strategy in other online auction formats such as in E-Bay (Bajari and Hortacsu 2003). To investigate the 

robustness of our decision criteria to varying bidding thresholds (i.e., change the % of competitors' WTP 

wallets), we modify our bidding system to allow bidders to bid if their wallet is 90%, 75% and 50% of the 

auction wallet. Results from this additional experiment are shown and discussed in Appendix B. 

To verify the robustness of our approach, we analyzed data collected from a different auction held 

in May 10-12, 2006. In this auction event, 146 items from 41 artists were sold to 195 participating 

bidders, posting 1866 bids. The average number of bids per item was 13 and the average number of 

bidders participating in an auction was 6. The average value realized for all 146 items was USD $85,787, 

ranging between $4,496 and $687,500. We found that our model DF is still the most effective forecaster 

                                                       
6 We also performed a pair-wise T-test between IBS with DF and IBS with DF-00, DF-0, DF-I, NAÏVE-I, NAÏVE-II, NAÏVE-III and found 

IBS with DF-I to generate significantly (C.I. = 95%) more bidder surplus at each of the forecasting windows (t=0.76 to t=0.99) than other 
methods. Winning percentage of DF was found not to be different than DF-I and NAÏVE-II.  
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in comparison to the alternative models. We also found that our approach outperformed other heuristics 

both in terms of bidder surplus and winning percentage. Results can be obtained from the authors upon 

request.  

 

Conclusion and Future Directions 

During the last two decades, the art market has become one of the most dynamic markets in the 

world, posting 25.4% growth annually (ArtPrice 2006). In 2007, global public auctions (which constitute 

only 20% of the overall art market) generated $9.2B, which is up 43.8% compared to 2006 fine art market 

revenue (ArtPrice 2007). The remaining 80% of the market is dominated by private dealing and sales 

through art exhibitions, which are expected to result in a total market capacity of $50B. Indian 

contemporary art, the context of our study, is one of the most dynamic segments of the art market with a 

growth of 480% during the last 10 years. As a dynamic art movement, it is now in fourth position, just 

behind English Pop Art (ArtPrice 2007). Indian artists have also enjoyed the sharpest inflation during the 

last 10 years. For example, a $100 investment in the works of the prominent Indian artist Francis Newton 

Souza would have generated an average of $7,227 in 2007. With the growing use of online auctions, the 

increasing art prices and the real time availability of streaming bidding data, there is an urgent need to 

provide art investors, collectors, and auction houses with better decision-support tools.  

In this paper we propose a novel intelligent bidding system based on dynamic forecasting that 

supports decision making in simultaneous online art auctions. The system monitors and evaluates 

streaming bidding information on multiple simultaneous auctions, and suggests which items to bid and 

how much to bid. The system maximizes bidder surplus and the chances of winning an auction relative to 

alternative bidding strategies.    We also point out that SOABER illustrates a flexible dynamic bidding 

decision framework that can be applied beyond the boundaries of art markets. For instance, such a system 

can be applied to eBay auctions where all types of items are auctioned. It can also be used in other 

simultaneous auction settings such as jewelry auctions, FCC Spectrum auctions, timber and car auctions 

provided bid histories are readily available. Although the system is developed for simultaneous auctions, 
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it can be modified for sequential auctions of high value items such as Intellectual Property Auctions. We 

hope that this research will encourage more advanced decision tools in other dynamic financial markets.  

 
Appendix A: Estimating Price Curves from Observed Bid Histories 

 

Data Pre-Processing: The first step is to recover a smooth price curve from the observed bid history. 

This recovery stage often needs to be preceded by data preprocessing. Let ( )j
iy  denote the bid placed at 

time ijt . To better capture bidding activity at the beginning and near the end of the auction, we transform 

the bids into their log score. Next, we linearly interpolate the raw data and sample it at a common set of 

time points ,0 3,  where 1,...i it t i n    in order to account for the irregular spacing of the bid arrival. 

Thus, each auction can be represented by a vector of equal length   

 ( ) ( ) ( )
1( ,..., )j j j

ny y y  (0.1)  

which forms the basis for the smooth price curves. 

 

Recovering the Underlying Price Function:  To recover the underlying price curves, we use penalized 

monotone curves (Ramsay and Silverman 2005; Simonoff 1996), which provide both small local 

variation and overall smoothness. They also readily yield higher-ordered derivatives of the target price 

curve as desired in our case. We first start with selecting an appropriate basis function for the price 

dynamics. Our choice of the b-spline basis function is based on its common used in cases when the data 

are not periodic. Next, for every auction, we express a price function w(t) as a linear combination of a 

basis function ( )k t . Therefore,  

                                                               
1

( ) ( )
K

k k
k

w t c t


                                                   (0.2) 

where kc is a constant and k ranges from 1 to K basis functions. Then, we fit the data by minimizing the 

error sum of squares by 

( ) 2

1

[ ( )]
n

j
j j

j

SSE y f t


                                         (0.3) 

where yj is the price of item j observed in time tj. j is 1…100 in our case and f(t) is the price function that 

fits the observed values. A roughness penalty function is imposed to measure the degree of departure 

from the straight line  

 
2

( )m
mPEN D f t dt                              (0.4) 
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 where Dm f, m =1, 2, 3 …., is the thm derivative of the function f. The goal is to find a function f (j) that 

minimizes the penalized residual sum of squares                      

           
2

,

n
j j j j
m i i mPENSS y f t PEN         (0.5) 

 where the smoothing parameter  provides the trade-off between fit [(yi
(j) – f (j)(ti))

2] and variability of the 

function (roughness) as measured by mPEN .7  We use the monospline module developed by (Ramsay 

2003) for minimizing ( )
,
j
mPENSS .  

