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Abstract

Protected area downgrading, downsizing and degazettement (PADDD) is a
global phenomenon that has not received formal attention in Reducing Emis-
sions from Deforestation and Forest Degradation (REDD+) policies designed
to reduce forest carbon emissions and conserve biodiversity. Here, we exam-
ine how PADDD affects deforestation and forest carbon emissions. We doc-
umented 174 enacted and 8 proposed PADDD events affecting more than
48,000 km2 in three REDD+ priority countries: Democratic Republic of the
Congo, Malaysia, and Peru. Where sufficient data were available, we estimated
deforestation rates and the quantity and economic value of forest carbon al-
ready lost and at risk in three land tenure classes: PADDDed, protected, and
never-protected. PADDDed forests experienced deforestation and forest car-
bon emissions greatly exceeding rates in protected areas and slightly exceeding
rates in never-protected forests. PADDD represents business-as-usual for pro-
tected areas, posing substantial risk to forests and forest carbon stocks. REDD+
policies have substantive implications for protected area biodiversity and for-
est carbon emissions; the Warsaw Framework for REDD+ provides new, but
insufficient, guidance for nations to address these issues.

Introduction

Atmospheric concentrations of carbon dioxide (CO2) are
approaching 400 ppm, �40% greater than prior to the
Industrial Revolution (IPCC 2013). To mitigate CO2 emis-
sions, climate change, and the resultant ecological and
social impacts, public and private sector actors are im-
plementing diverse strategies (Metz et al. 2007). Cen-
tral to these mitigation strategies are efforts to reduce

CO2 emissions from deforestation and forest degradation,
which represent approximately 10% of annual global
greenhouse gas emissions (IPCC 2013). Reducing
Emissions from Deforestation and Forest Degrada-
tion (REDD+) is an emerging international framework
whereby donor countries compensate developing coun-
tries based on reductions in CO2 emissions realized
through forest conservation and restoration (UNFCCC
2011).
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Within the international REDD+ policy framework,
individual countries may develop their own national
systems for carbon accounting, which may or may not
include protected areas (UNFCCC 2014). Since protected
areas cover nearly 20% of tropical forests, appropriate
treatment of protected areas is a critical element of
effective REDD+ policies (Scharlemann et al. 2010).
Protected areas are also often planned explicitly to
protect natural forests and biodiversity, which are forest
carbon cobenefits that Parties to the United Nations
Framework Convention on Climate Change (UNFCCC)
were encouraged to address in the 2010 Cancún agree-
ment (UNFCCC 2011), and report on under the 2013
Warsaw Framework for REDD+ (UNFCCC 2014). How-
ever, scientists and decision-makers debate the role of
protected areas within REDD+ policies. Protected areas
may be considered permanent storehouses of forest
carbon with limited prospects for additional reduced
emissions or, conversely, subject to legal and illegal activ-
ities that cause substantial carbon emissions and threaten
cobenefits (Ricketts et al. 2010; Sunderlin & Silis 2012).
Some suggest that allowing protected areas to be eligible
for REDD+ funding may create perverse incentives to
disregard environmental laws (Börner & Wunder 2008),
while others argue that failure to recognize protected
areas within a REDD+ policy framework may create
perverse incentives, such as for protected area downgrad-
ing, downsizing, and degazettement (PADDD; Mascia &
Pailler 2011). PADDD is a widespread phenomenon that
challenges the paradigm that protected areas are indeed
permanent (Mascia & Pailler 2011; WWF 2013; Mascia
et al. 2014). To date, however, researchers have not
empirically examined the implications of PADDD for
REDD+ policies.

