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Abstract

In this paper, we develop a stochastic approximation algorithm for making pricing decisions in
network revenue management problems. In the setting we consider, the probability of observing
a request for an itinerary depends on the price for the itinerary. We are interested in finding a set
of prices that maximize the total expected revenue. Our approach is based on visualizing the total
expected revenue as a function of the prices and using the stochastic gradients of the total revenue
to search for a good set of prices. To compute the stochastic gradients of the total revenue, we use
a construction that decouples the prices for the itineraries from the probability distributions of the
itinerary requests. This construction ensures that the probability distributions of the underlying
random variables do not change when we change the prices for the itineraries. We establish the
convergence of our stochastic approximation algorithm. Computational experiments indicate that
the prices obtained by our stochastic approximation algorithm perform significantly better than those
obtained by standard benchmark strategies, especially when the leg capacities are tight and there
are large differences between the price sensitivities of the different market segments.



Pricing and capacity allocation constitute two fundamental control mechanisms in network revenue

management. Pricing assumes that the demands for different itineraries are price sensitive and deals

with the question of what prices to charge for the itineraries. Capacity allocation, on the other hand,

assumes that the prices for the itineraries are fixed and deals with the question of which itineraries to

leave open for sale and which itineraries to close. It has been traditionally argued that airlines are more

suitable for capacity allocation than for pricing. The first part of the argument is that advertising and

administrative needs require airlines to fix the prices in advance of sales, ruling out the possibility of

adjusting the prices dynamically as sales take place. The second part of the argument is that airlines

are able to impose restrictions, such as Saturday night stays, to ensure that if an itinerary that appeals

to a particular customer segment is closed for sale, then this customer segment does not switch to

another itinerary. As a result, airlines can adjust the demand from a customer segment simply by

opening or closing the itinerary that appeals to the customer segment. Although the argument above

was certainly valid for the early days of network revenue management, online sales channels nowadays

do not require fixing the prices in advance and competition makes it harder to impose restrictions. Due

to these developments, pricing has become an increasingly appealing control mechanism for airlines.

In this paper, we develop a stochastic approximation algorithm to make pricing decisions in network

revenue management problems. In the setting we consider, the probability of observing a request for

an itinerary depends on the price for the itinerary. Pricing serves as the main control mechanism and

we do not have the option of rejecting an itinerary request when we have enough capacity to serve the

itinerary request. We are interested in finding a set of prices that maximize the total expected revenue

from the accepted itinerary requests. Our approach visualizes the total revenue as a function of the

prices and uses the stochastic gradients of the total revenue to search for a good set of prices.

We overcome two difficulties to compute the stochastic gradients of the total revenue. First, the

prices for the itineraries affect the probability distributions of the itinerary requests. Therefore, every

time we change the prices, we end up changing the probability distributions of the underlying random

variables. We address this difficulty by using a standard construction that decouples the prices for the

itineraries from the probability distributions of the underlying random variables. In this construction,

each customer is interested in an itinerary and associates a reservation price with this itinerary. The

customer purchases the itinerary if its reservation price exceeds the price for the itinerary. In this case,

the itineraries that are of interest to the customers and the reservation prices serve as the underlying

random variables and samples of these random variables can be generated without using the prices at

all. Second, if we perturb the price for an itinerary, then the number of accepted itinerary requests

either does not change or changes by a discrete amount. Therefore, the stochastic gradient of the total

revenue is either zero or does not exist. We address this difficulty by using a smoothed version of the

problem, which assumes that the leg capacities are continuous and we can serve fractional numbers of

itinerary requests. This modification ensures that the total expected revenue is differentiable respect to

the prices and we can use the stochastic gradients of the total revenue to find a good set of prices.

There are a number of papers that use stochastic approximation algorithms to find good control

mechanisms for network revenue management problems. The distinguishing aspect of our work is that
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our control mechanism is pricing, whereas the control mechanism in the earlier work is exclusively

capacity control. Bertsimas and de Boer (2005) were the first to use stochastic approximation ideas to

find good booking limits in network revenue management problems. Since booking limits are restricted

to be integers, the authors work with the finite differences of the total revenue, rather than the stochastic

gradients. As a result, although their approach performs quite well, it does not have a convergence

guarantee. This shortcoming is addressed by van Ryzin and Vulcano (2008b), where the problem is

smoothed by assuming that the leg capacities are continuous and it is possible to serve fractional

numbers of itinerary requests. In particular, these authors observe that if there are multiple flight legs

whose capacities are simultaneously binding, then the total revenue is not necessarily differentiable. To

avoid such cases, they perturb the remaining leg capacities by small random amounts. The smoothed

problem that we use in our paper utilizes similar capacity perturbations. The work by van Ryzin

and Vulcano (2008b) is subsequently extended by van Ryzin and Vulcano (2008a) to incorporate the

customer choice process, where each customer, rather than having a fixed itinerary of interest, observes

the set of itineraries that are available for sale and makes a purchase within this set. A customer has a

ranked list of itineraries that are of interest and it purchases the first itinerary in the ranked list that is

available for sale. As a result, the underlying random variables in van Ryzin and Vulcano (2008a) are

significantly more complicated than the ones considered in the earlier literature.

The papers above focus on computing a good set of booking limits. A booking limit policy essentially

restricts how many seats can be used by different virtual classes. On the other hand, Topaloglu (2008)

and Chaneton and Vulcano (2009) focus on computing a good set of bid prices by using stochastic

approximation algorithms. In a bid price policy, each flight leg in the airline network has a bid price

associated with it and an itinerary request is accepted only if the revenue from the itinerary request

exceeds the sum of the bid prices associated with the flight legs that are in the itinerary. As such, the

bid prices serve as revenue barriers. Topaloglu (2008) considers a setting where each customer has a

fixed itinerary of interest, whereas Chaneton and Vulcano (2009) explicitly incorporate the customer

choice process. Both papers end up perturbing the remaining leg capacities by small random amounts to

ensure that the total expected revenue is differentiable. Kunnumkal and Topaloglu (2009) consider the

problem of finding a good set of bid prices when overbooking is possible. They show that if overbooking

is possible, then it is not necessary to perturb the remaining leg capacities by small random amounts

to ensure that the total expected revenue is differentiable.

There is rich literature on dynamic pricing, but majority of the papers focus on pricing a single

product, whereas network revenue management requires pricing multiple itineraries jointly. Gallego

and van Ryzin (1994) focus on adjusting the price of one product with price sensitive demand. They

establish how the optimal price changes as a function of the length of the selling horizon and the

remaining inventory. In addition, they show that charging a single price over the entire selling horizon

is asymptotically optimal as the length of the selling horizon and the initial inventory increases with

the same rate. Feng and Gallego (1995) focus on only one price change, which can be either from low to

high or from high to low and they characterize the timing of the price change. Feng and Gallego (2000),

Feng and Xiao (2000) and Zhao and Zheng (2000) extend the work of Gallego and van Ryzin (1994)

to more complicated demand dynamics and price constraints. Maglaras and Meissner (2006) show that
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certain pricing problems can be cast as capacity allocation problems and this result allows them to

extend the structural properties for capacity allocation problems to pricing problems. Gallego and van

Ryzin (1997) propose a deterministic optimization problem to price multiple products that interact

with each other. This optimization problem computes a single price for each product to charge over the

entire selling horizon. The authors show that charging a single price over the entire selling horizon is

asymptotically optimal in the same sense as in Gallego and van Ryzin (1994). We use the optimization

problem proposed by Gallego and van Ryzin (1997) as a benchmark strategy. Kleywegt (2001) develops

a joint pricing and overbooking model over an airline network. He assumes that the demands for the

itineraries are deterministic functions of the prices and solves the model by using Lagrangian duality

ideas. McGill and van Ryzin (1999), Bitran and Caldentey (2003), Elmaghraby and Keskinocak (2003)

and Talluri and van Ryzin (2005) give comprehensive reviews of dynamic pricing problems.

Stochastic approximation algorithms have many applications. Fu (1994) focuses on the problem

of computing base stock levels in single echelon inventory systems, whereas Glasserman and Tayur

(1995) consider the same problem in multiple echelon setting. Bashyam and Fu (1998) show how to

deal with random lead times and service level constraints. The paper by van Ryzin and McGill (2000)

computes booking limits for a revenue management problem with a single flight leg. Mahajan and van

Ryzin (2001) consider the problem of setting stock levels for multiple products, where the products can

serve as substitutes of each other. Karaesmen and van Ryzin (2004) find good overbooking policies for

parallel flight legs that operate between the same origin destination pair. Kunnumkal and Topaloglu

(2008) focus on various inventory control problems, where the optimal policy is known to be a base stock

policy. Kushner and Clark (1978), Benveniste, Metivier and Priouret (1991), Bertsekas and Tsitsiklis

(1996) and Kushner and Yin (2003) cover the theory of stochastic approximation algorithms.

In this paper, we make the following research contributions. 1) We build a stochastic approximation

algorithm to find a good set of prices in network revenue management problems. It appears that

there are few practical algorithms for jointly pricing multiple products and our paper fills this gap. 2)

We use a construction that decouples the prices for the itineraries from the probability distributions

of the underlying random variables. In this construction, each customer is interested in a particular

itinerary and associates a reservation price with this itinerary. The itineraries that are of interest to

the customers and the reservation prices serve as the underlying random variables and samples of these

random variables can be generated without using the prices. It is widely known that using a probability

distribution for the reservation price is equivalent to using a function that relates the expected demand

to the price, but using this equivalence in a stochastic approximation algorithm is particularly helpful

and this equivalence may be useful to build algorithms for other pricing problems. 3) We establish

the convergence of our stochastic approximation algorithm. 4) Computational experiments indicate

that the prices obtained by our approach perform significantly better than those obtained by standard

benchmark strategies. The performance gaps are especially significant when the leg capacities are tight

and there are large differences between the price sensitivities of the different market segments.

The rest of the paper is organized as follows. In Section 1, we give a description of the pricing

problem that is of interest to us. In Section 2, we show how to smooth the problem so that the total
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expected revenue is differentiable with respect to the prices and we formulate a basic optimization

problem that chooses the prices to maximize the total expected revenue. In Section 3, we show how

to compute the stochastic gradients of the total revenue with respect to the prices. In Section 4, we

describe our stochastic approximation algorithm and establish its convergence. In Section 5, we present

our computational experiments. In Section 6, we provide concluding remarks.

