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Abstract

The assortment optimization problem under the mixture of multinomial logit models is NP-
complete and there are different approximation methods to obtain upper bounds on the optimal
expected revenue. In this paper, we analytically compare the upper bounds obtained by the different
approximation methods. We propose a new, tractable approach to construct an upper bound on the
optimal expected revenue and show that it obtains the tightest bound among the existing tractable
approaches in the literature to obtain upper bounds.

Assortment optimization has important applications in retailing and revenue management and
has received much attention lately. In the assortment problem, we have a firm that is interested in
maximizing revenues by selling products to customers, where each product has a revenue associated
with it and customers choose among the offered products according to a given discrete choice model.
The goal therefore is to figure out the set of products, or the assortment, that maximizes the expected
revenue obtained from a customer. While there are a large number of discrete choice models that can
be used to describe customer choice behavior, the multinomial logit model and its variants have been a
popular choice in the assortment optimization literature.

In this paper, we consider the assortment problem under a mixture of multinomial logit models.
In this model, we have multiple customers segments and an arriving customer belongs to a particular
segment with a given probability and chooses among the offered products according to the multinomial
logit model. The parameters of the multinomial logit model are allowed to depend on the segment to
which the customer belongs.

The assortment optimization problem under the mixture of multinomial logit models is NP-
complete; see Bront, Mendez-Diaz and Vulcano (2009) and Rusmevichientong, Shmoys, Tong and
Topaloglu (2013). On the other hand, McFadden and Train (2000) show that the mixture of multinomial
logits is a rich choice model that can approximate any random utility choice model arbitrarily closely.
So there has been considerable interest in the assortment problem under the mixture of multinomial
logit models and there is a growing literature that focuses on developing approximation methods that
generate assortments with provable performance guarantees; see for example Rusmevichientong et al.
(2013) and Mittal and Schulz (2013).
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Another interesting research direction is to obtain upper bounds on the optimal assortment rev-
enue, since upper bounds are useful in getting a better handle on the revenue performance gaps of the
candidate assortments obtained by the different approximation methods. Bront et al. (2009) formu-
late the assortment problem under the mixture of multinomial logit models as a linear mixed integer
program, the linear programming relaxation of which gives an upper bound on the optimal expected
revenue. Feldman and Topaloglu (2013) propose a Lagrangian relaxation approach where they relax
the constraints that the same assortment be offered to the different customer segments by associating
Lagrange multipliers with them. While the Lagrangian relaxation approach obtains an upper bound,
solving it turns out to be intractable. Therefore the authors propose a further approximation that is
based on solving a continuous knapsack problem over a discrete set of grid points. They show that this
approximation method is tractable and continues to provide an upper bound on the optimal expected
revenue. One difficulty with the approximation method proposed by Feldman and Topaloglu (2013) is
that the quality of the upper bound depends on the density of the grid, which makes it challenging to
establish analytical results.

In this paper, we focus on solution methods to obtain upper bounds on the optimal expected
revenue for the assortment problem under the mixture of multinomial logit models. We first provide a
partial characterization of the optimal assortment. In particular, we show that an optimal assortment
includes a certain revenue ordered subset of the products, and this subset can be obtained efficiently.
This structure can be potentially exploited to speed up the solution methods by reducing the size of
the search space. We then analytically compare the upper bounds obtained by the different solution
methods in the literature. We show that the Lagrangian relaxation approach obtains the tightest bound
among the available approaches to obtain upper bounds. However, since the Lagrangian relaxation is
NP-complete, we propose a new, alternative approach to obtain an upper bound on the optimal expected
revenue. Our approach builds on the ideas developed in Feldman and Topaloglu (2013) and Martinez-
de-Albeniz and Kunnumkal (2014). The Lagrangian relaxation approach of Feldman and Topaloglu
(2013) decomposes the assortment problem involving multiple customer segments into a number of
single segment problems where there is a fixed cost of introducing a product into the assortment.
Martinez-de-Albeniz and Kunnumkal (2014) study the assortment problem under the multinomial logit
model when there is a fixed cost of introducing a product into the assortment and propose tractable
solution methods. While our approach is a simple adaptation of the ideas developed in the above
mentioned papers, it yields a solution method that is tractable and provably tighter than the other
tractable approaches in the literature to obtain upper bounds on the optimal expected revenue.