To inform this debate, we examine the impacts of
PADDD on tropical deforestation and forest carbon
emissions in three high priority REDD+ countries with
large forest carbon stocks (van der Werf et al. 2009; FAO
2010), high biodiversity (Kier et al. 2009), and substantial
numbers of PADDD events: Democratic Republic of
the Congo (DRC), Malaysia, and Peru. These countries
represent �10% of annual global forest loss and �7.6%
of global forest carbon emissions (van der Werf et al.
2009; FAO 2010). These countries are extraordinary
from a biodiversity perspective, though this biodi-
versity is also highly threatened (Mittermeier et al.
1998; Olson & Dinerstein 1998). In this study, we (1)
conducted archival research to document enacted and
proposed PADDD events in each country since 1900;
(2) analyzed historical rates of deforestation and for-
est carbon loss within PADDDed lands in Peninsular
Malaysia and Peru, compared to corresponding rates

within protected areas and never-protected forests; and
(3) examined the economic net present value (NPV)
of forest carbon under 3 emissions and 3 carbon price
scenarios. Results illustrate the ecological implications
and opportunity costs of PADDD, and provide insights
about the role of protected areas in REDD+ policy.

Methods

Data collection and preparation

We created a comprehensive database of enacted and
proposed PADDD in DRC, Malaysia, and Peru. The
database consists of all available information on PADDD
events, including protected area name, location and area
affected (including boundaries), type (whether down-
sized, downgraded, or degazetted), year, and proximate
cause (Table S1). To create the database, we conducted a
comprehensive review of the protected area systems from
1900 to 2011, reviewing protected area legislation in all
three countries and administrative journals in DRC. For
information on spatial area affected, we digitized historic
maps of PADDD events and protected areas from govern-
ment sources, as available.

Calculating deforestation and forest carbon loss
following PADDD events

We assessed the amounts and rates of deforestation
and carbon loss following PADDD events in Peninsu-
lar Malaysia and Peru, compared to protected areas and
areas that had never experienced protection. PADDD
events in these geographies included only downsizings
and degazettements.

We based our analysis on four datasets: (1) areas
affected by PADDD; (2) the current protected area net-
works of Peru (SERNANP 2011) and Peninsular Malaysia
(IUCN & UNEP-WCMC 2013; Malaysia Ministry of Natu-
ral Resources and the Environment, unpublished work);
(3) above-ground biomass for the year 2007 (Baccini
et al. 2012); (4) Forest cover change, derived from Vege-
tated Continuous Fields v005 data from 2000 and 2010
(Defries et al. 2000; Hansen & DeFries 2004; DiMiceli et al.
2011) in Peru (Figure S1), and land cover maps for 2000
and 2010 in Malaysia (Miettinen et al. 2011; Miettinen
et al. 2012). We determined the total forest cover lost
(ha), total forest carbon lost (Mg), and annual percent of
original (year 2000) forest cover and forest carbon lost by
land tenure class (PADDD, protected, never-protected).
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Scenarios of future forest carbon emissions

For Peninsular Malaysia and Peru, we next estimated
the impact that protection and PADDD could have on
above-ground carbon stocks by the year 2100, compared
with areas that had never experienced protection. We did
this by exploring three scenarios: Scenario (1) Observed
Business-as-Usual (BAU): 2000–2010 observed rates of for-
est carbon loss proceed to 2100; Scenario (2) FAO National
BAU: 2000–2010 rates of deforestation (FAO 2010) pro-
ceed to 2100; and Scenario (3) Full Conversion: All stand-
ing forest is converted to nonforest by 2100. We did not
include proposed PADDD events in these analyses, be-
cause we were unable to isolate the exact areas proposed
for excision.