1 Problem Formulation

We have a set of flight legs that can be used to serve the itinerary requests that arrive randomly over

time. The probability of observing a request for an itinerary at a particular time period depends on

the price that we charge for the itinerary. Whenever we observe an itinerary request, if there is enough

capacity on the flight legs, then we serve the itinerary request and generate a revenue reflecting the

price for the itinerary. Otherwise, the itinerary request simply leaves the system. Therefore, pricing

serves as the main control mechanism and we do not have the option of rejecting an itinerary request

when we have enough capacity to serve the itinerary request. We are interested in finding a set of prices

for the itineraries that maximize the total expected revenue.

The itinerary requests arrive over the finite planning horizon T = {1, . . . , τ}. The flight legs depart

at time period τ +1. We assume that a time period corresponds to a small enough interval of time that

we observe at most one itinerary request at each time period. This is a standard modeling approach in

the literature. The set of flight legs is L and the set of itineraries is J . We use Lj to denote the set

of flight legs that are used by itinerary j. In other words, if we serve one request for itinerary j, then

we consume one unit of capacity on each flight leg that is in set Lj . For notational brevity, we assume

that there are no group bookings, but it is indeed possible to extend our approach to incorporate group

bookings. We use xit to denote the remaining capacity on flight leg i at the beginning of time period

t and xt = {xit : i ∈ L} to denote the vector of remaining leg capacities. Naturally, x1 is a part of

the problem data capturing the initial leg capacities. We use pj to denote the price for itinerary j

and p = {pj : j ∈ J } to denote the vector of prices. If we charge price pj for itinerary j, then the

probability of observing a request for itinerary j at a time period is λj(pj). We assume that λj(·) is a
strictly decreasing function that satisfies limpj→∞ λj(pj) = 0. Since we observe at most one itinerary

request at a time period, we have
∑

j∈J λj(pj) ≤ 1 for all p ∈ <|J |
+ and we do not observe an itinerary

request at a time period with probability 1−∑
j∈J λj(pj). As evident from our notation, the functions

{λj(·) : j ∈ J } do not depend on the time period, but this assumption is only for notational brevity

and it is straightforward to make these functions dependent on the time period. We also note that

the probability of observing a request for itinerary j at a particular time period depends on the price

for itinerary j, but not on the prices for the other itineraries. This assumption is reasonable when the

itineraries do not serve as substitutes of each other.

The first difficulty in developing a stochastic approximation algorithm arises from the fact that the

prices for the itineraries affect the probability distributions of the itinerary requests. Therefore, every

time we change the prices for the itineraries, we end up changing the probability distributions of the

underlying random variables. We begin with a standard construction that decouples the prices from the
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probability distributions of the underlying random variables. For this purpose, we let πj = λj(0) and

F̄j(pj) = λj(pj)/λj(0) so that we have λj(pj) = πj F̄j(pj). Since
∑

j∈J λj(pj) ≤ 1 for all p ∈ <|J |
+ , we

also have
∑

j∈J πj ≤ 1. Furthermore, since λj(·) is a strictly decreasing function, F̄j(·) is also a strictly

decreasing function and F̄j(pj) ∈ [0, 1] for all pj ∈ <+. We visualize πj as the probability that there

is a customer arrival at a time period that is interested in itinerary j and 1 − F̄j(·) as the cumulative

distribution function for the reservation price of a customer that is interested in itinerary j. In our

construction, we observe a request for itinerary j if there is a customer arrival that is interested in

itinerary j and the reservation price of the customer exceeds the price for itinerary j. This implies that

if the price for itinerary j is pj , then the probability that we observe a request for itinerary j at a time

period is given by πj F̄j(pj). Therefore, noting that λj(pj) = πj F̄j(pj), using {(πj , F̄j(·)) : j ∈ J } is

conceptually equivalent to using {λj(·) : j ∈ J }, but the advantage of using {(πj , F̄j(·)) : j ∈ J } is

that we can capture all of the underlying random variables by ω = {(jt, qt) : t ∈ T }, where jt is the

itinerary that is of interest to the customer arriving at time period t and qt is the reservation price of

the customer arriving at time period t. We can generate a sample of the random variable jt by using the

probabilities {πj : j ∈ J } and a sample of the random variable qt by using the cumulative distribution

functions {1 − F̄j(·) : j ∈ J }. Since we have
∑

j∈J πj ≤ 1, we may not observe a customer arrival at

time period t, in which case, we simply set jt = ∅ and qt = ∞. We emphasize that the prices do not

play any role when generating a sample of ω. As a result, this construction allows us to decouple the

prices for the itineraries from the probability distributions of the underlying random variables.

The second difficulty in developing a stochastic approximation algorithm arises from the fact that

the number of itinerary requests that we serve at a time period is not necessarily a differentiable function

of the prices and remaining leg capacities. To be more specific, we recall that the customer arriving at

time period t is interested in itinerary jt and we have a request for itinerary jt whenever the reservation

price of the customer exceeds the price for itinerary jt. On the other hand, our ability to serve an

itinerary request is limited by the remaining leg capacities. In particular, noting the definition of Ljt ,

we can serve at most mini∈Ljt
{xit} requests for itinerary jt. Therefore, letting 1(·) be the indicator

function, as a function of the remaining leg capacities, prices and realizations of the underlying random

variables, we define the decision function at time period t as

ut(xt, p, ω) = min
{
1(qt ≥ pjt), min

i∈Ljt

{xit}
}
, (1)

where ut(xt, p, ω) takes value one if we serve an itinerary request at time period t and ut(xt, p, ω) takes

value zero otherwise. Noting the indicator function and the min operator inside the curly brackets above,

ut(xt, p, ω) is not necessarily a differentiable function of p and xt. This lack of differentiability ultimately

prevents us from searching for a good set of prices by using the stochastic gradients of the total revenue

with respect to the prices. In the next section, we develop a smoothed version of the decision function

that is differentiable with respect to the prices and remaining leg capacities with probability one. The

smoothed version of the decision function ensures that the total revenue is a differentiable function of the

prices with probability one, which, in turn, allows us to develop a stochastic approximation algorithm

that can be used to find a good set of prices.
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2 Smoothing the Decision Function

There are two potential sources of nondifferentiability in the decision function in (1). The first source is

related to the indicator function, whereas the second source is related to the min operator inside the curly

brackets. We deal with the first source of nondifferentiability by assuming that we can serve fractional

numbers of itinerary requests at any time period. For this purpose, we let θ(·) be a differentiable and

increasing function that satisfies limq→−∞ θ(q) = 0 and limq→∞ θ(q) = 1 and replace 1(qt ≥ pjt) in

(1) with θ(qt − pjt). As θ(·) approaches the step function 1(· ≥ 0), we begin recovering the decision

function in (1), but we note that since θ(·) is differentiable, it can never be exactly equal to the step

function. In addition to assuming the differentiability of θ(·), we assume that θ(·) and its derivative θ̇(·)
are Lipschitz in the sense that there exist finite scalars Lθ and Lθ̇ that satisfy |θ(q)− θ(s)| ≤ Lθ |q − s|
and |θ̇(q)− θ̇(s)| ≤ Lθ̇ |q − s| for all q, s ∈ <.

We deal with the second source of nondifferentiability in the decision function by using random

perturbations of the remaining leg capacities. In particular, we let {αit : i ∈ L, t ∈ T } be uniformly

distributed random variables over the small interval [0, ε] and perturb the remaining leg capacities at the

beginning of time period t by using αt = {αit : i ∈ L}. Therefore, using perturbations of the remaining

leg capacities is equivalent to assuming that random but small amounts of capacity become available at

the beginning of each time period. If the interval [0, ε] is not too large, then perturbing the remaining

leg capacities in this fashion should not cause too much error. Incorporating θ(·) and αt into (1), we

redefine the decision function as

ut(xt, p, ω) = min
{
θ(qt − pjt), min

i∈Ljt

{xit + αit}
}
, (2)

where we also redefine the underlying random variables as ω = {(jt, qt, αt) : t ∈ T } to incorporate the

capacity perturbations. We emphasize that the decision function in (2) returns fractional quantities and

the implicit assumption in using this decision function is that we can serve a fraction of an itinerary

request. If we assume that the capacity perturbations {αit : i ∈ L, t ∈ T } are independent of each

other and {(jt, qt) : t ∈ T }, then the arguments of all of the min operators in (2) are distinct from each

other with probability one. This immediately implies that the decision function in (2) is differentiable

with respect to the prices and remaining leg capacities with probability one.

To define the total revenue function, we let at be the |L| dimensional vector with a one in the element

corresponding to flight leg i if itinerary jt uses flight leg i and a zero otherwise. Therefore, at captures

the leg capacities that we consume whenever we serve one request for itinerary jt. In this case, as a

function of the remaining leg capacities, prices and realizations of the underlying random variables, we

can recursively define the total revenue function as

Rt(xt, p, ω) = pjt ut(xt, p, ω) +Rt+1(xt + αt − at ut(xt, p, ω), p, ω) (3)

with the boundary condition that Rτ+1(xτ+1, p, ω) = 0. In other words, if the remaining leg capacities

at the beginning of time period t are given by xt, the prices are given by p and the realizations of the

underlying random variables are given by ω, then Rt(xt, p, ω) computes the total revenue that we obtain

over time periods {t, . . . , τ}. Of course, the computation of the total revenue is under the assumption
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that we can serve fractional numbers of itinerary requests and random amounts of capacity become

available at the beginning of each time period. Noting that x1 is a part of the problem data capturing

the initial capacities on the flight legs, if the prices for the itineraries are given by p and the realizations

of the underlying random variables are given by ω, then R1(x1, p, ω) computes the total revenue that

we obtain over the planning horizon. In this case, using p̄ = {p̄j : j ∈ J } to denote the finite upper

bounds that we impose on the feasible prices, we can solve the problem

max
p∈[0,p̄]

E
{
R1(x1, p, ω)

}
(4)

to find a set of prices that maximize the total expected revenue. In the problem above, the constraint

p ∈ [0, p̄] should be understood as pj ∈ [0, p̄j ] for all j ∈ J . Imposing upper bounds on the prices should

not be a huge concern from a practical perspective since the upper bounds can be arbitrarily large. We

also note that problem (4) assumes that the prices are static over the whole planning horizon, but one

can adopt a rolling horizon framework and periodically solve problems of the form (4) to recompute the

prices. Using the fact that ut(xt, p, ω) is differentiable with respect to p and xt with probability one,

we can check by backward induction on (3) that Rt(xt, p, ω) is also differentiable with respect to p and

xt with probability one, in which case, it becomes possible to solve problem (4) by using the stochastic

gradients of the total revenue function with respect to the prices. In the next section, we show how to

compute the stochastic gradients of the total revenue function in a tractable fashion.

