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Predicting Censored Count Data with COM-Poisson Regression

Abstract

Censored count data are encountered in many applications, often due to a data collection mecha-
nism that introduces censoring. A common example is questionnaires with question answers of the
type 0,1,2,3+. We consider the problem of predicting a censored output variable Y, given a set of
complete predictors X. The common solution would be to use adaptations for Poisson or negative
binomial regression models that account for the censoring. We study two alternatives that allow for
both over- and under-dispersion: Conway-Maxwell-Poisson (COM-Poisson) regression, and gener-
alized Poisson regression models, each with adaptations for censoring. We compare the predictive
power of these models by applying them to a German panel dataset on fertility, where we intro-
duce censoring of different levels into the outcome variable. We explore two additional variants:
(1) using the mean versus the median of the predictive count distribution, and (2) ensembles of
COM-Poisson models based on the parametric and non-parametric bootstrap.

Keywords: over-dispersion, under-dispersion, predictive distribution, mean versus median

predictions, ensembles

1. Introduction

Count data with censoring are encountered in various applications. One common context is
in data from questionnaires, where the question of interest asks about counts of some event, but
allows only a set of answers such as 0, 1,2,3+ (see e.g., Terza, 1985). An example is the question
in the 2000 U.S. Census individual census report: “How many people, including yourself, usually
rode to work in the car, truck, or van last week?” with possible answers 1,2, 3,4,5,6, 7+. Census
block-level data based on this question could be used, for instance, by a car rental company or car
sharing service (such as Zipcar) for placing the right size of vehicles in different locations. Given
the census data, the company would predict the distribution of needed passengers-per-car for a
certain location.

Censored data frequently occur in epidemiological studies where right censoring occurs due to
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durations that extend beyond the study period. For example, Embury, Elias, Heller, Hood, Green-
berg, & Schrier (1977) reported the remission length (in weeks) for acute myelogenous leukemia
patients. Another context is data disclosure of sensitive information, where censoring might be
used to protect individual confidentiality associated with large count information while still provid-
ing data access (see e.g., Jenkins, Burkhauser, Feng, & Larrimore, 2009). Predicting the outcome
in such applications is obviously useful for many purposes.

Right-censored count data would also arise in applications where there is some capacity limita-
tion. For example, the number of patient appointments at a clinic, the number of customers being
served at a restaurant during a certain time period, or the number of cars parked at a parking
lot. Although the number of arrivals in each of these cases can exceed the capacity, measurement
devices might only be able to measure occupancy up to the capacity. Yet, such data could be useful
for determining capacities of new operations (e.g., staffing in a new clinic, the number of tables
and staffing of a new restaurant, or the expansion of a parking lot).

A variety of regression models are available for modeling censored numerical data, ranging from
parametric models (known as accelerated failure time models) to the popular semi-parametric Cox
model. For count data, however, the choice of regression models that can account for censoring
is limited. Censored Poisson regression is the most widely used among such models (see e.g.,
Brannas, 1992; Terza, 1985), while for over-dispersed data, an adaptation of the negative binomial
regression is used (see e.g., Chapter 9 in Hilbe (2007), or Caudill & Mixon (1995)). Famoye & Wang
(2004) proposed a censored generalized Poisson (GP) model, which accommodates both over- and
under-dispersion (see also the application by Mahmoud & Alderiny (2010)).

While the literature on censored count data has focused on inference, to the best of our knowl-
edge, there has not been much in the way of prediction. Because inference and prediction are
different purposes and prescribe different modeling steps (Shmueli, 2010; Shmueli & Koppius,
2010), results from studies focused on inference do not shed light on predictive power; for example,
a model might be inferior in terms of parameter bias, but superior in terms of predictive accuracy.
This paper is therefore focused on investigating regression models for count data with censoring in
terms of predictive behavior.

The paper is organized as follows: In Section 2, we describe three regression models for count

data with censoring. Two are existing models, namely, Poisson and GP, and one is a new adaptation
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of the flexible COM-Poisson regression model by Sellers & Shmueli (2010). We describe model
estimation for these models and then discuss approaches for generating point predictions for count
data, and for creating ensembles using parametric and non-parametric bootstrap. In Section 3, we
apply the different models and compare their predictive performance by analyzing a dataset on
fertility, where we artificially add different levels of censoring to the outcome variable. We conclude

with a discussion in Section 4.