Carbon valuation scenarios

For Peninsular Malaysia and Peru, we calculated the dis-
counted NPV of forest carbon in each land tenure class
to the year 2100 under three carbon emissions and three
estimates of the unit cost of carbon (to account for uncer-
tainty in carbon value). From a market or private stand-
point, carbon was trading at approximately $37/Mg C
on the European Union Emissions Trading Scheme, and
approximately $3.70/ Mg C for Certified Emissions Re-
ductions under the Clean Development Mechanism of
the Kyoto Protocol. Carbon shadow prices from a social
standpoint, derived from models that estimate the social
damages from climate change, are similarly variable (Tol
2005; Tol 2011), including medians of $14/ Mg C (Tol
2005) or $57/ Mg C (Tol 2011), and “best guess” esti-
mates of $5/ Mg C. Accordingly, we use low, medium,
and high carbon price figures of $3.70/Mg C, $14/Mg C,
and $57/Mg C to capture this variability in our carbon
value calculations. We projected forest carbon value an-
nually from 2010 to the year 2100, using the three val-
ues of carbon and a discount rate of 5%. We defined
“additionality” as the difference between anticipated car-
bon loss in each of the above-described carbon emissions
scenarios and a REDD+ project that results in zero emis-
sions. By applying a scenario approach, we emphasize a
range of potential NPV as a way of expressing relative
value of PADDD areas to protected and unprotected ar-
eas, and also uncertainty.

Similarly, we estimated the value of carbon lost be-
tween 2000 and 2010 in each land tenure class by mul-
tiplying the observed average annual amount of carbon
lost each year by the three market values of carbon, and
projecting the discount rate forward from the year 2000.

Regression analysis of deforestation drivers

Biophysical characteristics and accessibility are signifi-
cant predictors of forest loss (Geist & Lambin 2002),
and various approaches have been proposed to control
for these factors while assessing the role of management
for avoiding deforestation (Cropper et al. 2001; Deininger
& Minten 2002; Mas 2005; Andam et al. 2008; Pfaff
et al. 2014). We conducted regression analyses to further
test the hypothesis that PADDD is a significant predictor
of deforestation in Peninsular Malaysia and Peru, while
controlling for biophysical characteristics and accessibil-
ity. Consistent with the deforestation analysis described
earlier in this study and using best available data, we se-
lected change in canopy cover from 2000 to 2010 as the
dependent variable in Peru (DiMiceli et al. 2011), and for-
est loss as the dependent variable Peninsular Malaysia
(Miettinen et al. 2011). Independent variables included
topography (elevation, slope), accessibility (distance to
major roads, city centers, and major rivers), and protec-
tion status (PADDDed, protected, never-protected). (See
Supplemental Information for detailed Methods).

Results

DRC

Since 1900, DRC has experienced 39 PADDD events:
six downgrades (15.3%), two downsizes (5.1%), and 31
degazettements (79.5%), affecting 36 protected areas (oc-
currence per protected area: mean = 1.1; SD = 0.37; me-
dian = 1; mode = 1; Table 1). Most DRC PADDD events
consist of degazetted forest reserves in the late 1950s
(Figure 1). Proximate causes of enacted PADDD events
are rarely reported, but include infrastructure, mining,
and agriculture. At least three PADDD events have been
proposed but not yet enacted in DRC (Table S2). We
were unable to determine the size and spatial location of
PADDD events based on data in DRC archives.

Malaysia

Malaysia has experienced at least 121 PADDD events
since 1900, including 110 events in Peninsular Malaysia,
10 in Sabah, and one in Sarawak. These 121 PADDD
events affected 20 protected areas (occurrence per
protected area: mean = 6.1; SD = 13.2; median = 1;
mode = 1) and >3,145 km2 (mean = 34.5 km2; SD =
138.8 km2), which represents �5% of Malaysia’s po-
tential protected area estate (per Mascia et al. 2014) and
0.1% of Malaysia’s land mass (Table 1). Seven protected
areas experienced more than one PADDD event, with
a maximum of 54 PADDD events affecting Endau-Kota
Tinggi Wildlife Reserve. Most PADDD events were
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Table 1 Enacted PADDD events in Democratic Republic of Congo (DRC), Malaysia, and Peru. Number of protected areas (PAs) affected by

PADDD are in parentheses. ND = no data

DRC Malaysia Peru

Number of enacted PADDD events (and affected PAs)