3 Stochastic Gradients of the Total Revenue Function

In this section, we develop a recursion that can be used to compute the stochastic gradients of the total

revenue function with respect to the prices. We begin by defining some notation. We let ∂P
j Rt(xt, p, ω) be

the derivative of Rt(·, ·, ω) with respect to the price for itinerary j evaluated at remaining leg capacities

xt and prices p. Similarly, we let ∂X
i Rt(xt, p, ω) be the derivative of Rt(·, ·, ω) with respect to the

remaining capacity on flight leg i evaluated at remaining leg capacities xt and prices p. In other words,

∂P
j Rt(xt, p, ω) and ∂X

i Rt(xt, p, ω) are respectively given by

∂P
j Rt(xt, p, ω) =

∂Rt(zt, r, ω)

∂rj

∣∣∣∣
(zt,r)=(xt,p)

∂X
i Rt(xt, p, ω) =

∂Rt(zt, r, ω)

∂zit

∣∣∣∣
(zt,r)=(xt,p)

.

We use the notation ∂P
j ut(xt, p, ω) and ∂X

i ut(xt, p, ω) with similar interpretations.

We proceed to derive a number of recursions that can be used to compute ∂P
j Rt(xt, p, ω) for all

j ∈ J , t ∈ T . In this case, ∂P
j R1(x1, p, ω) gives the stochastic gradient of the total revenue function

with respect to the price for itinerary j. To compute ∂P
j Rt(xt, p, ω), we differentiate (3) with respect to

the price for itinerary j and use the chain rule to obtain

∂P
j Rt(xt, p, ω) = pjt ∂

P
j ut(xt, p, ω) + 1(j = jt)ut(xt, p, ω)

+ ∂P
j Rt+1(xt + αt − at ut(xt, p, ω), p, ω)

−
∑

i∈Ljt

∂P
j ut(xt, p, ω) ∂

X
i Rt+1(xt + αt − at ut(xt, p, ω), p, ω), (5)
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where we use the fact that at has a one in component i whenever i ∈ Ljt and a zero otherwise. To

compute the terms on the right side of (5), we differentiate (3) with respect to the remaining capacity

on flight leg i to obtain

∂X
i Rt(xt, p, ω) = pjt ∂

X
i ut(xt, p, ω) + ∂X

i Rt+1(xt + αt − at ut(xt, p, ω), p, ω)

−
∑

l∈Ljt

∂X
i ut(xt, p, ω) ∂

X
l Rt+1(xt + αt − at ut(xt, p, ω), p, ω). (6)

On the other hand, differentiating (2) with respect to the price for itinerary j yields

∂P
j ut(xt, p, ω) =

{
− θ̇(qt − pjt) if j = jt and θ(qt − pjt) ≤ mini∈Ljt

{xit + αit}
0 otherwise.

(7)

We emphasize that the expression above is accurate only in with probability one sense. In particular,

if we have j = jt and θ(qt − pjt) = mini∈Ljt
{xit + αit}, then ut(xt, p, ω) in (2) is not necessarily

differentiable with respect to the price for itinerary j. However, since {αit : i ∈ L, t ∈ T } are

uniformly distributed random variables that are independent of each other and {(jt, qt) : t ∈ T }, the
event that j = jt and θ(qt − pjt) = mini∈Ljt

{xit + αit} occurs with probability zero. We arbitrarily set

∂P
j ut(xt, p, ω) = − θ̇(qt − pjt) under this probability zero event. Finally, differentiating (2) with respect

to the remaining capacity on flight leg i yields

∂X
i ut(xt, p, ω) =

{
1 if i ∈ Ljt and xit + αit ≤ min

{
θ(qt − pjt),minl∈Ljt\{i}{xlt + αlt}

}

0 otherwise.
(8)

Similar to (7), the expression in (8) is accurate only in with probability one sense.

We can compute ∂P
j R1(x1, p, ω) for all j ∈ J by simulating the evolution of the system under prices

p and realizations of the underlying random variables ω. In this case, the remaining leg capacities

at time period t + 1 are recursively given by Xt+1(p, ω) = Xt(p, ω) + αt − at ut(Xt(p, ω), p, ω) with

the initial condition that X1(p, ω) = x1. We can use (7) and (8) to compute ∂P
j ut(Xt(p, ω), p, ω) and

∂X
i ut(Xt(p, ω), p, ω) for all j ∈ J , i ∈ L, t ∈ T . This allows us to compute ∂X

i Rt(Xt(p, ω), p, ω) for

all i ∈ L, t ∈ T by using (6) and moving backwards over the time periods. Finally, we can compute

∂P
j Rt(Xt(p, ω), p, ω) for all j ∈ J , t ∈ T by using (5) and moving backwards over the time periods one

more time. Since ut(xt, p, ω) is differentiable with respect to p and xt with probability one, all of the

stochastic gradients exist only in with probability one sense.

4 Stochastic Approximation Algorithm

In this section, we analyze the following stochastic approximation algorithm to solve problem (4).

Algorithm 1

Step 1. Choose the initial prices p1 = {p1j : j ∈ J } such that p1 ∈ [0, p̄]. Initialize the iteration counter

by setting k = 1.

Step 2. Letting ωk be the realizations of the underlying random variables at iteration k, compute

∂P
j R1(x1, p

k, ωk) for all j ∈ J by using (5)-(8).
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Step 3. Letting σk be the step size parameter at iteration k and using [·]+ to denote max{·, 0}, compute

the prices pk+1 = {pk+1
j : j ∈ J } at the next iteration as

pk+1
j = min

{
[pkj + σk ∂P

j R1(x1, p
k, ωk)]+, p̄j

}
.

Step 4. Increase k by one and go to Step 2.

The algorithm above is a standard stochastic approximation algorithm that uses the stochastic

gradient {∂P
j R1(x1, p

k, ωk) : j ∈ J } at iteration k. In Step 1, we choose the initial prices so that they

satisfy p1j ∈ [0, p̄j ] for all j ∈ J . In Step 2, we sample a realization of the underlying random variables

and compute the stochastic gradient {∂P
j R1(x1, p

k, ωk) : j ∈ J }. Letting Fk = {p1, ω1, . . . , ωk−1} be

the history of the algorithm up to iteration k, we assume that the distribution of ωk conditional on Fk

is the same as the distribution of ω. In Step 3, we update the prices pk by using the step size parameter

σk and the stochastic gradient {∂P
j R1(x1, p

k, ωk) : j ∈ J }. The role of the operator min{[·]+, p̄j} in this

step is to ensure that pk+1
j ∈ [0, p̄j ] and we can visualize this operator simply as a projection on to the

interval [0, p̄j ]. We have the next convergence result for Algorithm 1.

Proposition 1 Assume that the sequence of prices {pk} is generated by Algorithm 1 and the sequence

of step size parameters {σk} satisfies σk ≥ 0 for all k ≥ 1,
∑∞

k=1 σ
k = ∞ and

∑∞
k=1[σ

k]2 < ∞. If

we use Θ to denote the set of Kuhn Tucker points for problem (4) and Θ is connected, then we have

pk → Θ in probability as k → ∞.

Proof Propositions 2, 3 and 4 in Appendices A, B and C show that the following statements hold.

(A.1) We have |∂P
j R1(x1, p, ω)| ≤ BP

R with probability one for all j ∈J , p ∈ [0, p̄] for a finite scalar BP
R .

(A.2) Using ∂P
j E

{
R1(x1, p, ω)

}
to denote the derivative of E

{
R1(x1, ·, ω)

}
with respect to the price

for itinerary j evaluated at prices p, we have ∂P
j E

{
R1(x1, p, ω)

}
= E

{
∂P
j R1(x1, p, ω)

}
for all j ∈ J ,

p ∈ [0, p̄].

(A.3) Using ‖·‖ to denote the Euclidean norm on <|J |, we have E
{∣∣∂P

j R1(x1, p, ω)−∂P
j R1(x1, r, ω)

∣∣} ≤
LP
R ‖p− r‖ for all j ∈ J , p, r ∈ [0, p̄] for a finite scalar LP

R.

In this case, the desired result can be shown by referring to Theorem 6.3.1 in Kushner and Clark (1978),

which we briefly state in Appendix D. In particular, (A.2) and (A.3) imply that

∣∣∂P
j E

{
R1(x1, p, ω)

}− ∂P
j E

{
R1(x1, r, ω)

}∣∣ = ∣∣E{∂P
j R1(x1, p, ω)− ∂P

j R1(x1, r, ω)
}∣∣

≤ E{∣∣∂P
j R1(x1, p, ω)− ∂P

j R1(x1, r, ω)
∣∣} ≤ LP

R ‖p− r‖

for all p, r ∈ [0, p̄]. Therefore, (B.1) in Appendix D holds. Using the fact that the distribution of ωk

conditional on Fk is the same as the distribution of ω, (A.2) implies that E
{
∂P
j R1(x1, p, ω

k) | Fk
}
=

E
{
∂P
j R1(x1, p, ω)

}
= ∂P

j E
{
R1(x1, p, ω)

}
. Therefore, (B.2) in Appendix D holds. (A.1) and (A.2) imply

that
∣∣∂P

j E
{
R1(x1, p, ω)

}∣∣ =
∣∣E{∂P

j R1(x1, p, ω)
}∣∣ ≤ BP

R for all j ∈ J , p ∈ [0, p̄] so that we obtain∣∣∂P
j R1(x1, p, ω) − ∂P

j E
{
R1(x1, p, ω)

}∣∣ ≤ 2BP
R by (A.1). Therefore, (B.3) in Appendix D holds. The

constraints in problem (4) are of the form 0 ≤ pj ≤ p̄j for all j ∈ J . This implies that for a given
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j ∈ J , the constraints 0 ≤ pj and pj ≤ p̄j cannot be simultaneously active. Thus, the gradients of the

active constraints are always linearly independent. Therefore, (B.4) in Appendix D holds. 2

In the proof of Proposition 1, (A.1) implies that the stochastic gradient of the total revenue function

is uniformly bounded. (A.2) implies that the expectation of the stochastic gradient of the total revenue

function is equal to the gradient of the objective function of problem (4). Therefore, the expectation of

the stochastic gradient is an ascent direction for problem (4). Finally, (A.3) implies that the expectation

of the stochastic gradient of the total revenue function is Lipschitz when viewed as a function of the

prices. It is worthwhile to note that Proposition 1 does not make an assumption about the correlation

structure between the customer arrivals and reservation prices at different time periods. In particular,

Proposition 1 continues to hold even when there are correlations among {(jt, qt) : t ∈ T }.

