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The scheduling of advertisements, or spots, is an essential operational process of the television business that

must be conducted daily. An efficient distribution of viewers among advertisers allows the television network

to satisfy contracts as planned and also increase ad-sales revenue. Spot scheduling is a very hard multi-period

scheduling problem. Schedules have to be created such that advertiser’s campaign goals are met and ad-sales

revenue is maximized. Each campaign has a specific target group of viewers and a unique set of constraints

that have to be met. In addition, the number of viewers is uncertain. In this paper, we describe a practical

approach that combines mathematical programming and time series methods to create daily schedules that

are ready for broadcasting. This approach generates high quality schedules, according to standard business

metrics and in comparison with the mathematical optimal bound. Our methods are used by leading networks

and they produce substantial increases in revenue.

Key words : scheduling, optimization, advertising, television–business.

1. Introduction

In this paper, we address a revenue optimization problem faced by a cable television network with

nationwide viewership in the United States. The term cable television network refers to an entity

that offers programming on a single channel. This term is usually shortened to cable network or

simply network. A major source of revenue for a network is the placement of advertisements, or

spots, within its programming. The contracts between the advertisers and the network require

that the network delivers a target viewership—specifically, a number of impressions of a particular
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demographic during the course of the advertising campaign. The demographics that advertisers seek

are defined according to two dimensions: gender and age group. For example, M18-34 refers to males

between the ages of 18 and 34, F18-34 refers to females between the ages of 18 and 34, and P18-34

refers to persons (males and female) between the ages of 18 and 34. The contracts also specify

the number of spot-seconds used to deliver the required number of impressions. The contracted

number of spot-seconds must be delivered even if the target viewership has already been achieved.

Advertisers also require the network to deliver the target demographic viewership according to an

agreed upon pace during the course of the campaign. The contract between the advertiser and

the network is referred to as a deal. The particular type of deal described here is referred to as

guaranteed deal because the number of spots must be telecast and the target viewership must be

achieved as promised. In addition, the advertiser places constraints on scheduling spots, which

could include requirements that spots must air at a specified day of the week and time of day,

requirements that spots are shown during specific programs, or requirements that spots air in the

first or last position of the commercial break. These guaranteed deals comprise most of the revenue

for a typical North American cable network. There are also deals that are not guaranteed. For these

types of deals, the network is allowed to decide whether to schedule the spots, and no viewership

targets are required. In this case, the advertiser pays the network on a per–telecast spot basis.

The network typically sets aside a certain amount of time every hour for airing spots. The

network makes this determination partly based on regulations imposed by the government. The

network also aims to maintain the right balance between content and spots so as to retain audience

engagement. The finite supply of air time available for the network to air spots is referred to as

the available inventory. From the network’s perspective, in order to make the most effective use of

their limited amount of inventory, spots must be scheduled within a time slot so that the following

goals are met:

(i) The viewership is delivered in the target demographic requested by the corresponding adver-

tiser at the required pace, which is the rate at which spots must be scheduled (e.g., the number of
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spots per day). In addition, the viewership must not exceed the number of impressions requested

by the advertiser, because impressions beyond the contracted quantity do not generate additional

revenue.

(ii) The viewership that is delivered in any demographic outside the target must be minimal, as

these impressions are also not monetized.

The inventory is further segmented into short time intervals, or commercial breaks, that are

distributed across many programs scheduled to air. The viewership for the break usually depends

on the program containing the break, the time of day, and the day of the week. The projections

for national viewership accepted by networks and advertisers are those issued by Nielsen Holdings

N.V., referred to as Nielsen ratings. These ratings are published a few days after programs are

broadcast. Therefore, one sub-task is to forecast the viewership based on ratings data from the

past and schedule spots using the forecast so that the goals defined above are met. The quality of

the schedule is obviously dependent on the quality of the forecast.