Downgrade 6 (4) 0 0

Downsize 2 (2) 109 (11) 4 (4)

Degazette 31 (31) 12 (11) 10 (10)

Total 39 (36) 121 (20) 14 (14)

Area affected by PADDD (km2)a

Downgrade ND 0 0

Downsize ND 2,428 30,532

Degazette ND 717 14,871

Total ND 3,145 45,403

Percentage PA estate affected Total ND 4.98% 21.54%

Percentage national terrestrial area affected Total ND 0.10% 3.53%

Proximate cause of PADDD Infrastructure, 2 Industry, 1 Logging, 13

Forestry, 1 Settlement, 1 Unknown, 1

Subsistence, 1 Mining, 1

Degradation, 1 Unknown, 118

Building materials, 1

Land sales or licenses, 1

Unknown, 32

aGIS data were used to calculate area affected when available; otherwise, we used reported areas.

Figure 1 Timeline of enacted PADDD events in Democratic Republic of the Congo (DRC), Malaysia, and Peru.Thefirstprotectedareadesignated
in DRC was in 1905 (IUCN and UNEP-WCMC 2013), Malaysia in 1903 (Perak Government 1903), and Peru in 1961 (SERNANP 2011).

protected area downsizes (n = 109, 90%); the remainder
were degazettements (n = 12, 10%). Most Malaysian
PADDD occurred in the 1960s and 1970s (Figure 1).
Proximate causes of PADDD in Malaysia were rarely
reported, but include industrialization, rural settlements,
and mining; most converted forest in PADDDed lands
is now plantation (Figure S2). We documented one
proposed PADDD event in Malaysia, occurring in Sabah

(Table S2). We were unable to determine the spatial lo-
cation of enacted and proposed PADDD events in Sabah
and Sarawak, so analyses focus on Peninsular Malaysia.

In Peninsular Malaysia, PADDD accelerated defor-
estation and forest carbon emissions. From 2000 to
2010, PADDDed forests exhibited an estimated 240%
higher deforestation rate compared with protected forests
(270% higher carbon emissions), and a 7% higher rate
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Figure 2 Estimated annual percent change in forest cover and forest carbon in Peninsular Malaysia and Peru (2000–2010). PADDD areas in

both countries experienced slightly higher rates of deforestation than never protected areas, and much higher rates than areas under protection.

compared with never-protected forests (6% lower carbon
emissions) (Figure 2 and S3; Table S3). PADDDed forests
emitted approximately 1.5 million Mg C from 2000 to
2010, with values from �$4.5 to $69.6 million (Table
S3). Regression models further suggest that PADDD is a
significant predictor of forest loss in Peninsular Malaysia,
even when controlling for biophysical characteristics and
accessibility (Table S4).

If future deforestation rates follow recent trends,
PADDDed forests would emit approximately 6.0–10.9
million Mg C by 2100; if all forest is converted, emissions
from PADDDed forests could reach �21.8 million Mg C.
The estimated NPV of these emissions ranges from $5.6 to
$152.5 million if additionality is based on past emissions
(Scenarios 1 and 2), or up to $273.1 million if all forest
carbon in PADDD areas is considered at risk of conversion
(Scenario 3). In protected areas, forest carbon NPV ranges
from �$17.1 to $524.7 million under Scenarios 1 and 2,
and up to $1.2591 billion under Scenario 3 (Figure 3;
Table S5).