2. Regression models for count data with censoring

In this section, we present three regression models for count data with censoring. In all cases,
we use the following notation: Y is the count output vector, X is a matrix of predictors with a
first column of 1’s (the design matrix), 3 is the parameter vector, and ¢; is a censoring indicator,

denoting whether observation i is censored (d; = 1) or not (§; = 0).

2.1. Poisson regression with right-censoring
The most common regression model for censored count data is the Poisson model. Its log

likelihood can be written as
n
> (1 — i) log P(Y; = y;) + d; log P(Y; > y;) (1)
i=1
= > (1— ) [yilog Ai — log yi! — \i] + 6; log P(Y; > ).

i=1

log L

Parameter estimation is obtained by numerically maximizing the likelihood function. This is im-
plemented in various statistical software packages (e.g., the function vglm with family cenpoisson,

contained in the VGAM package in R).

2.2. Generalized Poisson (GP) with censoring
Famoye & Wang (2004) introduced the censored two-parameter GP regression model, with

log-likelihood given by

n

logL = Y (1—8)log P(Y; = yi | i, ) + 6;log P(Y; > yi | i, ) (2)
=1
- i(1 i
= 300 6 (o — 081+ ) + (5~ 1)log(1 + o) — logyt - 41T

i=1

where pu; = E(Y;) and « denotes the dispersion parameter. Parameter estimation is obtained by

maximizing the log likelihood, under the constraint oo > —2/ max(u;).

3
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2.8. COM-Poisson regression with censoring

We introduce the censored COM-Poisson regression, which is an adaption of the COM-Poisson
regression described in Sellers & Shmueli (2010). This section briefly outlines the COM-Poisson
distribution for count data, the COM-Poisson regression model, and the new adaptation for right-

censored data.

2.3.1. The COM-Poisson Distribution
The COM-Poisson distribution is a two-parameter generalization of the Poisson distribution,
which also includes the geometric and Bernoulli distributions as special cases (Shmueli, Minka,

Kadane, Borle, & Boatwright, 2005). The probability distribution function of Y is given by

\Y

PY=y)=——-—— y=0,1,2,..., 3
N I ZEN )
where A > 0, v > 0, and Z(\,v) = Z‘;’;O(;\% is a normalizing constant. The COM-Poisson

distribution generalizes the Poisson distribution (v = 1), the geometric distribution (v = 0 and
A < 1), and the Bernoulli distribution (1/ — oo with probability AL—H)
The mean of the COM-Poisson distribution does not have a simple closed form. It can be

written as

_\OlogZ(\v) oy vl

E(Y 4
( ) 8)\ 21/ Y ( )
where the approximation holds for A > 10” or v < 1; see Minka, Shmueli, Kadane, Borle, &
Boatwright (2003) for further details. Closed-form formulations that relate the mean to the pa-

rameters \, v are

_ Odlog Z(\,v)
E(Y)= T Ologx (5)
E(Y") = A, (6)
and
E(errl) _ A[E(Y + 1)]1_V r=0 (7)

AZEYT) +EY)EXY") r>0.

2.83.2. COM-Poisson regression model
Sellers & Shmueli (2010) introduced a COM-Poisson regression model that relates a count

variable Y to a function of predictors X through the link function log A = X’3. The log-likelihood
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function is given by
log LA, vly) =Y yilog i — vy _logy! = > log Z(Ai,v). (8)
i=1 i=1 i=1

Maximum likelihood parameter estimates can be obtained by directly maximizing Equation (8)
under the constraint v > 0, using a constrained nonlinear optimization tool (e.g., nlminb in R).
An alternative is to write the log-likelihood as a function of log v, and then maximize it using an
ordinary nonlinear optimization tool (e.g., nlm in R). A third option for obtaining the maximum
likelihood estimates is to use the GLM framework to formulate the likelihood maximization as
a weighted least squares procedure and to solve it iteratively. For further details, see Sellers &

Shmueli (2010).

2.3.3. COM-Poisson regression model with right-censoring
To incorporate censoring, we use the classic approach of introducing a censoring indicator

variable, §;. The log-likelihood function is given by

logL = > (1—8)log P(Y; =)+ 6ilog P(Y; > y;) (9)
i=1
= Z(l —9;) [yilog A; — viogy;! —log Z(\;,v)] + d;log P(Y; > ),
i=1

1A
where P(Y; > y;) =1— ?;;01 IR (i, v).