An undesirable aspect of Proposition 1 is that it is difficult to verify the connectedness of the set

of Kuhn Tucker points for problem (4). Theorem 6.3.1 in Kushner and Clark (1978) also provides a

weaker but more technical convergence result for Algorithm 1 without assuming that the set of Kuhn

Tucker points is connected. Roughly speaking, this convergence result focuses on the averages of the

prices generated by Algorithm 1 over a certain number of iterations and shows that the probability that

these averages lie away from the set of Kuhn Tucker points for an extended period of time diminishes

as the number of iterations in Algorithm 1 increases. We do not go into the details of this technical

convergence result, but emphasize that it is possible to provide a convergence result for Algorithm 1

without assuming that the set of Kuhn Tucker points for problem (4) is connected.

5 Computational Experiments

In this section, we compare the performances of the prices obtained by Algorithm 1 with those obtained

by other benchmark strategies. We begin by describing our benchmark strategies and experimental

setup. Following this, we present our computational results.

5.1 Benchmark Strategies

We test the performances of the following three benchmark strategies.

Stochastic Approximation Algorithm (SAA) SAA corresponds to the solution approach that we

propose in this paper, but our practical implementation differs from the earlier development in two

important aspects. First, our practical implementation of SAA divides the planning horizon into S

equal segments and recomputes the prices at time periods {1+(s−1) τ/S : s = 1, . . . , S}. In particular,

if the remaining leg capacities at the beginning of segment s are given by x1+(s−1)τ/S , then we solve the

problem maxp∈[0,p̄] E
{
R1+(s−1)τ/S(x1+(s−1)τ/S , p, ω)

}
by using Algorithm 1. Letting p∗ = {p∗j : j ∈ J }

be the prices that we obtain in this fashion, we use the prices p∗ until we reach the beginning of the next

segment and recompute the prices. Second, although the earlier development in the paper is under the

assumption that we can serve fractional numbers of itinerary requests, we drop this assumption when

testing the performances of the prices. In particular, if the prices obtained by Algorithm 1 are given by

p∗, then we observe a request for itinerary j at a time period with probability λj(p
∗
j ). If there is enough
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capacity, then we serve the itinerary request. Otherwise, the itinerary request leaves the system. In

other words, we do not use θ(·) and {αit : i ∈ L, t ∈ T } when testing the performances of the prices.

In our computational experiments, we use S = 12. A few setup runs indicated that increasing S

further does not improve the performance of SAA noticeably. Our choice of θ(·) is given by θ(q) =
1
2 − 1

2 e
−ζ [q]+ + 1

2 e
−ζ [−q]+ with ζ > 0. Figure 1 plots θ(·) for different values of ζ and indicates that θ(·)

approaches the step function as ζ increases. We use ζ = 0.075 in our computational experiments. In

Step 1 of Algorithm 1, we choose the initial prices as {p̄j/2 : j ∈ J }. In Step 3 of Algorithm 1, we use

the step size parameter σk = 200/(400 + k). We terminate Algorithm 1 after 1,000 iterations.

Deterministic Linear Program (DLP) DLP is based on a deterministic linear program that is

formulated under the assumption that the numbers of itinerary requests always take on their expected

values. Noting that the price for itinerary j lies in the interval [0, p̄j ], we discretize the interval [0, p̄j ]

into N pieces to obtain the price levels {p̂nj : n = 1, . . . , N}, where p̂nj = (n−1) p̄j/(N −1). At any time

period in the planning horizon, if we charge the price level p̂nj for itinerary j and there is enough capacity

on the flight legs to serve a request for itinerary j, then the expected number of requests that we serve

for itinerary j is given by Λ̂n
j = λj(p̂

n
j ) and the expected revenue that we generate from itinerary j is

given by ρ̂nj = p̂nj λj(p̂
n
j ). In this case, letting ynj be the number of time periods at which we plan to

charge the price level p̂nj for itinerary j, we can solve the problem

max
∑

j∈J

N∑

n=1

ρ̂nj y
n
j (9)

subject to
∑

j∈J

N∑

n=1

1(i ∈ Lj) Λ̂
n
j y

n
j ≤ xi1 for all i ∈ L (10)

N∑

n=1

ynj ≤ τ for all j ∈ J (11)

ynj ≥ 0 for all j ∈ J , n = 1, . . . , N (12)

to estimate the total expected revenue over the planning horizon. In the problem above, the first

set of constraints ensure that the pricing decisions do not violate the capacities on the fight legs,

whereas the second set of constraints ensure that the total number of time periods at which we use

the different price levels does not exceed the number of time periods in the planning horizon. Letting

{yn∗j : n = 1, . . . , N, j ∈ J } be the optimal solution to problem (9)-(12), at any time period in the

planning horizon, we charge the price level p̂nj for itinerary j with probability yn∗j /τ . With probability

1−∑N
n=1 y

n∗
j /τ , we do not make itinerary j available for purchase. Not making an itinerary available

for purchase can be visualized as charging a prohibitively large price for the itinerary. DLP is based on

the work of Gallego and van Ryzin (1997).

In addition to making the pricing decisions, another useful aspect of problem (9)-(12) is that it can

be used to obtain an upper bound on the optimal total expected revenue and such an upper bound

becomes useful when assessing the optimality gap of a suboptimal benchmark strategy, such as SAA

and DLP. In particular, we can follow the same approach in Gallego and van Ryzin (1997) to show that

12



the optimal objective value of problem (9)-(12) provides an upper bound on the total expected revenue

obtained by the optimal pricing policy under the assumption that we are only allowed to use the price

levels {p̂nj : n = 1, . . . , N, j ∈ J }. In our computational experiments, we solve problem (9)-(12) with

a large value for N so that the price levels {p̂nj : n = 1, . . . , N} virtually lie on a continuum over the

interval [0, p̄j ]. In this case, we expect that the optimal objective value of problem (9)-(12) would be

an approximate upper bound on the optimal total expected revenue even when we are allowed to use

any set of prices p that satisfy pj ∈ [0, p̄j ] for all j ∈ J .

Similar to SAA, our practical implementation of DLP divides the planning horizon into S equal

segments and recomputes the prices at time periods {1 + (s − 1)τ/S : s = 1, . . . , S}. In particular, if

the remaining leg capacities at the beginning of segment s are given by x1+(s−1)τ/S , then we replace

the right side of constraints (10) with {xi,1+(s−1)τ/S : i ∈ L} and the right side of constraints (11) with

τ − (s−1)τ/S, and solve problem (9)-(12). Letting {yn∗j : n = 1, . . . , N, j ∈ J } be the optimal solution

to problem (9)-(12), we charge the price level p̂nj for itinerary j with probability yn∗j /[τ − (s − 1)τ/S]

until we reach the beginning of the next segment and recompute the prices. We use N = 40 and S = 12

in our computational experiments. A few setup runs indicated that increasing either N or S further

does not improve the performance of DLP significantly. When obtaining an approximate upper bound

on the optimal total expected revenue, we solve problem (9)-(12) with N = 400.

Capacity Allocation with Single Price (CSP) CSP is a restricted version of DLP, where we only

use the prices that maximize the immediate expected revenue from the itineraries. In particular, letting

p̂j = argmaxpj∈[0,p̄j ] pj λj(pj), Λ̂j = λj(p̂j) and ρ̂j = p̂j λj(p̂j), we solve the problem

max
∑

j∈J
ρ̂j yj (13)

subject to
∑

j∈J
1(i ∈ Lj) Λ̂j yj ≤ xi1 for all i ∈ L (14)

0 ≤ yj ≤ τ for all j ∈ J (15)

to obtain the optimal solution {y∗j : j ∈ J }. At any time period in the planning horizon, we use the

price p̂j for itinerary j with probability y∗j /τ . With probability 1 − y∗j /τ , we do not make itinerary j

available for purchase. Since CSP is a restricted version of DLP, we do not expect it to perform as well

as DLP, but the goal of CSP is to show how well we can perform by choosing the prices in a myopic

fashion and adjusting only the availability of the itineraries. Similar to DLP, CSP divides the planning

horizon into S equal segments and resolves problem (13)-(15) at the beginning of each segment. Similar

to SAA and DLP, we use S = 12 for CSP.

5.2 Experimental Setup

In our computational experiments, we consider two function types that capture the relationship between

the price and the probability of observing an itinerary request. In the first function type, we assume

that λj(·) is a linear function of the form λj(pj) = πj (1 − κj pj), where πj can be interpreted as the

probability that we observe a request for itinerary j when we charge nothing for this itinerary and κj
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as the price sensitivity. The upper bound on the price for itinerary j is given by p̄j = 1/κj , in which

case, we have 0 ≤ λj(pj) ≤ πj for all pj ∈ [0, p̄j ]. We assume that
∑

j∈J πj ≤ 1 so that we also have∑
j∈J λj(pj) ≤ 1 for all p ∈ [0, p̄]. In the second function type, we assume that λj(·) is an exponential

function of the form λj(pj) = πj e
−κjpj , where the interpretations of πj and κj are the same as those for

the linear case. The upper bound on the price for itinerary j is given by p̄j = ln 10/κj , in which case,

we have πj/10 ≤ λj(pj) ≤ πj for all pj ∈ [0, p̄j ]. Similar to the linear case, we assume that
∑

j∈J πj ≤ 1

so that we also have
∑

j∈J λj(pj) ≤ 1 for all p ∈ [0, p̄].

In all of our test problems, we consider an airline network with one hub and K spokes. There are

two flight legs associated with each spoke, one of which is from the spoke to the hub and the other

one is from the hub to the spoke. There is a highly price sensitive and a moderately price sensitive

itinerary that connects every possible origin destination pair in the airline network. Therefore, we have

2K flight legs and 2K(K + 1) itineraries, 4K of which use one flight leg and 2K(K − 1) use two flight

legs. Figure 2 shows the structure of the airline network with K = 8. The price sensitivity associated

with a highly price sensitive itinerary is δ times larger than the price sensitivity associated with the

corresponding moderately price sensitive itinerary. To measure the tightness of the leg capacities, we

let p̂j = argmaxpj∈[0,p̄j ] pj λj(pj) for all j ∈ J so that
∑

j∈J 1(i ∈ Lj) τ λj(p̂j) gives the total expected

demand for the capacity on flight leg i when we use the prices that maximize the immediate expected

revenue from the itineraries. In this case, we measure the tightness of the leg capacities by

γ =

∑
i∈L

∑
j∈J 1(i ∈ Lj) τ λj(p̂j)∑

i∈L xi1
.