Peru

Fourteen PADDD events have occurred in 14 Peruvian
protected areas (occurrence per protected area: mean = 1;
SD = 0; median = 1; mode = 1), affecting �45,000 km2

and resulting in the permanent loss of �34,000 km2 of
protected areas (mean = 2,261 km2; SD = 2,827 km2).
Thirteen PADDD events occurred in 1996, when National
Forests were removed from the Peruvian protected area
system in order to open them to commercial logging

(Peru Ministry of Agriculture 1996; Figure 1). Portions of
four degazetted National Forests were later regazetted as
national parks or sanctuaries, so these functionally served
as downsizing events. Altogether, Peru has experienced
ten degazettements (71%) and four downsizes (29%;
Table 1). Three additional downsizes (for petroleum ex-
ploration or mining) and one additional degazettement
(for lack of biological representativeness) have been pro-
posed in Peru since 2003 (Table S2). The total area af-
fected by enacted PADDD events comprises 23% of the
potential protected area estate. Seventeen percent of the
historic protected area system has been lost permanently
as a result of PADDD, representing 4% of Peru’s total land
area.

From 2000 to 2010, deforestation and carbon emissions
rates in Peruvian PADDDed forests were both estimated
to be 275% higher than in protected forests, and 45%
higher than in never-protected forests (Figure 2 and S3;
Table S3). PADDDed forests emitted �10.0 million Mg
C from 2000 to 2010, valued at $29.8–$459.2 million
(Table S3). Regression models further suggest that
PADDD is a significant predictor of canopy cover change
in forest areas, even when controlling for biophysical and
accessibility factors (Table S6).

If future deforestation rates follow recent trends,
PADDDed forests in Peru would emit approximately
91.5-94.9 million Mg C by 2100 and, if all forest is con-
verted, emissions could reach 610.9 million Mg C. These
emissions represent a NPV of $78.0 million to $1.2392
billion under scenarios based on past emissions (Scenar-
ios 1 and 2), or up to $7.6619 billion if all forest carbon
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Figure 3 Estimated net present value (NPV) of forest carbon sequestered to the year 2100 in Peninsular Malaysia and Peru, under three
carbon emissions scenarios and three market values of carbon.

in PADDD areas is at risk (Scenario 3). In protected areas,
the value of forest carbon ranges from $95.5 million
to $5.2584 billion under Scenarios 1 and 2, and up to
$33.5168 billion under Scenario 3 (Figure 3; Table S5).

Discussion

These findings demonstrate that PADDD has substantive
implications for biodiversity conservation and provi-
sion of ecosystem services, extending initial research
that characterized PADDD and its patterns, trends,
proximate causes, and treaty implications (Mascia &
Pailler 2011; Mascia et al. 2014). Given that PADDD may
result in dramatically higher deforestation rates and forest
carbon emissions, the impermanence of protected areas
represents a profound challenge for conservation policy
and practice. Potential conservation policy responses
to the risk of PADDD include greater investment in
protected area implementation, management, and legal
sustainability; more robust protected area networks; and
more diversified portfolios of conservation strategies
(e.g., protected areas, community-based natural resource
management, payments for ecosystem services, environ-
mental certification regimes, etc.; Mascia & Pailler 2011;
Mascia et al. 2014). In the absence of comprehensive
environmental safeguard policies, public and private
sector banks, extractive industries, and other organi-
zations may need to develop standards that address
PADDD. Similarly, government agencies and legislatures

may need to develop formal legal processes that govern
PADDD, in parallel to the legal processes that govern
protected area planning and establishment. The complex
social and environmental trade-offs implicit in PADDD
events also require further scientific understanding and
public dialogue about PADDD and its implications.

In particular, with respect to the development and im-
plementation of REDD+, our findings highlight the need
to consider protected area and PADDD dynamics when
estimating carbon fluxes and developing policy responses.
High carbon emissions rates from PADDDed forests sug-
gest that they represent priorities for additional emissions
reductions (Ricketts et al. 2010). PADDDed lands may also
have ecological values comparable to, or supportive of,
existing protected areas (Groves et al. 2002; Hansen &
DeFries 2007). With the potential for high emission re-
ductions with correspondingly high biodiversity conser-
vation cobenefits (Phelps et al. 2012), PADDDed areas
may thus represent possible REDD+ win–wins. However,
the occurrence (and sometimes recurrence) of PADDD
may reflect dynamic or unstable land governance, possi-
bly limiting the potential for permanent reductions in car-
bon emissions in these lands and the cost effectiveness
of potential REDD+ interventions (Naidoo et al. 2006;
Polasky 2008). Existing protected areas, by contrast, may
represent less opportunity for achieving large emissions
reductions, but greater likelihood of permanent emissions
reductions. Thus, a portfolio approach to emissions re-
ductions under REDD+ policies may help to hedge risk
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(Hoekstra 2012) associated with potential additionality-
permanence trade-offs. At the same time, our experi-
ences in DRC and insular Malaysia demonstrate that
documenting PADDD and BAU protected area emissions
scenarios may present a substantial challenge.