In summary, we make the following contributions in this paper. 1) We provide a partial charac-
terization of the solution to the assortment problem under the mixture of multinomial logit models. 2)
We analytically compare the different methods proposed in the literature to obtain upper bounds on
the optimal expected revenue. We show that the Lagrangian relaxation approach proposed by Feldman
and Topaloglu (2013) obtains the tightest upper bound. However, the Lagrangian relaxation cannot
be solved efficiently. 3) We propose a new approach to obtain an upper bound that remains tractable.
The bound obtained by our approach is provably tighter than the other tractable solution methods in
the literature to obtain upper bounds. Moreover, in contrast to Feldman and Topaloglu (2013), our
solution method does not require a discrete set of grid points and thus reduces some of the subjectivity
involved in choosing a discretization scheme. 4) Computational experiments indicate that our approach
can be beneficial both in terms of tighter bounds and faster run times.

The rest of the paper is organized as follows. In Section 1, we describe the assortment problem
under the mixture of multinomial logit models. In Section 2, we describe the solution methods proposed
in the literature to obtain upper bounds on the optimal expected revenue. We analytically compare



the upper bounds obtained by the proposed methods in Section 3. In Section 4, we describe our
solution approach and show that it obtains the tightest bound among the tractable solution methods
in the literature to obtain upper bounds on the optimal expected revenue. Section 5 presents our
computational experiments.

1 PROBLEM FORMULATION

We consider the assortment optimization problem under the mixture of multinomial logit models. We
have N products and the revenue associated with product j € {1,..., N} isp;. Welet z; € {0, 1} denote
whether we offer product j. We have L customer segments interested in purchasing a product from the
offered assortment. The preference weight for customer segment [ € {1,..., L} for product j is vé-, while
the preference weight associated with a segment [ customer not purchasing anything is normalized to
be 1. Within each segment, choice is governed by the multinomial logit model and so the probability
that a segment [ customer purchases product j is vé:cj J(L+ 3, vizk). We let o! denote the arrival
rate of customer segment [. The assortment problem is to decide which products to make available to
an arriving customer in order to maximize the expected total revenue. The optimal assortment can be
obtained by solving the problem

ZOPT —  max o 2 p]v il (1)

x|z;€{0,1} ; Z .I'j +1

Solving assortment problem (1) and obtaining the optimal expected revenue is intractable; see Bront
et al. (2009) and Rusmevichientong et al. (2013). Therefore, it is unlikely that we can provide a complete
characterization of the optimal solution to problem (1). However, Lemma 1 below provides a partial
characterization of the structure of an optimal solution.

We begin with some preliminaries. Assume without loss of generality that the products are indexed
in order of decreasing revenues so that p; > ps > ... > pn, and consider the assortment problem
involving customer segment [ alone

Z p] l l
a:l|z e{o 1} ZJ T + 1
It is known that revenue ordered assortments are optimal for problem (2); see for example Liu and van
Ryzin (2008). That is, there exists an optimal solution ! = {.f?é’Vj} to problem (2) with a?é =1 for
je{l,...,7} and ié =0forjec{yf+1,...,N}, where ) € {1,..., N}. We have the following lemma.

(2)

Lemma 1 Let j = min{s'}. There exists an optimal solution & = {&;|Vj} to problem (1) with 3; = 1
forje{l,...,7}.

Proof. Suppose that the statement of the lemma is false. Let & be an optimal solution to problem (1)
and let k € {1,...,j} be the smallest index such that Z, = 0. We let £ = {Z;|Vj} be the same as 2
except that Z, = 1. We show below that the solution & generates as much revenue as &, and is therefore
also optimal.