We varyK, γ and δ in our test problems and label them by (T,K, γ, δ) ∈ {L,E}×{4, 8}×{1.2, 1.6, 2.0}×
{2, 4, 8}, where the first component describes whether {λj(·) : j ∈ J } are linear or exponential functions

and the other three components are as described above.

5.3 Computational Results

Our main computational results are shown in Tables 1 and 2. In particular, Tables 1 and 2 respectively

consider the cases where {λj(·) : j ∈ J } are linear and exponential functions. The first column in these

tables shows the problem characteristics. The second, third and fourth columns respectively show the

total expected revenues obtained by SAA, DLP and CSP. We estimate these total expected revenues by

simulating the performances of the three benchmark strategies for 100 sample paths. We use common

random numbers when simulating the performances of the three benchmark strategies. The fifth and

sixth columns show the percent gaps between the total expected revenues obtained by SAA and the

other two benchmark strategies. The seventh column shows the upper bound on the optimal total

expected revenue provided by the optimal objective value of problem (9)-(12).

The results in Table 1 indicate that SAA performs significantly better than DLP. The average

performance gap between SAA and DLP is 4.3% and there are test problems where the performance

gap between the two benchmark strategies can be as high as 8.9%. As expected CSP performs worse

than DLP and the average performance gap between SAA and CSP is 13.6%. For all of the test

problems, the performance gaps between all of the benchmark strategies turn out to be statistically
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significant at 95% level. Table 2 provides similar observations. The average performance gap between

SAA and DLP is 8.7% and the average performance gap between SAA and CSP is 14.8%. There are

test problems where the performance gap between SAA and DLP is as high as 16.4%. Overall, SAA

yields significant improvements over DLP and CSP.

To illustrate the critical problem characteristics that affect the relative performances of the three

benchmark strategies, Figure 3 shows the performance gaps between SAA and the other two benchmark

strategies for the case where {λj(·) : j ∈ J } are exponential functions. In this figure, the thin data series

plot the performance gaps between SAA and DLP, whereas the thick data series plot the performance

gaps between SAA and CSP. The test problems in the horizontal axis are arranged in such a fashion

that the first nine test problems involve four spokes, whereas the last nine test problems involve eight

spokes. If we move from left to right within a block of nine test problems, then the leg capacities get

tighter, whereas if we move from left to right within a block of three test problems, then the differences

in the price sensitivities of the highly and moderately price sensitive itineraries get larger. The results

in Figure 3 indicate that the performance gaps between SAA and the other two benchmark strategies

tend to get larger as the leg capacities get tighter and the differences in price sensitivities of the highly

and moderately price sensitive itineraries get larger. We note that if the leg capacities were unlimited,

then the pricing decisions at different time periods would not interact and it would be trivially optimal

to use the prices {p̂j : j ∈ J } with p̂j = argmaxpj∈[0,p̄j ] pj λj(pj). Therefore, we intuitively expect the

test problems with tighter leg capacities to be more difficult. On the other hand, as the differences in

the price sensitivities of the highly and moderately price sensitive itineraries get larger, the itineraries

become more diverse in terms of their responses to the pricing decisions and we need to use a richer

set of prices to obtain good performance. Therefore, we also intuitively expect the test problems with

larger differences in the price sensitivities to be more difficult. These observations indicate that for

the test problems that we expect to be more difficult, SAA provides especially good performance when

compared with the other two benchmark strategies.

In all of our computational experiments, we choose the initial prices in Step 1 of Algorithm 1 as

{p̄j/2 : j ∈ J }. This is essentially an arbitrary choice, but the performance of Algorithm 1 turns out

to be relatively insensitive to the choice of the initial prices. To illustrate this behavior, Figure 4 plots

E
{
R1(x1, p

k, ω)
}
for two test problems as a function of the iteration counter k in Algorithm 1. The

charts on the left and right sides of Figure 4 respectively correspond to test problems (L, 8, 1.6, 8) and

(E, 4, 1.2, 4). The three data series in these charts correspond to three different choices of the initial

prices. In the first choice, the initial prices are {p̄j/2 : j ∈ J }. In the second choice, the initial prices are

sampled uniformly over {p ∈ <|J |
+ : p ∈ [0, p̄]}. In the third choice, letting {yn∗j : n = 1, . . . , N, j ∈ J }

be the optimal solution to problem (9)-(12), the initial prices are {∑N
n=1 y

n∗
j p̂nj /τ : j ∈ J }. We note that

the third choice of initial prices can roughly be interpreted as the weighted average of the prices used

by DLP, but this interpretation is not always correct since we do not necessarily have
∑N

n=1 y
n∗
j = τ

for all j ∈ J . The results in Figure 4 indicate that the performance of Algorithm 1 is relatively

insensitive to the choice of the initial prices. In particular, the performances of the final prices that

are obtained by starting from the different initial prices are always within 0.3% of each other. These

results are encouraging, but we still caution the reader that the objective function of problem (4) is not

15



necessarily concave and the performance of Algorithm 1 can indeed depend on the choice of the initial

prices. Another interesting observation from Figure 4 is that the performances of the prices obtained

by Algorithm 1 stabilize after about 500 iterations. Nevertheless, due to the lack of good stopping

criteria for stochastic approximation algorithms, we prefer to err on the conservative side and terminate

Algorithm 1 after 1,000 iterations.

Our computational results indicate that the prices used by SAA perform significantly better than

those used by DLP. In this case, a natural question is whether the prices used by SAA and DLP are

indeed very different or they are simply minor adjustments to each other. Letting {p1j : j ∈ J } be

the prices obtained by Algorithm 1, {yn∗j : n = 1, . . . , N, j ∈ J } be the optimal solution to problem

(9)-(12) and p2j =
∑N

n=1 y
n∗
j p̂nj /τ , Figure 5 compares the prices used by SAA and DLP by providing

scatter plots of {(p1j , p2j ) : j ∈ J } for two test problems. The charts on the left and right sides of

Figure 5 respectively correspond to test problems (L, 8, 1.6, 8) and (E, 4, 1.2, 4). The results in Figure

5 indicate that the prices obtained by Algorithm 1 and problem (9)-(12) show the same general trends

and they may essentially be minor adjustments to each other, but the prices obtained by Algorithm 1

still provide significant improvements over those obtained by problem (9)-(12).

The computational results in Tables 1 and 2 correspond to the case where we recompute the prices 12

times over the planning horizon, but it turns out that the performance of SAA is relatively insensitive

to the number of times that we recompute the prices. Figure 6 plots the total expected revenues

obtained by SAA, DLP and CSP for two test problems as a function of the number of times that we

recompute the prices. The charts of the left and right sides of Figure 6 respectively correspond to test

problems (L, 8, 1.6, 8) and (E, 4, 1.2, 4). In the horizontal axis, we vary the number of times that we

recompute the prices over the planning horizon. The thin, thick and dashed data series respectively

show the total expected revenues obtained by SAA, DLP and CSP. The results in Figure 6 indicate

that the performances of DLP and CSP quickly deteriorate when we recompute the prices fewer than

six times over the planning horizon, whereas the performance of SAA remains stable. Furthermore,

the performance of SAA even when we compute the prices only once at the beginning of the planning

horizon can be uniformly better than the performances of DLP and CSP.

For different numbers of spokes in the airline network and for different numbers of time periods in

the planning horizon, Table 3 shows the CPU seconds required for Algorithm 1 to compute one set of

prices. All of our computational experiments are carried out on a Pentium PC running Windows XP

with Intel Xeon 2.8 GHz CPU and 4 GB RAM. The CPU seconds in Table 3 correspond to the case

where we terminate Algorithm 1 after 1,000 iterations. The results in Table 3 indicate that increasing

the number of spokes by a factor of two increases the CPU seconds by about a factor of three. This

type of scaling is reasonable as increasing the number of spokes by a factor of two increases the number

of flight legs by a factor of two and increases the number of itineraries by about a factor of four. On the

other hand, increasing the number of time periods in the planning horizon by a factor of two increases

the CPU seconds by about a factor of two. For the largest test problems, the CPU seconds are on the

order of five to ten minutes. It turns out that the CPU seconds for DLP and CSP are consistently

less than a fraction of a second and we do not give detailed CPU seconds for DLP and CSP. The CPU

16



seconds for DLP and CSP are shorter than those for SAA by an order of magnitude, but the CPU

seconds for SAA are still reasonable for practical implementation. Furthermore, noting that SAA can

provide significant improvements over DLP and CSP in terms of total expected revenue, SAA appears

to be a very good candidate for solving practical pricing problems.

6 Conclusions

In this paper, we proposed a stochastic approximation algorithm that can be used to find a good set of

prices in network revenue management problems. To develop our stochastic approximation algorithm,

we used a construction that decouples the prices for the itineraries from the probability distributions

of the underlying random variables. To facilitate our convergence proof, we used a smoothed version of

the problem, which assumes that the leg capacities are continuous and we can serve fractional numbers

of itinerary requests. These modifications ensured that the total revenue is differentiable with respect

to the prices with probability one and we can use the stochastic gradients of the total revenue to find a

good set of prices. Our computational experiments indicated that the prices obtained by our approach

perform significantly better than those obtained by a deterministic linear program and the performance

gaps become especially large when the leg capacities are tight and there are large differences between

the price sensitivities of the different market segments.
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Total Exp. Revenue Perc. Gap
Problem Obtained by with SAA Upper

(T,K, γ, δ) SAA DLP CSP DLP CSP Bound

(L, 4, 1.2, 2) 6,165 6,049 5,460 1.89 11.44 6,606
(L, 4, 1.2, 4) 8,977 8,654 8,043 3.60 10.41 9,538
(L, 4, 1.2, 8) 14,704 13,938 13,202 5.21 10.22 15,416

(L, 4, 1.6, 2) 5,355 5,304 4,456 0.95 16.79 5,922
(L, 4, 1.6, 4) 8,011 7,789 6,964 2.77 13.08 8,792
(L, 4, 1.6, 8) 13,637 12,963 11,972 4.94 12.21 14,640

(L, 4, 2.0, 2) 4,719 4,674 3,804 0.96 19.40 5,271
(L, 4, 2.0, 4) 7,240 7,067 6,273 2.39 13.35 8,084
(L, 4, 2.0, 8) 12,717 12,144 11,208 4.51 11.87 13,897

(L, 8, 1.2, 2) 5,632 5,454 5,041 3.17 10.49 6,273
(L, 8, 1.2, 4) 8,049 7,587 7,184 5.74 10.75 8,924
(L, 8, 1.2, 8) 13,118 11,951 11,482 8.90 12.47 14,239

(L, 8, 1.6, 2) 4,898 4,774 4,131 2.54 15.65 5,680
(L, 8, 1.6, 4) 7,159 6,800 6,163 5.02 13.92 8,281
(L, 8, 1.6, 8) 12,032 10,959 10,323 8.92 14.20 13,569

(L, 8, 2.0, 2) 4,354 4,261 3,545 2.15 18.58 5,152
(L, 8, 2.0, 4) 6,497 6,176 5,530 4.94 14.88 7,710
(L, 8, 2.0, 8) 11,239 10,241 9,566 8.88 14.89 12,972

Average 4.30 13.59

Table 1: Performances of SAA, DLP and CSP for the case where {λj(·) : j ∈ J } are linear functions.