Model estimation

As in the ordinary COM-Poisson regression model, parameter estimates can be obtained by
maximizing the log likelihood in Equation (9) under the constraint v > 0, or by writing the log-
likelihood as a function of log v and then maximizing it using an ordinary, unconstrained nonlinear
optimization tool. A third alternative is to use the score functions (given in Appendix A) and

equate them to zero.

2.4. Generating point predictions: mean and median

In Poisson and GP regression, the mean of the response distribution (E(Y')) is related to

the predictors via the function E(Y) = exp(X3). The common approach for generating point
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predictions is therefore via ¥ = exp(X/3), that is, using the mean of the (back-transformed) pre-
dictive distribution. In the COM-Poisson regression, however, the relationship between E(Y') and
log(A) = X 3 is more complicated (see Section 2.3.1). One approach for obtaining the predictive
mean is to use the approximation in Equation (4) by plugging in A = exp(X B) While Minka et al.
(2003) note that the mean approximation is theoretically accurate only for A > 10, Geedipally,
Guikema, Dhavala, & Lord (2008) show that the approximation is still reasonable in cases where
the A is “substantially below the lower bound suggested”.

An alternative to using the predictive distribution mean as a point prediction is to use the
median. The median has two advantages over the mean in count model prediction: (1) the median
produces integer predictions, similar to the scale of the original Y, which in some applications might
be required; and (2) the median is a better and more robust central tendency measure in skewed
distributions, which are common with count models. In the case of the COM-Poisson distribution,
the median has also been shown to produce better fitted values for data without censoring when
the criteria for the mean approximation are not satisfied (Sellers & Shmueli, 2010).

Computing the median for the Poisson, GP, and COM-Poisson regression models is simple
and fast. To compute the median for observation 4, which is the inverse cumulative distribution
function (CDF) at 0.5, we simply compute the individual probabilities P(Y; = 0), P(Y; = 1),...
consecutively until their sum exceeds 0.5. For the COM-Poisson, we can also use the relationship

v
PYi=yi) = (%) x P(Y; = y; — 1) to compute consecutive probabilities even faster.

2.5. COM-Poisson ensembles via resampling

A popular method for increasing predictive power is via ensembles. Ensembles are achieved by
combining point predictions from multiple models and/or multiple datasets. We use this motivation
to generate COM-Poisson ensembles, based on resampling the training data. We can employ either
parametric or non-parametric bootstrapping for generating the resamples. We use the subscript ¢
to denote training data and h to denote holdout data.

For parametric resampling, we use the coefficients estimated from the training data (3,) along
with the predictor values in the holdout data (X j) to simulate multiple sets (resamples) of predicted
values (Y). For non-parametric resampling, the training data ({X;,Y}) are resampled directly
to produce multiple training sets. Then, a COM-Poisson model is fitted separately to each of the

resampled training sets, and used to predict the holdout data. Note that both parametric and

6
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non-parametric resampling create multiple predictions for each observation in the holdout set. We
combine these multiple predictions into a single, improved, prediction by computing their average
or their median.

Jung, Jhun, & Song (2006) note that, in the case of censored data, the two bootstrap approaches
differ in terms of how the censoring operates on the resamples. In parametric bootstrap, the
censoring depends on the resampled Y whereas in non-parametric bootstrap, the censoring is fixed
at the same covariate pattern as in the original data. Jung et al. (2006), who used resampling to
compute standard errors in the context of inference, found that the two methods produce similar
results for the Poisson and negative binomial censored regression models in terms of standard
errors. Nevertheless, they did not consider the effect on predictive power. In the predictive context,
we note another difference between parametric and non-parametric bootstrap: in the parametric
bootstrap, resampling is applied to the holdout data (X},) while, in the non-parametric bootstrap,
resampling is applied to the training data (X;). In Section 3 we evaluate empirically the effect
of using parametric versus non-parametric bootstrap on the predictive power of COM-Poisson

censored regression models.

2.6. Evaluating Predictive Accuracy

To evaluate predictive power, if the dataset is sufficiently large, a common approach is to
partition the data into a training set and a holdout set. The training set is used to estimate
the model, and predictions on the holdout set are used to evaluate predictive power. In smaller
datasets, cross-validation is a common alternative.