Let S={1,...,N}\{s} and T'={1,...,k — 1}. Fix a segment [ and note that

N N o 1A 1A
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Since k € {1,..., 9} and y < 4, it follows that T C {1,..., '}, the optimal revenue ordered assortment for

2jer Pjvé'fj > e PiviE+pevl .
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segment . Lemma 2 in Liu and van Ryzin (2008) then implies that

together with Lemma 3.1 in Rusmevichientong and Topaloglu (2012) implies that p, >

Yier Uﬁj"‘l'
On the other hand, since the products are revenue ordered, p, > p; for all j € S\T and we have
] ol
Dy > M. The above statements together with (3) imply that
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Now consider the difference in the expected revenues from segment [ under £ and . We have
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where the first equality uses the fact that Z is the same as & except that z,, = 1, while &, = 0, and the

. . S pjvtE; S pivli;
inequality follows from (4). It follows that >, QZW >3 al%. 0

Lemma 1 implies that an optimal solution to problem (1) includes the revenue ordered subset
{1,...,}, and this subset can be determined efficiently. This may be useful in speeding up approxima-
tion methods by reducing the size of the solution space. We emphasize that revenue ordered assortments
are not optimal for problem (1) in general; see Rusmevichientong et al. (2013).

2 UprPER BounDs

In this section, we describe approximation methods that obtain upper bounds on the optimal expected
revenue. Upper bounds are useful in assessing the revenue performance gaps of the assortments obtained
by the different heuristic methods.

2.1 LINEAR PROGRAMMING RELAXATION

Bront et al. (2009) formulate problem (1) as the mixed integer program

Z9PT — max > Zj ozlpjvé-yé- (5)
st >, véyé +wl=1 VI (6)

yh <w' Vi, j (7)

vy <y Vg (8)

wl—yégl—:zj Vi, j 9)

yé-,wl >0,z; € {0,1}. (10)

In the above optimization problem, the decision variable x; indicates if product j is offered, while the
term véyé can be interpreted as the probability that segment ! purchases product j and w! can be
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interpreted as the probability that customer segment [ does not purchase anything. It is intractable to
solve the above mixed integer program, but its linear programming relaxation yields an upper bound
on the optimal expected revenue. Letting Z%* denote the optimal objective function value of the LP
relaxation of problem (5)-(10), we have ZOPT < ZLP.

2.2 LAGRANGIAN RELAXATION

A second upper bound is due to Feldman and Topaloglu (2013) who consider relaxing the constraints that
the same assortment be offered to the different customer segments by associating Lagrange multipliers
with them. Letting :Eé € {0,1} denote the decision to offer product j to segment [, we can view problem
(1) as requiring xé = xj’ for all [ and j, where :z:f € {0,1}. These constraints ensure that the decision to
offer a product is uniform across the different customer segments. Feldman and Topaloglu (2013) relax
the constraints xé = xf by associating Lagrange multipliers )\é with them. For a given set of Lagrange
multipliers \ = {/\é-\Vl, j}, they consider solving problem

l

~fUl.gj.
200 = xSl SIS 4SS )
J J l

] o
¢ bl
olef 25€{0,1} 7 j U+ 1 ]

The authors show that for any set of Lagrange multipliers A\, we have Z9PT < ZLE()) and they find
the set of Lagrange multipliers that yield the tightest upper bound on the optimal expected revenue by
solving the problem
AL min ZER()).

However, the optimization problem for segment [ in (11) involves finding the optimal assortment when
there are fixed costs associated with introducing the products, and this is known to be NP-complete
in general; see Kunnumkal, Rusmevichientong and Topaloglu (2009). An exception is when all the
Lagrange multipliers are set to zero. If )\é- = 0 for all j and [, then there are no costs associated with
offering any of the products and the problem ZZ(0) can be solved efficiently; see Talluri (2014). On
the other hand, if the Lagrange multipliers are nonzero, then Z%%(\) cannot be computed in a tractable
manner.