Total Exp. Revenue Perc. Gap
Problem Obtained by with SAA Upper

(T,K, γ, δ) SAA DLP CSP DLP CSP Bound

(E, 4, 1.2, 2) 4,056 3,899 3,716 3.86 8.38 4,271
(E, 4, 1.2, 4) 5,840 5,506 5,259 5.72 9.95 6,149
(E, 4, 1.2, 8) 9,493 8,742 8,322 7.91 12.33 9,909

(E, 4, 1.6, 2) 3,697 3,551 3,301 3.95 10.69 4,018
(E, 4, 1.6, 4) 5,425 5,067 4,715 6.60 13.08 5,866
(E, 4, 1.6, 8) 9,008 8,138 7,515 9.66 16.57 9,608

(E, 4, 2.0, 2) 3,357 3,209 2,972 4.42 11.46 3,723
(E, 4, 2.0, 4) 4,956 4,614 4,217 6.90 14.92 5,531
(E, 4, 2.0, 8) 8,297 7,476 6,681 9.90 19.48 9,242

(E, 8, 1.2, 2) 3,695 3,456 3,314 6.47 10.32 4,050
(E, 8, 1.2, 4) 5,255 4,751 4,521 9.58 13.98 5,748
(E, 8, 1.2, 8) 8,457 7,305 6,952 13.62 17.79 9,147

(E, 8, 1.6, 2) 3,275 3,070 2,859 6.28 12.70 3,827
(E, 8, 1.6, 4) 4,712 4,192 3,881 11.04 17.65 5,501
(E, 8, 1.6, 8) 7,737 6,466 5,935 16.42 23.28 8,884

(E, 8, 2.0, 2) 2,890 2,719 2,520 5.92 12.79 3,558
(E, 8, 2.0, 4) 4,179 3,686 3,442 11.81 17.65 5,194
(E, 8, 2.0, 8) 6,832 5,747 5,239 15.89 23.31 8,547

Average 8.66 14.80

Table 2: Performances of SAA, DLP and CSP for the case where {λj(·) : j ∈ J } are exponential
functions.

No. of. CPU secs.
Spokes for SAA

4 31
8 75
16 227
32 722

No. of. CPU secs.
Time Per. for SAA

180 33
360 75
720 165
1,440 331

Table 3: CPU seconds required for Algorithm 1 to compute one set of prices.
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A Appendix: Proposition 2

Proposition 2 We have |∂P
j R1(x1, p, ω)| ≤ BP

R with probability one for all j ∈ J , p ∈ [0, p̄] for a finite

scalar BP
R .

Proof All of the statements in the proof should be understood in with probability one sense and the

proof follows from an argument that is similar to the one in Topaloglu (2008). Letting P̄ = maxj∈J p̄j ,

we begin by using induction over the time periods to show that |∂X
i Rt(xt, p, ω)| ≤ P̄ 4τ−t |L|τ−t for all

xt ∈ <|L|
+ , p ∈ [0, p̄], i ∈ L, t ∈ T . Since we have |∂X

i ut(xt, p, ω)| ≤ 1 by (8), (6) implies that

∣∣∂X
i Rt(xt, p, ω)

∣∣ ≤ P̄ + 2
∑

l∈L

∣∣∂X
l Rt+1(xt + αt − at ut(xt, p, ω), p, ω)

∣∣.

Assuming that the induction hypothesis holds at time period t + 1, the inequality above implies that∣∣∂X
i Rt(xt, p, ω)

∣∣ ≤ P̄ + 2 |L|[P̄ 4τ−t−1 |L|τ−t−1
] ≤ P̄ 2 |L|[ 4τ−t−1 |L|τ−t−1

]
+ 2 |L|[P̄ 4τ−t−1 |L|τ−t−1

]
=

P̄ 4τ−t |L|τ−t and the result holds at time period t. This completes the induction argument and letting

BX
R = P̄ 4τ−1 |L|τ−1, we have |∂X

i Rt(xt, p, ω)| ≤ BX
R for all xt ∈ <|L|

+ , p ∈ [0, p̄], i ∈ L, t ∈ T .

Since θ(·) is Lipschitz with modulus Lθ, its derivative is bounded by Lθ. Therefore, by (7), we

have |∂P
j ut(xt, p, ω)| ≤ Lθ. Furthermore, since θ(q) ∈ [0, 1] for all q ∈ <, we have |ut(xt, p, ω)| ≤ 1

by (2). If we use the last two inequalities in (5) and note that |∂X
i Rt(xt, p, ω)| ≤ BX

R , then we obtain

|∂P
j Rt(xt, p, ω)| ≤ P̄ Lθ+1+|∂P

j Rt+1(xt+αt−at ut(xt, p, ω), p, ω)|+|L|Lθ B
X
R for all xt ∈ <|L|

+ , p ∈ [0, p̄],

j ∈ J , t ∈ T . Using this inequality and moving backwards over the time periods, it is straightforward

to see that we have |∂P
j Rt(xt, p, ω)| ≤ [τ − t+1]

[
1+ P̄ Lθ + |L|Lθ B

X
R

]
and the result follows by letting

BP
R = τ [1 + P̄ Lθ + |L|Lθ B

X
R ]. 2

B Appendix: Proposition 3

Proposition 3 Using ∂P
j E

{
R1(x1, p, ω)

}
to denote the derivative of E

{
R1(x1, ·, ω)

}
with respect to

the price for itinerary j evaluated at prices p, we have ∂P
j E

{
R1(x1, p, ω)

}
= E

{
∂P
j R1(x1, p, ω)

}
for all

j ∈ J , p ∈ [0, p̄].

Proof We have
∣∣mini∈Ljt

{xit} − mini∈Ljt
{zit}

∣∣ ≤ ‖xt − zt‖ for all xt, zt ∈ <|L|
+ , where with slight

notational abuse, we use ‖ · ‖ to denote the Euclidean norm on <|L| as well as the Euclidean norm on

<|J |. Therefore, mini∈Ljt
{·} : <|L| → < is Lipschitz. We assume that θ(·) : < → < is Lipschitz. Noting

that
∣∣min{q1, q2}−min{s1, s2}

∣∣ ≤ |q1−s1|+|q2−s2| for all q1, q2, s1 and s2 ∈ <, min{·, ·} : <2 → < is also

Lipschitz. By Lemma 6.3.3 in Glasserman (1994), the composition of Lipschitz functions is Lipschitz.

Therefore, the decision function in (2) is Lipschitz when viewed as a function of the remaining leg

capacities and prices. In this case, by using backward induction on (3) and using the fact that the

composition of Lipschitz functions is Lipschitz, we can check that the total revenue function is Lipschitz

when viewed as a function of the remaining leg capacities and prices. This implies that R1(x1, ·, ω) is

Lipschitz. Noting the discussion at the end of Section 2, R1(x1, ·, ω) is differentiable with respect to

the prices with probability one. Finally, R1(x1, p, ω) is bounded by τ P̄ for all p ∈ [0, p̄], where P̄ is as
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in the proof of Proposition 2. In this case, the result follows from Lemma 6.3.1 in Glasserman (1994),

which we briefly state in Appendix E. 2

C Appendix: Proposition 4

Proposition 4 We have E
{∣∣∂P

j R1(x1, p, ω)− ∂P
j R1(x1, r, ω)

∣∣} ≤ LP
R ‖p− r‖ for all j ∈ J , p, r ∈ [0, p̄]

for a finite scalar LP
R.

We need a number of intermediate results to show Proposition 4. The next lemma shows that if

the remaining leg capacities and prices change by a small amount, then the outcome of the decision

function also changes by a small amount. Throughout this section, all of the statements in the proofs

should be understood in with probability one sense.

Lemma 5 We have |ut(xt, p, ω)−ut(zt, r, ω)| ≤ ‖xt−zt‖+Lθ ‖p−r‖ with probability one for all t ∈ T ,

xt, zt ∈ <|L|
+ , p, r ∈ [0, p̄].

Proof We note that
∣∣min{q1, q2} − min{s1, s2}

∣∣ ≤ |q1 − s1| + |q2 − s2| for all q1, q2, s1 and s2 ∈ <
and

∣∣mini∈Ljt
{xit} − mini∈Ljt

{zit}
∣∣ ≤ ‖xt − zt‖ for all xt, zt ∈ <|L|

+ , in which case, (2) implies that∣∣ut(xt, p, ω) − ut(zt, r, ω)
∣∣ ≤ ∣∣θ(qt − pjt) − θ(qt − rjt)

∣∣ + ∣∣mini∈Ljt
{xit + αit} − mini∈Ljt

{zit + αit}
∣∣ ≤

Lθ |pjt − rjt |+ ‖xt − zt‖ ≤ Lθ ‖p− r‖+ ‖xt − zt‖. 2

In the next lemma and throughout the rest of this section, we let xpt be the remaining leg capacities

at time period t when the prices are given by p. In other words, the random variables {xpt : t ∈ T } are

recursively given by xpt+1 = xpt + αt − at ut(x
p
t , p, ω) with the boundary condition that xp1 = x1. In the

next lemma, we show that if the prices change by a small amount, then the remaining leg capacities

also change by a small amount.

Lemma 6 We have ‖xpt − xrt‖ ≤ LX ‖p− r‖ with probability one for all t ∈ T , p, r ∈ [0, p̄] for a finite

scalar LX .

