Sellers, K F and Borle, S and Shmueli, G
(2012)
The COM-Poisson model for count data: A survey of methods and applications.
Applied Stochastic Models in Business and Industry, 28 (2).
pp. 104-116.
Full text not available from this repository.
(
Request a copy)
Abstract
The Poisson distribution is a popular distribution for modeling count data, yet it is constrained by its equidispersion assumption, making it less than ideal for modeling real data that often exhibit over-dispersion or under-dispersion. The COM-Poisson distribution is a two-parameter generalization of the Poisson distribution that allows for a wide range of over-dispersion and under-dispersion. It not only generalizes the Poisson distribution but also contains the Bernoulli and geometric distributions as special cases. This distribution's flexibility and special properties have prompted a fast growth of methodological and applied research in various fields. This paper surveys the different COM-Poisson models that have been published thus far and their applications in areas including marketing, transportation, and biology, among others. Copyright © 2011 John Wiley & Sons, Ltd.
Actions (login required)
 |
View Item |