2.3 LAGRANGIAN RELAXATION OVER A DISCRETE GRID

Feldman and Topaloglu (2013) propose a tractable approximation to ZER()), which is based on writing
the optimization problem for segment [ in (11) as

ool
122 V5T 11
max max Q= = E )\jxj.
0" alzlef0,1],3; vlial <ol 1+6 ;

In the above representation, the inner maximization problem is a knapsack problem that depends on
the parameter 0!, where ' can be interpreted as the capacity of the knapsack and can take values in the
interval [0, >, vé} Instead of solving the optimization problem for all values of #' in its range, the authors
focus on a set of discrete grid points © = {0"9)|Vl, g}, where 0 = 9!V < /) < | < gU&) = Zj vé. for
all [, and G is the number of grid points. For an interval [91(9), 91(9“)], they solve the problem

1.1

. DV

ZLR_D’Z’g()\,@) = max aliszjl] S _ E /\éxé (12)
alo<al <1,y vlal<giotn) 1+ 0109) -



Feldman and Topaloglu (2013) show that for any set of discrete grid points

ZER=D () @) = [ max ZLR_D’W()\,@)} + 5 max 2SN > ZER(N),
Zl: ge{1,...,.G-1} - xfe{o,l} J [Zl: ]]

where the argument © emphasizes the dependence of the choice of grid points on the upper bound

obtained. Note that problem (12) is a continuous knapsack problem and can be solved efficiently.

Therefore, the upper bound ZLE-P (A, ©) can be obtained in a tractable manner. Furthermore, the

authors show that the problem

ZH=P @) = min ZHDP () 9) (13)
can be solved efficiently as a convex minimization problem. However, there is a trade-off between the
quality of the upper bound and the computational efficiency, since a more refined set of grid points gives
a tighter upper bound, but at the same time imposes a greater computational burden. Therefore, the
choice of the grid points becomes crucial to the performance of the method. Feldman and Topaloglu

(2013) propose a set of exponential grid points and bound the performance gap between the set of
exponential grid points and an arbitrary set of grid points.

3 COMPARISON OF UPPER BOUNDS

In this section, we compare the upper bounds obtained by the different approximation methods. We
first compare the upper bound ZX* with Z“*. We begin by making the change of variables zé. = véyé
so that problem (5)-(10) can be written as

ZOPT — max P alpjzé-
s.t zg-/vé- +3, 2 <1 Vi
zj/vé <uz; Vi, j
zé-/vé- + 32k > Vi
25> 0,25 € {0,1},

where the first and third constraints use the fact that w' =1 -3 zé. Introducing variables xé and a:j’
and constraining them to be equal, the above optimization problem can be written as

ZOPT — max P alpjzé» (14)
st 2l 432 <1 Vi, j (15)

zé/vé < xé Vi, j (16)

zé/vé + >0 2k > xé Vi, j (17)

ol =9 Vi, j (18)

zé > O,wé,xf €{0,1} (19)

Relaxing constraints (18) by associating Lagrange multipliers A = {>\§-|Vl , 7} with them, we get a relaxed
problem

Z(\) =max Y, alpizt+ 30, 3, Afad — )] (20)
s.t k32 <1 VL (21)
zé./vé. < xé Vi, g (22)
zj/vé + 30, 2k > fL‘é Vi, j (23)
! -
z; > 0,25,27 €{0,1}. (24)
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We have the following lemma.

Lemma 2 If {2}, x
all l and j.

T 37 J]Vl j} satisfies constraints (21)-(24), then we have z = v x /(l—i—zk vial) for

Proof. Fix a customer segment [ and a product j. The claim clearly holds if xé = 0 since constraint
(22) forces zé- to be zero. On the other hand, if xé =1, let JL = {k|z}, = 1}. Note that j € J..
Constraints (21) and (23) imply that

2ok + Z 2h =1 (25)

1
kedl,

for all k£ in J_ﬁ_. Considering equality (25) for products j and k € Ji_, we have z/i/vfC = zj-/vé- for all
k € J'.. Plugging this back into the constraint zg-/vé- +Zk’eﬂ+ 2, =1, we get zé. = vé-/(l +Zkeﬂ+ vh) =

Sl /(14 2 vg)- .