Measures of predictive power are typically based on prediction errors, which are the differences
between the actual values (V},) and the point predictions (Y},). We use several predictive summaries,

including:

1. Root-mean-squared-error (RMSE), given by \/% Yel= \/% S (yi — )%

2. Median-absolute-percentage-error (MdAPE), where the absolute-percentage-error (APE) for
observation i is given by | % | and MdAPE is the median across the APE values. We use
MAJAPE in place of the more common mean-absolute-percentage-error (MAPE) due to the

nature of count data, which typically involve zero counts, thus leading to infinite or undefined

APE values (Armstrong & Collopy, 1992).
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3. Mean-absolute-scaled-error (MASE) is defined as MASE = mean(| ¢; |), where the scaled

errors are ¢; = and the scaling in the denominator is computed from the training

set (Hyndman & Koehler, 2006). Like MAAPE, MASE avoids any problems in the case of
zero counts.

4. Several score metrics for count data that are based on the predictive distribution, proposed
by Czado, Gneiting, & Held (2009) (averaged over the holdout data):

(a) Logarithmic score, logs = —logp,, where p, is the predictive distribution at the ob-

served count value, x

b

(c

(b) Quadratic score, gs = —2p, + ||p||?, where ||p||> = Y32, P
)
(d) Ranked probability score, rps = > o7 ({px — Lpy<k }>
)

)

Spherical score, sphs = ﬁ

Squared error score, ses = (x—pup)?, where pp is the mean of the predictive distribution

(e
(f

T—Kp

2
e ) + 2logop, where op is the standard deviation

Dawid-Sebastiani score, dss = (

associated with the predictive distribution.

In all cases, lower scores denote higher predictive accuracy.

3. Example: Fertility Data

We compare the predictive performance of the three models and the two ensembles by applying
them to a dataset on womens’ fertility, introduced by Winkelmann (1995) and used in McShane,
Adrian, Bradlow, & Fader (2008). The dataset is from the 1985 German Socio-Economic Panel,
and includes information on 1,243 women over age 44 who are in their first marriage. The outcome
variable is the woman’s number of children, while predictors include demographic information such
as religion, general education, and age at marriage. Our goal is to accurately predict the number
of children that a woman has, based on her demographic information. These data were found to
be underdispersed.

We start by partitioning the dataset into a training set (994 records, i.e. approximately 80%
of the full dataset) and holdout set (249 records, or approximately 20% of the full dataset). The

training set is used for fitting all models and the holdout set is used to evaluate prediction accuracy.
3.1. Performance on Uncensored Data

We first fit the ordinary Poisson, COM-Poisson, and GP regression models to the uncensored

training data, and generate predictions of the holdout data. The predictive accuracy summaries

8
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are given in Table 1 (Columns 2-4), and the corresponding prediction error distributions are shown
in Figure 1. We do not consider censored negative binomial regression here because of the un-
derdispersion in the data, which would result in the estimated model coinciding with a censored
Poisson regression. The estimated models are given in Appendix B (Table B.7). We defer the
results to the Appendix due to our focus on prediction rather than inference.

We also generate predictions using COM-Poisson ensembles produced via both parametric
and nonparametric bootstrapping. To summarize the ensemble predictions, we consider both the
associated average and median values across the 1000 predictions (i.e., the row mean and row
median). The resulting predictive accuracy summaries are given in Table 1 (last two columns) and
the scores are in Table 2. The full distributions of prediction errors for each of the four models are
compared in Figure 2.

The predictive accuracy summaries provide a mixed message. The summaries indicate that
the three models perform almost equally well when comparing median or mean predictions. The
scores are slightly in favor of the COM-Poisson model (four out of six). Meanwhile, examining the
boxplots in Figure 1 indicate that there is essentially no difference between the three models when
comparing their respective errors, based on the median or mean prediction®.

We note that for all models, the median predictions produced better RMSE and MJdAPE
values compared to mean predictions, while the opposite is true for the MASE. The ensemble
results also appear to indicate similar performance, with a slight advantage for the non-parametric
ensemble over the parametric ensemble in terms of RMSE and MASE, but a disadvantage via

larger prediction error variance when using the mean (Figure 2).
3.2. Censored Data
Next, we artificially censor the number of children (Y) in the training data to some degree.
We introduce two different levels of censoring in the following subsections.
3.2.1. Censoring to 5+

The first censoring level that we introduce is by censoring the training data such that 5 or

more children are recorded as Y = 5+. This leads to 4.93% of the training data being censored.