Proof We use induction over the time periods to show that ‖xpt − xrt‖ ≤ 4t−1 (1 + |L|)t−1 Lθ ‖p − r‖
for all t ∈ T . Assuming that the induction hypothesis holds at time period t, we have

‖xpt+1 − xrt+1‖ ≤ ‖xpt − xrt‖+ ‖at‖
∣∣ut(xpt , p, ω)− ut(x

r
t , r, ω)

∣∣
≤ ‖xpt − xrt‖+ |L|[ ‖xpt − xrt‖+ Lθ ‖p− r‖ ]

≤ (1 + |L|) 4t−1 (1 + |L|)t−1 Lθ ‖p− r‖+ |L|Lθ ‖p− r‖ ≤ 4t (1 + |L|)t Lθ ‖p− r‖,

where the first inequality follows from the definition of xpt+1, the second inequality follows from Lemma 5

and the third inequality follows from the induction hypothesis. This completes the induction argument

and the result follows by letting LX = 4τ−1 (1 + |L|)τ−1 Lθ. 2

In the next lemma, we show that the expectation of the derivative of the decision function with

respect to the prices is Lipschitz when viewed as a function of the prices.
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Lemma 7 We have E
{∣∣∂P

j ut(x
p
t , p, ω)− ∂P

j ut(x
r
t , r, ω)

∣∣} ≤ LP
u ‖p− r‖ for all j ∈ J , t ∈ T , p, r ∈ [0, p̄]

for a finite scalar LP
u .

Proof If we have j 6= jt, then (7) implies that
∣∣∂P

j ut(x
p
t , p, ω) − ∂P

j ut(x
r
t , r, ω)

∣∣ = 0. Assuming that

j = jt, we consider the following four cases.

Case 1. If we have θ(qt − pjt) ≤ mini∈Ljt
{xpit + αit} and θ(qt − rjt) ≤ mini∈Ljt

{xrit + αit}, then (7)

implies that
∣∣∂P

j ut(x
p
t , p, ω)− ∂P

j ut(x
r
t , r, ω)

∣∣ = ∣∣θ̇(qt − pjt)− θ̇(qt − rjt)
∣∣ ≤ Lθ̇ ‖p− r‖.

Case 2. If we have θ(qt−pjt) ≤ mini∈Ljt
{xpit+αit} and θ(qt−rjt) > mini∈Ljt

{xrit+αit}, then noting that

the derivative of θ(·) is bounded by its Lipschitz modulus, we obtain
∣∣∂P

j ut(x
p
t , p, ω)− ∂P

j ut(x
r
t , r, ω)

∣∣ =∣∣θ̇(qt − pjt)
∣∣ ≤ Lθ.

Case 3. Similar to Case 2, if we have θ(qt−pjt) > mini∈Ljt
{xpit+αit} and θ(qt−rjt) ≤ mini∈Ljt

{xrit+αit},
then we obtain

∣∣∂P
j ut(x

p
t , p, ω)− ∂P

j ut(x
r
t , r, ω)

∣∣ = ∣∣θ̇(qt − rjt)
∣∣ ≤ Lθ.

Case 4. Finally, if we have θ(qt − pjt) > mini∈Ljt
{xpit + αit} and θ(qt − rjt) > mini∈Ljt

{xrit + αit}, then
we obtain

∣∣∂P
j ut(x

p
t , p, ω)− ∂P

j ut(x
r
t , r, ω)

∣∣ = 0.

We proceed to bound the probability of Case 2. We have
∣∣[θ(qt − pjt)− xpit]− [θ(qt − rjt)− xrit]

∣∣ ≤∣∣θ(qt − pjt) − θ(qt − rjt)
∣∣ +

∣∣xpit − xrit
∣∣ ≤ [Lθ + LX ] ‖p − r‖ by Lemma 6. In this case, noting that

{αit : i ∈ L, t ∈ T } are uniformly distributed over the interval [0, ε] and they are independent of each

other and {(jt, qt) : t ∈ T }, we obtain

P
{
θ(qt − pjt) ≤ min

i∈Ljt

{xpit + αit}, θ(qt − rjt) > min
i∈Ljt

{xrit + αit}
}

=
∑

l∈L
P
{
l = argmin

l∈Ljt

{xrit + αit}, θ(qt − pjt) ≤ min
i∈Ljt

{xpit + αit}, θ(qt − rjt) > xrlt + αlt

}

≤
∑

l∈L
P
{
θ(qt − pjt) ≤ xplt + αlt, θ(qt − rjt) > xrlt + αlt

}

=
∑

l∈L
P
{
θ(qt − pjt)− xplt ≤ αlt < θ(qt − rjt)− xrlt

}
≤ |L| [Lθ + LX ] ‖p− r‖/ε.

By symmetry, the same bound applies to the probability of Case 3. Combining the four cases and using

the trivial bound of one on the probability of Case 1, we have

E
{∣∣∂P

j ut(x
p
t , p, ω)− ∂P

j ut(x
r
t , r, ω)

∣∣} ≤ Lθ̇‖p− r‖+ 2 |L| [Lθ + LX ]Lθ ‖p− r‖/ε

and the result follows by letting LP
u = Lθ̇ + 2 |L| [Lθ + LX ]Lθ/ε. 2

In the next lemma, we show that the expectation of the derivative of the decision function with

respect to the remaining leg capacities is Lipschitz when viewed as a function of the prices.

Lemma 8 We have E
{∣∣∂X

i ut(x
p
t , p, ω)− ∂X

i ut(x
r
t , r, ω)

∣∣} ≤ LX
u ‖p− r‖ for all i ∈ L, t ∈ T , p, r ∈ [0, p̄]

for a finite scalar LX
u .

Proof We follow an argument similar to the one in the proof of Lemma 7. If we have i 6∈ Ljt ,

then (8) implies that
∣∣∂X

i ut(x
p
t , p, ω) − ∂X

i ut(x
r
t , r, ω)

∣∣ = 0. Assuming that i ∈ Ljt , there are only two
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cases under which
∣∣∂X

i ut(x
p
t , p, ω) − ∂X

i ut(x
r
t , r, ω)

∣∣ is not equal to zero. The first case corresponds to

xpit + αit ≤ min
{
θ(qt − pjt),minl∈Ljt\{i}{x

p
lt + αlt}

}
and xrit + αit > min

{
θ(qt − rjt),minl∈Ljt\{i}{xrlt +

αlt}
}
, whereas the second case corresponds to xpit + αit > min

{
θ(qt − pjt),minl∈Ljt\{i}{x

p
lt + αlt}

}

and xrit + αit ≤ min
{
θ(qt − rjt),minl∈Ljt\{i}{xrlt + αlt}

}
. If one of these two cases holds, then we

have
∣∣∂X

i ut(x
p
t , p, ω) − ∂X

i ut(x
r
t , r, ω)

∣∣ = 1. We proceed to bound the probability of the first case.

Using the fact that
∣∣min{q1, q2} − min{s1, s2}

∣∣ ≤ |q1 − s1| + |q2 − s2| for all q1, q2, s1 and s2 ∈ < and∣∣minl∈Ljt\{i}{xlt} −minl∈Ljt\{i}{zlt}
∣∣ ≤ ‖xt − zt‖ for all xt, zt ∈ <|L|

+ , we have

∣∣∣
[
min

{
θ(qt − pjt), min

l∈Ljt\{i}
{xplt + αlt}

}− xpit

]
−

[
min

{
θ(qt − rjt), min

l∈Ljt\{i}
{xrlt + αlt}

}− xrit

]∣∣∣

≤ ∣∣θ(qt − pjt)− θ(qt − rjt)
∣∣+ 2 ‖xpt − xrt‖ ≤ Lθ ‖p− r‖+ 2 ‖xpt − xrt‖ ≤ [Lθ + 2LX ] ‖p− r‖, (16)

where the last inequality follows from Lemma 6. In this case, noting that {αit : i ∈ L, t ∈ T } are

uniformly distributed over the interval [0, ε] and they are independent of each other and {(jt, qt) : t ∈ T },
we bound the probability of the first case by

P
{
xpit + αit ≤ min

{
θ(qt − pjt), min

l∈Ljt\{i}
{xplt + αlt}

}
, xrit + αit > min

{
θ(qt − rjt), min

l∈Ljt\{i}
{xrlt + αlt}

}}

= P
{
min

{
θ(qt − rjt), min

l∈Ljt\{i}
{xrlt + αlt}

}− xrit < αit ≤ min
{
θ(qt − pjt), min

l∈Ljt\{i}
{xplt + αlt}

}− xpit

}

≤ [Lθ + 2LX ] ‖p− r‖/ε,

where the inequality follows from (16). By symmetry, the same bound applies to the probability of the

second case. Since we have
∣∣∂X

i ut(x
p
t , p, ω) − ∂X

i ut(x
r
t , r, ω)

∣∣ = 1 whenever one of the two cases holds

and
∣∣∂X

i ut(x
p
t , p, ω)− ∂X

i ut(x
r
t , r, ω)

∣∣ = 0 otherwise, combining the two cases yields

E
{∣∣∂X

i ut(x
p
t , p, ω)− ∂X

i ut(x
r
t , r, ω)

∣∣} ≤ 2 [Lθ + 2LX ] ‖p− r‖/ε

and the result follows by letting LX
u = 2 [Lθ + 2LX ]/ε. 2

In the next lemma, we show that the expectation of the derivative of the total revenue function with

respect to the remaining leg capacities is Lipschitz when viewed as a function of the prices.

Lemma 9 We have E
{∣∣∂X

i Rt(x
p
t , p, ω)−∂X

i Rt(x
r
t , r, ω)

∣∣} ≤ LX
R ‖p−r‖ for all i ∈ L, t ∈ T , p, r ∈ [0, p̄]

for a finite scalar LX
R .