Lemma 2 implies that problem (20)-(24) can be equivalently written as

max P Oépgm S R NG+ 0 N fv

3
z|z? 2% €{0,1}

which is precisely the Lagrangian relaxation (11) proposed by Feldman and Topaloglu (2013). So we
have the following lemma.

Lemma 3 Z()\) = ZFE()).

Next, consider the LP relaxation of problem (14)-(19). Letting A = {5\2|VZ, j} be an optimal set of
dual variables associated with constraints (18), strong duality implies that

7' = max 22 apj%"‘ZlZ [ J] (26)
s.t 2k 4+, 2 <1 Vi, j (27)

zj/vé < 1‘2 Vi, j (28)

2l 430 2k > o i, j (29)

2 >oo<x§,xj’§1 (30)

Proposition 4 ZLE = miny Z(\) < Z()\) < ZLP.

Proof. The equality follows from Lemma 3, while the first inequality holds since )\ is a feasible but
not necessarily optimal solution to the minimization problem and the last inequality holds since xé and

xf are restricted to be binary in problem (20)-(24) while they are allowed to take on fractional values
in problem (26)-(30). O

Proposition 4 shows that the Z“f bound is tighter than Z%*. It trivially follows that ZLF <
ZLE(0), while Feldman and Topaloglu (2013) show that Z2# < ZLE=P(@). Therefore the Z¥ bound is
the tightest upper bound among the available bounds. However, as mentioned, Z“% cannot be computed



in a tractable manner, and Feldman and Topaloglu (2013) propose the approximation Z*#~?(©) that
involves solving a continuous knapsack problem over a set of discrete grid points. While the numerical
study in Feldman and Topaloglu (2013) indicates that their method performs quite well in practice and
generates tight bounds, one difficulty with the discretization approach is that the quality of the solution
depends on how refined the grid is and it is not immediately clear how to analytically compare the
upper bound with that obtained by the other approaches, such as the LP relaxation.

4 AN ALTERNATIVE UPPER BOUND

We propose an alternative approach to obtain an upper bound on the optimal revenues. It is a sim-
ple adaptation of the ideas developed in Feldman and Topaloglu (2013) and Martinez-de-Albeniz and
Kunnumkal (2014), but our approach is tractable and is provably tighter than the existing tractable
approaches to obtain upper bounds. Moreover, our approach avoids the subjectivity involved in deter-
mining the density of the grid points.

We begin by relaxing the constraints that the same assortment be offered to the different segments
by associating Lagrange multipliers A = {)HW j} with them and consider solving the problem

ZHC) = max Y lgy’;ﬁH ZZA’leer Z)\l (31)
l

x|0§x§§1,x?6{0,1} G UiLy

Note that the problem we solve is almost the same as ZLR()\) except that we relax the integrality
constraints on the xé variables. Again note that problem (31) separates by segment and the optimization
problem for segment [ has the form

1.0
l Z pjv]xj

max -« S o] E /\
z|0<z}<1 Z] i j+

It can be shown that the above optimization problem can be solved efficiently, in fact, essentially
in closed form; see Martinez-de-Albeniz and Kunnumkal (2014). Therefore, given a set of Lagrange
multipliers, problem (31) can be solved efficiently. Since ZI=C¢(\) > ZEE()\) > ZOPT we obtain an
upper bound on the optimal assortment revenue. We propose solving

ZLR=C — min ZER=C()) (32)

to find the optimal set of Lagrange multipliers that yield the tightest upper bound. By following the
same line of reasoning as in Feldman and Topaloglu (2013), it can be shown that the optimal Lagrange
multipliers can be obtained efficiently.

We now show that ZZF~C obtains an upper bound that is uniformly tighter than the existing
tractable approaches in the literature. Recall, that if all the Lagrange multipliers are set to zero, then
problem (11) can be solved in a tractable manner. Proposition 5 below shows that the resulting upper
bound ZXE(0) is weaker than ZXf~C while Propositions 6 and 7 below show that the ZX%~¢ bound
is tighter than Z%¥ and Z*#-P(©).