The Warsaw Framework for REDD+ outlines the pro-
cess by which countries should report on the status
of cobenefits to carbon that they are encouraged to
“safeguard” (e.g., natural forests, biodiversity, indigenous
peoples’ livelihoods, ecosystem services; UNFCCC 2011,
2014). However, little guidance exists on how countries
should monitor and report on the status of cobenefits.
Under such a system, how would auditors know that the
“plus” in REDD+ is actually improving? For protected ar-
eas, countries could optionally monitor and report on de-
forestation rates within protected area and PADDD forests
as an indicator of biodiversity, natural forests, and spe-
cific forest-dependent ecosystem services. If deforesta-
tion and degradation rates decrease in these areas over
time, relative to the baseline, this would suggest positive
implications for biodiversity cobenefits. Parties could also
monitor and report on protected area permanence (and,
conversely, PADDD) as an indicator of biodiversity and
other protected area-associated cobenefits; countries with
high rates of PADDD may be performing poorly at safe-
guarding biodiversity. In addition, protected area perma-
nence (and, conversely, PADDD) may be an indicator
of governance, which has implications for the success of
REDD+ projects. Not only will monitoring and reporting
on safeguards specific to the protected area estate help
to fulfill the safeguard protocol under REDD+, but this
approach could also facilitate “premium” investments in
REDD+ that link emission reductions with biodiversity
cobenefits (e.g., Dinerstein et al. 2013).

Failure to consider protected area and PADDD dy-
namics may lead to perverse outcomes. REDD+ policies
that simply ignore protected areas would presumably be
vulnerable to historic (pre-REDD+) PADDD dynamics,
with increasing forest carbon emissions within PADDDed
lands. REDD+ policies that intentionally exclude protected
areas from national emissions baselines and monitoring,
reporting, and verification (MRV) systems may exacer-
bate leakage of deforestation and forest degradation into
protected areas, either through PADDD (Mascia & Pailler
2011) or illegal extraction (Sunderlin & Silis 2012). This
leakage could be accelerated by forest management activ-
ities that shift away from natural forests in protected ar-
eas to forests with highest baseline emissions rates, where
there is greatest opportunity for additional emission re-
ductions (Grainger et al. 2009; Harvey et al. 2010).

Implementing such safeguard monitoring systems will
require improved national-level tracking of protected
areas and PADDD, as well as the forest and carbon

dynamics within them. Beyond REDD+, nationally
and globally strengthened protected area and PADDD
databases (e.g., IUCN & UNEP-WCMC 2013; WWF 2013)
will be crucial for transparency and governance, as the
demands for natural resources associated with PADDD
are likely to increase in the future (Lambin & Meyfroidt
2011; Mascia & Pailler 2011). Data on protected area
trends and forests will also be critical for generating an
improved understanding of the ecological and social
impacts of protected areas, since most protected area
research to date has considered protected areas as static
features rather than dynamic systems (Miteva et al. 2012).
More generally, our findings highlight the impermanence
and unintended consequences of environmental regimes
(Mascia et al. 2014). Robust social and environmental
safeguards, comprehensive carbon accounting, rigorous
MRV systems, and mechanisms for periodic policy
reforms are necessary for climate policies that achieve
desired ends while minimizing prospects for unintended
consequences and perverse outcomes.
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