'The holdout data contain two outlying subjects not captured via any model considered here. One subject
(#159) is a Protestant, German woman, educated for 9 years with no post-secondary education (either vocational
or university), living in a rural area, 58 years old, and married at age 23. She has 10 children. The other subject
(#245) is a Muslim, non-German woman, educated for 8 years with no post-secondary education (either vocational
or university), also living in a rural area, and is 52 years old. She married at age 17, and has 8 children.

9
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Table 1: Comparing Predictive Accuracy with No Censoring Across Five Models. Performance across all models
appears similar.

Param boot Non-Param boot
Poisson COM-Poisson GP COM-Poisson COM-Poisson
Med/Mean Med/Mean Med/Mean Ensemb Med/Mean FEnsemb Med/Mean

Page 10 of 19

RMSE 1.260/1.235 1.261/1.236 1.260/1.234 1.274/1.235 1.260/1.231
MdJAPE 0.333/0.292 0.333/0.290 0.333/0.290  0.333/0.289 0.333/0.293
MASE  0.681/0.762 0.684/0.765 0.681/0.762 0.705/0.762 0.681/0.697

Table 2: Scoring Rule Comparisons Where No Censoring Across Several Models. Bold numbers indicate the best
score value across models.

logS QS SphS RPS DSS SES
Poisson 1.6043  -0.2479  -0.5008 2.2260 1.9574  1.5240
COM-Poisson 1.5666 -0.2617 -0.5128 2.2516 1.3919 1.5275
GP 1.5905 -0.2529 -0.5051  2.2406 1.7933 1.5226
o ; o ; o (é

JiERIES = -

o ] o

o o |-
o 0@ -
0 om |-

Y A o o o

T T T T T T
Poisson Median Poisson Mean CMP Median CMP Mean GP Median GP Mean

Figure 1: Predicting Uncensored Data: Side-by-side boxplots of prediction errors produced via median and mean
computations, respectively, from Poisson, COM-Poisson, and GP models. Distributions are nearly identical across
the three models; Median prediction distributions have lower variance.
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Figure 2: COM-Poisson Predictions for Uncensored Data: Side-by-side boxplots of prediction errors produced via
median and mean computations, respectively, from COM-Poisson, and COM-Poisson ensembles produced via para-
metric and non-parametric bootstrapping. Median prediction appears nearly identical across models; Mean prediction
is slightly different for nonparametric ensemble.

We then estimate the censored-Poisson, censored-COM-Poisson, and censored-GP models, and
evaluate their predictive accuracy. The estimated models are given in Appendix B (Table B.7).
Boxplots, summary predictive measures, and predictive scores are given in Figure 3, and Tables
3-4, respectively. The picture that emerges is very similar to the uncensored case: the prediction
error distributions and predictive accuracy summaries are approximately equal across the different
models; the median predictions produced better RMSE and MdAPE values compared to mean
predictions, while the opposite is true for the MASE; predictive scores are slightly in favor of COM-
Poisson (four out of six), and median predictions perform slightly better than mean predictions in

terms of error variance.

3.2.2. Censoring to 4+

The second, heavier, censoring that we perform is obtained by censoring the training data
such that 4 or more children are recorded as Y = 4+. This leads to 8.65% of the training data
being censored. We then estimate the censored-Poisson, censored-COM-Poisson, and censored-

GP models, and evaluate their predictive accuracy. The estimated models are given in Appendix

11
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Table 3: Comparing Predictive Accuracy with 5+ Censoring Across Five Models. Performance across all models
appears similar.

Param boot

Non-Param boot

Poisson COM-Poisson GP COM-Poisson COM-Poisson
Med/Mean Med/Mean Med/Mean Ensemb Med/Mean FEnsemb Med/Mean
RMSE 1.237/1.092 1.105/1.229 1.247/1.226  1.260/1.227 1.222/1.223
MdJAPE 0.333/0.276 0.333/0.283 0.333/0.277 0.333/0.285 0.333/0.317
MASE  0.674/0.751 0.684/0.759 0.681/0.754 0.701/0.756 0.664/0.683

Table 4: Scoring Rule Comparisons Where 5+ Censoring Applied Across Several Models. Bold numbers indicate the
best score value across models.

logS QS SphS RPS DSS SES
Poisson 1.6005  -0.2487 -0.5017 2.2166 1.9413 1.5024
COM-Poisson 1.5558 -0.2659 -0.5164 2.2514 1.3426 1.5107
GP 1.5792  -0.2580 -0.5095  2.2468 1.6378  1.5029
° 8 o o ° 8
; . : . ’

o

—IEST

|
o § o
o
T

- o ooo}»——

— ooo@%—— -

T
Poisson

Median Poisson Mean

CMP Median

CMP Mean

T
GP Median

GP Mean

Figure 3: Predicting 54+ Censored Data: Side-by-side boxplots of prediction errors produced via median and mean

computations, respectively, from Poisson, COM-Poisson, and Generalized Poisson regressions.