Proposition 5 ZLF-C < zLE(().

Proof. Setting all the Lagrange multipliers to zero, we have

l l zt
B ; U _
ZE=C(0) = max al 25 Pt I = Y ol S = 2R (0)

z[0<at <1 Z] I + 1 wlz 6{0 115 é + 1



where the second equality holds since the objective function is quasiconvex; see for example, Lemma 1
in Liu and van Ryzin (2008). We have Z/f=C = miny ZLE-C(\) < ZER=C(0) = ZLR(0). O

Proposition 6 ZLE-C < zLP,

Proof. Let A\ = {5\l |Vl,j} be the optimal set of dual variables corresponding to constraints (18). Let
T = {x ,w \Vl ]} be an optimal solution to problem (31), when the Lagrange multipliers are set as A.

Letting 2 z = v (1 +> vkxk) and Z = {z V1, 7}, we show that (Z, 2) is a feasible solution to problem
(26)—(30) Note that St =" 0kal /(1437 vldt). So we have

J/v —a;]/ 1+kaxk <1/( 1—1—21}2:&2 —1—2:271C
k

and cc;lnstraint (27) holds. Next, 25 /vj = :%é J(+ >, 0kal) <@ and so constraint (28) holds. Finally
note that

> a =D va/ A+ vidt) = 350 viah) /(1 + kaxk =3 (1-1/(1 +ka$k = &l — 2L /0l
k k k k
and constraint (29) also holds. Therefore ZX=C(X) < ZL¥ and the result follows. ]

Proposition 7 ZtE-C < 7LE-D(@).

Proof. We have
LR-C 122, pivial
Z ()‘) = Zl {manl maxm|0§$§§1,zj vézgﬁel o 1-|f01J . Z] )‘é é} + Z max ¢€{0 1} L [Zl ]]

Now, for 6! € [91(9),91(%1)]’

max ZZ Psv; B Z)\zxz < ZLR=Dlg() @)
20<al <1,y v;.x;.gez 1+6 3%
Therefore, ZLE=C(\) < ZLE=P()\ ©) and the result follows. O

5 COMPUTATIONAL EXPERIMENTS

In this section we numerically test the quality of the upper bound obtained by our proposed method.
Feldman and Topaloglu (2013) demonstrate that the upper bound obtained by the Lagrangian relaxation
over a discrete grid tends to be significantly tighter than the linear programming relaxation bound and
the bound obtained by setting all the Lagrange multipliers to zero. So, in our numerical study, we
focus on comparing the upper bound and the solution time of our proposed method with that of the
Lagrangian relaxation over a discrete grid.

We use LR-C to refer to the solution method described in Section 4 and LR-D(©) to the solution
method described in Section 2.3. Following Feldman and Topaloglu (2013), we use a set of exponential
grid points in LR-D(©). That is, we cover the interval [0, vé] using a set of grid points {0"9)|vg €



{1,...,G}}, where #'@ = (1 + p)9=t — 1 and p > 0. Note that the parameter p determines the density
of the grid. As p decreases, the spacing between the adjacent grid points decreases and we require a
larger number of grid points to cover the interval [0, y ’Ué] We consider three different grid densities
in our computational experiments by varying p over the set {0.1,0.01,0.001}. We note that Feldman
and Topaloglu (2013) use a value of p = 0.001 in their computational study. We solve problems (32)
and (13) using subgradient search. In both cases, we initialize all the Lagrange multipliers to zero and
run 200 iterations of the subgradient search algorithm with a step size of 20/(40+¢) at iteration ¢. Our
computational experiments are carried out in MATLAB on a Core i7 desktop with 3.4-GHz CPU and
16-GB RAM.