Appendix B: Robustness Test of the Decision Criteria 

Decision Criteria Bidder Surplus Winning Percentage 
Mean Median Standard 

Dev. 
Mean Median Standard 

Dev. 
Bidder’s WTP 
wallet is more than 
Competitor’s WTP 
wallet 

$184,243 $178,124 $37,806 5.92% 6.00% 2.57% 

Bidder’s WTP 
wallet is more than 
90% of 
Competitor’s WTP 
wallet 

$169,740 $169,110 $39,406 7.08% 8.00% 2.88% 

Bidder’s WTP 
wallet is more than 
75% of 
Competitor’s WTP 
wallet 

$149,857 $151,528 $40,921 9.00% 10.00% 2.99% 

Bidder’s WTP 
wallet is more than 
50% of 
Competitor’s WTP 
wallet 

$117,573 $116,077 $31,417 14.00% 14.00% 3.41% 

 

                                                       
7 Sensitivity tests are performed with different values of p (4, 5, 6 were used) and 14 different values between  

towere usedWe find the model fit to be insensitive to different values of p and  . However, the RMSE for the model is the 
lowest with p=4 and Thus, we use these smoothing parameters in recovering the price curves.  
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Tables: 
 

 Mean 
(SD) 

Median Min. Max. 

No. of Unique Bidders/ Lot 6.35 
(2.47) 

6 2 14 

No. of Unique Lots Bid / 
Bidder 

4.93 
(7.95) 

3 1 65 
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No. of Bids/lot 15.47 
(7.46) 

15 2 48 

Opening Bid in $ $19,343 
($36,663) 

$6,400 $650 $300,000 

Bid in $/lot $34,824 
(10,957) 

$11,576 $650 $1,486,100 

Pre-Auction Low Estimates 
of the Lots 

$24,128 
(45,747) 

$8,000 $795 $375,000 

Pre-Auction High Estimates 
of the Lots 

$31,065 
(60,351) 

$10,230 $1,025 $475,000 

Realized Value of the Lots 
in USD($) 

$62,065 
(133,198) 

$22,000 $3,135 $1,486,100 

Realized Sq. Inch Price of 
the Lots in USD($)/ Sq. Inch 

$108.77 
(225.49) 

$45.12 $1.40 $1,865.42 

 
Table 1: Summary Data Description 

 
 
 
 
 
 
 
 
 
 
 
 
Category Covariates Description 
Static Predictors 

1 

Opening Bid Opening bid is the first bid in the auction.  
Size of the Item It is the dimension of the artwork in 

square area. 
Type of Artwork Artworks can be categorized into works 

on paper and works in canvas. We used an 
indicator variable in our model to indicate 
whether the item is a canvas work or not. 

Artist Reputation The artists are categorized into established 
artists and emerging artists.  

Previous Auction History The price/sq. inch of the artworks of the 
artists in the previous years  

Current Price  
2 Current and previous price (price 

path) 
Price lags at time t, t-1… 
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Price Dynamics  
3 Price Velocity  First derivative of price at time t  
Competition   

4 

Within-auction competition This indicates the current level of within-
auction competition in the auction.  

Across-auction competition This indicates the current level of across-
auction competition in the auction. 

 

Table 2: Predictors Used in the Model 

 

  
** Significant at 0.01 level 
   * Significant at 0.05 level 
 

Table 3: Parameter Estimates of the Models in the Training Set 
 
Figures 

 

Types of Predictors Covariates Coefficients 
(Std. Error) 

Static Predictors Opening Bid 0.002* 
(0.0012) 

Previous Auction History of 
the artist 

-0.0027** 
(0.0002) 

Size -0.0012** 
(0.0023) 

Canvas -0.0004** 
(0.0008) 
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Figure 1: SOABER Framework 
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Figure 2: Price Dynamics for 199 Lots Sold in the Online Art Auction 
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Figure 3: Sensitivity test of the Forecaster 
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Figure 4: Parameter Estimates of Time-varying Covariates in the Model with Training Set 
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Figure 5: Performance of Forecasting Price Dynamics of the Last 18 Hours for Four Sample 

Lots using DF 
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Figure 6: Dynamic Forecasting of the Last 18 Hours for Four Sample Auctions using DF 
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Figure 7a: MAPE of DF Model 

 

Figure 7b: MAPE of Competing Models 
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Figure 8: Comparison of Final Price Forecasting Models at different Forecasting Time 

 

Figure 9: Auction Wallet and Bidder Wallet Distributions 
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Figure 10: Bidder Surplus and Winning Percentage Comparison 
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