Distributions are

nearly identical across the three models; Median prediction distributions have lower variance.
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Figure 4: COM-Poisson Predictions for Censored Data at 5+: Side-by-side boxplots of prediction errors produced
via median and mean computations, respectively, from COM-Poisson, and COM-Poisson ensembles produced via
parametric and non-parametric bootstrapping. Median prediction appears nearly identical across models; Mean
prediction is slightly different for nonparametric ensemble.

B (Table B.7). From the prediction error distribution plots (Figure 5), the predictive accuracy
summaries (Table 5), and predictive scores (Table 6), it is clear that the COM-Poisson and GP
models significantly outperform the Poisson model. The heavier censoring has increased the amount
of underdispersion such that Poisson model produces severely biased predictions (over-predictions),
as illustrated in Figure 5.

Comparing the COM-Poisson and GP models, the predictive measures and error distributions
appear nearly identical, and the predictive scores are slightly in favor of the COM-Poisson model.
A close look at the predictive summaries reveals that for median predictions the COM-Poisson
performance is consistently equal or better than the GP model, while the opposite is true with
respect to mean predictions. The slight under-performance of the COM-Poisson compared to GP
when using mean predictions is likely due to the mean approximation constraints (A > 10¥ or
A < 1) not being satisfied; see Equation (4). Yet, we note that the difference in performance is
very small even in this case.

In terms of the ensemble performance, both ensembles appear not to add any benefit over the

13
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Table 5: Comparing Predictive Accuracy with 4+ Censoring for Five Models. Poisson severely under-performs.

Param boot Non-Param boot
Poisson COM-Poisson GP COM-Poisson COM-Poisson
Med/Mean Med/Mean Med/Mean  Ensemb Med/Mean Ensemb Med/Mean
RMSE 2.720/2.885 1.043/1.223 1.248/1.213  1.244/1.219 1.237/1.233
MJAPE 1.000/1.031 0.333/0.277 0.333/0.270 0.333/0.271 0.333/0.332
MASE 1.861/1.978 0.677/0.750 0.691/0.735 0.684/0.745 0.667/0.676

Table 6: Scoring Rule Comparisons Where 4+ Censoring Applied Across Several Models. Bold numbers indicate the
best score value across models.

logS QS SphS RPS DSS SES
Poisson 2.3026  -0.1217  -0.3431 2.8214 3.1844 7.9335
COM-Poisson 1.5477 -0.2692 -0.5192 2.2472 1.3484 1.4968
GP 1.5736  -0.2623  -0.5130 2.2330 1.4932 1.4710

ordinary COM-Poisson model in this example. The parametric ensemble appears identical to the
ordinary COM-Poisson model for both mean and median predictions. The nonparametric ensemble
even performs worse compared to the ordinary COM-Poisson (and parametric) model, as depicted

by the wide error variance for both mean and median predictions.

4. Conclusions and Discussion

We compared the Poisson, COM-Poisson, and Generalized Poisson (GP) models for count
data with right-censoring, in terms of predictive accuracy, using a data with underdispersion.
We examined three levels of censoring: none, light (5+), and heavy (4+). Two types of point
predictions were used: mean and median. We also examined two ensemble methods based on
parametric and non-parametric bootstrapping of the COM-Poisson model. Evaluation included
predictive measures, predictive scores, and prediction error distributions.