In all of our test problems, we have 50 products and 25 customer segments. We generate our
test problems by following an approach similar to that described in Feldman and Topaloglu (2013). We
sample the product revenues from the uniform distribution over [0,2000]. We sample 3’ from the uniform
distribution over [0,1] and set the arrival rate of segment [, !, as '/ S BY. We set the preference

l
vt 1¢l¢
[0,V] and ¢' from the uniform distribution over [0, ®], where V and ® are parameters that we vary in
our computational experiments. Note that Ué- 1+, Ué) = 1— ¢' and so the probability that a

weight for segment [ for product j, vé-, as Z;j/j . We sample v; from the uniform distribution over

segment [ customer leaves without making a purchase when all the products are offered is ¢'.

In our computational experiments we vary V' € {5,10,20} and ¢ € {0.4,0.6,0.8}, which gives us a
total of nine parameter combinations. For each parameter combination, we generate 100 test problems
by following the approach described above. For each test problem, we obtain the LR-C bound as well
as the solution time. We obtain the corresponding numbers for LR-D(©) at different grid densities by
varying p € {0.1,0.01,0.001}. We use LR-~C as a benchmark and for each of the three grid densities, we
compute the percentage gap in the upper bound with respect to the upper bound obtained by LR-C, as
well as the solution time relative to the solution time of LR-C. We report the averages across the 100
test problems.

Table 1 summarizes the results of our computational study. The first column in this table gives the
parameter combinations. The second column gives the percentage gap in the upper bounds obtained by
LR-D(©) with p = 0.1 and LR-C, averaged over the 100 problem instances, where as the third column
gives the average of the ratio of the corresponding solution times. Columns four and five have a similar
interpretation except that they compare LR-D(0) with p = 0.01 with LR-C. The last two columns,
respectively, compare the upper bounds and solution times of LR-D(0) with p = 0.001 with LR-C.
We observe that the upper bound obtained by LR-C is on average 9.553% tighter than that obtained
by LR-D(O) with p = 0.1, 0.986% tighter than that obtained by LR-D(©) with p = 0.01 and 0.099%
tighter than that obtained by LR-D(©) with p = 0.001. The quality of the upper bound obtained by
LR-D(©) improves with the density of the grid, but this comes at the expense of an increase in the
solution time. LR-C is able to obtain bounds that are comparable to LR-D(0) with p = 0.001 but at
a fraction of the computational cost. The running time of LR-C is in between those of LR-D(0) with
p = 0.1 and p = 0.01. LR-C can be viewed as the limit of LR-D(0O) as p tends to zero and the grid
becomes infinitely dense. Proposition 3 in Feldman and Topaloglu (2013) implies that no set of grid
points, no matter how dense, can improve on the upper bounds obtained by LR-D(0) with p = 0.1,0.01
and 0.001 by more than 10%, 1% and 0.1%, respectively. It is worthwhile noting that the gains from
LR-C are quite close to the theoretical limits.
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Problem LR-D(®) p=0.1 vs LR-C LR-D(0) p=0.01 vs LR-C LR-D(0) p =0.001 vs LR-C

(V,®) % Gap in Ratio of % Gap in Ratio of % Gap in Ratio of
upper bound soln. times | upper bound soln. times | upper bound soln. times
(5,0.4) 9.782 0.9 0.992 14 0.099 5.9
(5, 0.6) 9.571 0.9 0.987 1.3 0.098 5.0
(5, 0.8) 9.282 0.8 0.977 1.1 0.098 3.6
(10, 0.4) 9.751 0.9 0.992 1.3 0.099 5.6
(10 0.6) 9.552 0.8 0.987 1.1 0.099 4.1
(10, 0.8) 9.340 0.8 0.979 1.0 0.098 3.3
(20, 0.4) 9.797 0.8 0.993 1.2 0.099 4.6
(20 0.6) 9.590 0.8 0.988 1.1 0.099 3.7
(20, 0.8) 9.309 0.8 0.980 1.0 0.098 3.1
Average 9.553 0.8 0.986 1.2 0.099 4.3

Table 1: Comparison of the upper bounds and solution times of LR-D(©) with LR-C.
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