Proof For notational brevity, we let ∂X
i Rp

t = ∂X
i Rt(x

p
t , p, ω) and ∂X

i upt = ∂X
i ut(x

p
t , p, ω), in which case,

(6) can be written as ∂X
i Rp

t = pjt ∂
X
i upt + ∂X

i Rp
t+1 −

∑
l∈Ljt

∂X
i upt × ∂X

l Rp
t+1 and we obtain

∣∣∂X
i Rp

t − ∂X
i Rr

t

∣∣ ≤ ∣∣pjt ∂X
i upt − rjt ∂

X
i urt

∣∣+ ∣∣∂X
i Rp

t+1 − ∂X
i Rr

t+1

∣∣
+

∑

l∈Ljt

∣∣∂X
i upt × ∂X

l Rp
t+1 − ∂X

i urt × ∂X
l Rr

t+1

∣∣. (17)

Since we have |q1 s1 − q2 s2| ≤ |q1| |s1 − s2|+ |q1 − q2| |s2| for all q1, q2, s1 and s2 ∈ < and
∣∣∂X

i upt
∣∣ ≤ 1 by

(8), we bound the first term on the right side of (17) by

∣∣pjt ∂X
i upt − rjt ∂

X
i urt

∣∣ ≤ |pjt |
∣∣∂X

i upt − ∂X
i urt

∣∣+ |pjt − rjt |
∣∣∂X

i urt
∣∣ ≤ P̄

∣∣∂X
i upt − ∂X

i urt
∣∣+ ‖p− r‖,
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where P̄ is as in the proof of Proposition 2. Using a similar argument, we bound the third term on the

right side of (17) by

∣∣∂X
i upt × ∂X

l Rp
t+1 − ∂X

i urt × ∂X
l Rr

t+1

∣∣ ≤ ∣∣∂X
i upt

∣∣ ∣∣∂X
l Rp

t+1 − ∂X
l Rr

t+1

∣∣+ ∣∣∂X
i upt − ∂X

i urt
∣∣ ∣∣∂X

l Rr
t+1

∣∣
≤ ∣∣∂X

l Rp
t+1 − ∂X

l Rr
t+1

∣∣+BX
R

∣∣∂X
i upt − ∂X

i urt
∣∣,

where BX
R is as in the proof of Proposition 2. Using these two bounds in (17) and taking expectations,

we obtain

E
{∣∣∂X

i Rp
t − ∂X

i Rr
t

∣∣} ≤ P̄ E
{|∂X

i upt − ∂X
i urt

∣∣}+ ‖p− r‖+ E{∣∣∂X
i Rp

t+1 − ∂X
i Rr

t+1

∣∣}

+
∑

l∈Ljt

E
{∣∣∂X

l Rp
t+1 − ∂X

l Rr
t+1

∣∣}+BX
R

∑

l∈Ljt

E
{∣∣∂X

i upt − ∂X
i urt

∣∣},

in which case, since Lemma 8 gives that E
{|∂X

i upt − ∂X
i urt

∣∣} ≤ LX
u ‖p− r‖, we have

E
{∣∣∂X

i Rp
t − ∂X

i Rr
t

∣∣} ≤ [
P̄ LX

u + 1 +BX
R |L|LX

u

] ‖p− r‖
+ E

{∣∣∂X
i Rp

t+1 − ∂X
i Rr

t+1

∣∣}+
∑

l∈Ljt

E
{∣∣∂X

l Rp
t+1 − ∂X

l Rr
t+1

∣∣}. (18)

Letting Ψ = P̄ LX
u + 1 + BX

R |L|LX
u for notational brevity, we can use induction over the time periods

to show that E
{∣∣∂X

i Rp
t − ∂X

i Rr
t

∣∣} ≤ 2τ−t (1 + |L|)τ−tΨ ‖p− r‖ for all t ∈ T . In particular, noting (18),

the induction hypothesis holds at time period τ . Assuming that the induction hypothesis holds at time

period t+ 1, (18) implies that

E
{∣∣∂X

i Rp
t − ∂X

i Rr
t

∣∣} ≤ Ψ ‖p− r‖+ 2τ−t−1 (1 + |L|)τ−t−1Ψ ‖p− r‖
+ |L| 2τ−t−1 (1 + |L|)τ−t−1Ψ ‖p− r‖

≤ 2τ−t−1 (1 + |L|)τ−tΨ ‖p− r‖+ 2τ−t−1 (1 + |L|)τ−tΨ ‖p− r‖.

The right side of the chain of inequalities above is equal to 2τ−t (1+ |L|)τ−tΨ ‖p−r‖ and this completes

the induction argument. In this case, the result follows by letting LX
R = 2τ−1 (1 + |L|)τ−1Ψ. 2

We are now ready to show Proposition 4. We follow an argument similar to the one in the proof of

Lemma 9. For notational brevity, we let ∂P
j R

p
t = ∂P

j Rt(x
p
t , p, ω) and ∂P

j u
p
t = ∂P

j ut(x
p
t , p, ω), in which

case, (5) can be written as ∂P
j R

p
t = pjt ∂

P
j u

p
t + 1(j = jt)ut(x

p
t , p, ω) + ∂P

j R
p
t+1 −

∑
i∈Ljt

∂P
j u

p
t × ∂X

i Rp
t+1

and we obtain

∣∣∂P
j R

p
t − ∂P

j R
r
t

∣∣ ≤ ∣∣pjt ∂P
j u

p
t − rjt ∂

P
j u

r
t

∣∣+ ∣∣ut(xpt , p, ω)− ut(x
r
t , r, ω)

∣∣
+

∣∣∂P
j R

p
t+1 − ∂P

j R
r
t+1

∣∣+
∑

i∈Ljt

∣∣∂P
j u

p
t × ∂X

i Rp
t+1 − ∂P

j u
r
t × ∂X

i Rr
t+1

∣∣. (19)

Since the derivative of θ(·) is bounded by its Lipschitz modulus Lθ, we have
∣∣∂P

j u
p
t

∣∣ ≤ Lθ by (7). In this

case, we bound the first term on the right side of (19) by

∣∣pjt ∂P
j u

p
t − rjt ∂

P
j u

r
t

∣∣ ≤ |pjt |
∣∣∂P

j u
p
t − ∂P

j u
r
t

∣∣+ |pjt − rjt |
∣∣∂P

j u
r
t

∣∣ ≤ P̄
∣∣∂P

j u
p
t − ∂P

j u
r
t

∣∣+ Lθ ‖p− r‖,

where we use the fact that |q1 s1 − q2 s2| ≤ |q1| |s1 − s2|+ |q1 − q2| |s2| for all q1, q2, s1 and s2 ∈ < and P̄

is as in the proof of Proposition 2. Using Lemmas 5 and 6, we bound the second term on the right side
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of (19) by
∣∣ut(xpt , p, ω)−ut(x

r
t , r, ω)

∣∣ ≤ [LX +Lθ] ‖p−r‖. Finally, noting BX
R in the proof of Proposition

2, we bound the fourth term on the right side of (19) by

∣∣∂P
j u

p
t × ∂X

i Rp
t+1 − ∂P

j u
r
t × ∂X

i Rr
t+1

∣∣ ≤ ∣∣∂P
j u

p
t

∣∣ ∣∣∂X
i Rp

t+1 − ∂X
i Rr

t+1

∣∣+ ∣∣∂P
j u

p
t − ∂P

j u
r
t

∣∣ ∣∣∂X
i Rr

t+1

∣∣
≤ Lθ

∣∣∂X
i Rp

t+1 − ∂X
i Rr

t+1

∣∣+BX
R

∣∣∂P
j u

p
t − ∂P

j u
r
t

∣∣.
Using these three bounds in (19) and taking expectations, we obtain

E
{∣∣∂P

j R
p
t − ∂P

j R
r
t

∣∣} ≤ P̄ E
{∣∣∂P

j u
p
t − ∂P

j u
r
t

∣∣}+ Lθ ‖p− r‖
+ [LX + Lθ] ‖p− r‖+ E{∣∣∂P

j R
p
t+1 − ∂P

j R
r
t+1

∣∣}

+ Lθ

∑

i∈Ljt

E
{∣∣∂X

i Rp
t+1 − ∂X

i Rr
t+1

∣∣}+ |L|BX
R E

{∣∣∂P
j u

p
t − ∂P

j u
r
t

∣∣},

in which case, since Lemmas 7 and 9 respectively give that E
{∣∣∂P

j u
p
t − ∂P

j u
r
t

∣∣} ≤ LP
u ‖p − r‖ and

E
{∣∣∂X

i Rp
t+1 − ∂X

i Rr
t+1

∣∣} ≤ LX
R ‖p− r‖, we have

E
{∣∣∂P

j R
p
t − ∂P

j R
r
t

∣∣} ≤ [
P̄ LP

u + 2Lθ + LX + |L|Lθ L
X
R + |L|LP

u BX
R

] ‖p− r‖
+ E

{∣∣∂P
j R

p
t+1 − ∂P

j R
r
t+1

∣∣}.
Letting Φ = P̄ LP

u +2Lθ+LX + |L|Lθ L
X
R + |L|LP

u BX
R , it is straightforward to use the inequality above

and induction over the time periods to show that E
{∣∣∂P

j R
p
t − ∂P

j R
r
t

∣∣} ≤ [τ − t + 1]Φ ‖p − r‖ for all

t ∈ T . In this case, the result follows by letting LP
R = τ Φ.

D Appendix: Theorem 6.3.1 in Kushner and Clark (1978)

For a function g(·) : <n → <, a convex set Z = {p ∈ <n : zi(p) ≤ 0 for all i = 1, . . . , I} and a sequence

of random step directions {sk}, we consider solving the problem maxp∈Z g(p) by using the algorithm

pk+1 = argmin
z∈Z

∥∥[pk + σk sk
]− z

∥∥,

where {σk} is a sequence of step size parameters and the operator argminz∈Z‖·−z‖ projects its argument

on to Z. We assume that the following statements hold.

(B.1) The objective function g(·) is continuously differentiable.

(B.2) We have E
{
sk | p1, s1, . . . , sk−1

}
= ∇g(pk) with probability one for all k ≥ 1.

(B.3) We have ‖sk −∇g(pk)‖ ≤ M with probability one for all k ≥ 1 for a finite scalar M .

(B.4) The feasible set Z is closed and bounded, zi(·) is continuously differentiable for all i = 1, . . . , I

and the gradients of the active constraints at any point in Z are linearly independent.

In this case, the next proposition is a somewhat specialized version of Theorem 6.3.1 in Kushner and

Clark (1978). This specialized version is shown in Theorem 3 in van Ryzin and Vulcano (2008b).

Proposition 10 Assume that the sequence of points {pk} is generated by the algorithm above, (B.1)-

(B.4) hold and the sequence of step size parameters {σk} satisfies σk ≥ 0 for all k ≥ 1,
∑∞

k=1 σ
k = ∞

and
∑∞

k=1[σ
k]2 < ∞. If we use Θ to denote the set of Kuhn Tucker points for the problem maxp∈Z g(p)

and Θ is connected, then we have pk → Θ in probability as k → ∞.
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E Appendix: Lemma 6.3.1 in Glasserman (1994)

For a probability space (Ω,F ,P), a set D ⊆ <n and a function f(·, ·) : D ×Ω → <, we assume that the

following statements hold for all p, r ∈ D.

(C.1) The function f(·, ω) is differentiable at p for P-almost all values of ω.

(C.2) There exists a finite scalar Lf such that we have ‖f(p, ω) − f(r, ω)‖ ≤ Lf ‖p − r‖ for P-almost

all values of ω.

In this case, the next result is from Lemma 6.3.1 in Glasserman (1994).

Lemma 11 Assume that there exists a finite scalar Bf that satisfies E
{|f(p, ω)|} ≤ Bf for all p ∈ D.

In this case, if (C.1) and (C.2) hold, then ∇E{f(p, ω)} exists and we have ∇E{f(p, ω)} = E
{∇f(p, ω)

}

for all p ∈ D.
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