The results show that for no censoring or light censoring there is not much difference between
the different models, with perhaps a small advantage for the COM-Poisson model. In general,
median point predictions appear to have smaller error variance. With heavy censoring, however,
the Poisson severely under-performs, producing predictions that are much too high. GP and COM-
Poisson perform very similarly in such cases.
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30 Figure 5: Predicting 44+ Censored Data: Side-by-side boxplots of prediction errors produced via median and mean
34 computations, respectively, from Poisson, COM-Poisson, and Generalized Poisson regressions. Poisson severely
under-performs.
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56 Figure 6: COM-Poisson Predictions for Censored Data at 4+: Side-by-side boxplots of prediction errors produced
57 via median and mean computations, respectively, from COM-Poisson, and COM-Poisson ensembles produced via
58 parametric and non-parametric bootstrapping. Neither ensemble offers any benefit over the ordinary COM-Poisson

59 model.
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Two outlying subjects significantly impacted our ability to assess the effect of censoring on
prediction. For both individuals, no model was able to accurately predict the true number of
children birthed by each respective mother.

We also found that the ensembles did not appear to add any value under any scenario. In the
case of heavy censoring, the nonparametric ensemble even appeared to perform worse than the
ordinary COM-Poisson (in terms of error variance). We initially found this result surprising, but
conjecture that this is due to the added variability introduced via the non-parametric bootstrap for
prediction. Taking this approach, we introduce variability associated with the maximum likelihood
estimates that are determined for the bootstrapped training set; this variability is, in turn, carried
forth when computing predicted values. While another option is to take ensembles of COM-Poisson
and GP models, the fact that they produce very similar predictions means that there will likely not
be much benefit from combining them. It remains an open question what models can be combined
to produce improved predictive accuracy for censored count data.

Because this dataset exhibits underdispersion even in its raw form, negative binomial regression
(whether censored or uncensored) is inappropriate. While negative binomial regression is useful
when analyzing overdispersed data, it does not effectively capture the tighter variation contained
here. Censoring the data, in effect, acts as a Winsorization procedure, shrinking the amount of per-
ceived variation in the data. As a result, we see in this data example, that the obtained dispersion
estimates increase as the amount of censoring increases. This phenomenon is likewise recognized in
the generalized Poisson dispersion estimates for a: & decreases as the censoring amount increases
(i.e., the dispersion level decreases, or the data become increasingly underdispersed).

In terms of computation, given the large number of predictors in the fertility dataset, the
optimization scheme used to compute the maximum likelihood estimates (whether working with
training data in its raw or censored form) worked over a slowly-changing surface to locate the
estimates. Accordingly, the choice of initial value for the optimization scheme, and the extension
of the default number of iterations to perform in R were crucial to this operation’s success. The
results were obtained using nlminb and/or optim in R.

While the models used and developed in this paper were used to accommodate right-censoring,
it is straightforward to derive censored Poisson, GP, and COM-Poisson models for left- or interval-

censored data. Such types of censoring, however, might affect predictive power differently and are
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therefore an interesting direction for further research.
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Appendix A. Derivatives of the likelihood function

Before proceeding, we note the following equivalence: for any parameter 6,

dlog P(Y > ;) 1 yz‘l AP(Y = s)
90 PY > ) BT,

- s=0

1 -l dlog P(Y = s)
T P >y) ; P =s) 90 . .
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Accordingly, the first derivative of the likelihood function given in Equation (9) with respect to 3;

(j =1,2,...k) can be written as

0p;

yi—1
% - Zx“{(l—&)(yi—E(E))—Pi,ZP(Y=S)(S—E(Yi))}

yi—1
— ij {(1 — ) (yi — E(Y7)) — P(Y62y) (Z sP(Y =5)— P(Y < yz‘)E(Yi)> } :

s=0
Similarly, the first derivative with respect to v can be written as

yi—1

oL -
- = —5)(— | | — | |
o ;1 {(1 0;)(—logy;! + E(logV;!)) — >yZ E PY log s! + E(log ;! ))}

n ylfl

i=1 s=0

Appendix B. Estimation Results from Uncensored and Censored Regressions

Table B.7 contains the maximum likelihood estimates obtained via Poisson, COM-Poisson, and
GP regression models, respectively, whether the training data were uncensored, censored to 5+, or
censored to 4+ children.

For all models, we see that the resulting coefficients for the predictors (for the uncensored
or censored cases) are approximately equal. Meanwhile, the COM-Poisson and GP dispersion
results illustrate the impact of censoring on the associated dispersion estimate. Censoring the
outcome data (Y) forces the associated variation to decrease. In this case, because the raw data
are already underdispersed, censoring makes the data even more underdispersed; thus, we see the
corresponding COM-Poisson dispersion estimate () increase, and the GP dispersion estimate (&)

decrease in Table B.7.
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