For each day, the qualifying spots are scheduled to air within the breaks to produce a log, or a

24–hour (one-day) schedule with programs interspersed among the breaks that contain spots. To

schedule these effectively, the decision-maker must consider several other factors in addition to the

scheduling constraints requested by the advertiser. At any given point in time, each deal has already

delivered some of the target impressions and has a specific number of spots to run, a number of

impressions to deliver, and a number of days remaining until completion. Some deals may exceed

the required pace (i.e., they are over-performing) and some may fall bellow the required pace (i.e.,

they are under-performing). The network’s ability to correct any mismatch will depend on the

time remaining on the deal. The advertiser pays only for the contracted number of impressions:

Any impressions beyond this number would be a service that the network has given away, and any

shortfall of impressions requires the network to pay a penalty, either in the form of additional spots

or in cash. Therefore, it is important for the network to ensure that the deals track as closely as

possible to the required number of impressions.
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Achieving the promised viewership is central to the business model of the networks. Nevertheless,

existing software systems can only schedule spots so that advertiser’s scheduling constraints are

met. The network’s software schedules logs up to a year in advance, but this software does not take

into account the current state of the deal or the expected viewership of the breaks in which the

software schedules the spots. Therefore, at the outset, the decision-makers realized that there was

significant scope for improving on the current solution. One complication in the current process

is the fact that the log for the following day is being developed until almost the day immediately

preceding the airing, due to changes in the programming schedule, changes in the layout and dura-

tion of breaks, and changes in the advertiser’s requirements. The availability of the corresponding

videos for the spots to be scheduled is often confirmed only the preceding day. Therefore, the

decision-makers considered it practical to optimize the schedule of spots only for the next day’s log

and not any further. Of course, they desired that the performance of deals remained steady over

the contracted duration of the campaign, which means that the solution should take into account

past performance and the time remaining for each deal when scheduling each day.

In this paper, we present a practical approach for solving the spots scheduling problem described

above. The scheduling is achieved in three stages. We start in Stage 1 with a multi-day optimization

model that takes the aggregate demand for spots as input to generate weights for the deals in play.

These weights indicate the relative importance of deals after taking into account the number of

impressions still due to be delivered for the deal during the remaining lifetime of the campaign.

The more the deal is lacking in the required pacing (i.e., the more significant amount of impressions

pending relative to the time left on the deal) the higher the weight of the deal. These weights are

used in a single-day optimization model that assigns spots to breaks so as to make the best use of

the viewership, given the existing inventory and the available spots. This is done so as to deliver a

higher share of the impressions to the deals with larger weights. For computational efficiency, we

split the single-day optimization model that schedules spots in breaks in two stages. In Stage 2, the

spots are allocated to the breaks. Then, the precise positioning of the allocated spots within each
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break is completed in Stage 3. This approach generates a schedule for one day at a time, preferably

at the latest possible point in time so that the layout of programs and commercial breaks (i.e.,

time and durations) as well as the set of spots available to be scheduled are as close as possible to

the final version. Delaying the scheduling until the latest possible point in time has the additional

benefit of generating the best possible forecast for viewership ratings. These models are supported

by a ratings forecasting model developed in conjunction with the optimization model.

We mainly focus on describing the solution approach and the mathematical modeling. This

includes several modeling ideas and features that can guide similar efforts. However, we also touch

upon several practical and business considerations and describe how these are managed in practice.

As with any first time implementation, one measure of success is the potential for revenue gener-

ation. In this regard, this application, which is being used daily at leading networks, is providing

an increase in revenue of the magnitude of tens of millions dollars annually. The other measure

of success is whether the application has led to more problems for analysis and solution. In that

respect, several new problems were identified and are currently being solved to improve both the

quality of the solutions as well as the analysis of the results for use in the ad-sales process.

The organization of the paper is as follows: Section 2 describes the related academic literature.

Section 3 gives an overview of the problem and the solution approach. Section 4 describes in detail

the optimization models. Section 5 specifies the solution strategy. Section 6 briefly describes the

statistical models used to forecast the ratings. Section 7 presents numerical results, and Section 8

concludes.

2. Literature Review

Advertising on television is a multi-billion dollar industry in which revenue management (RM)

techniques can have a considerable effect on the bottom line. Despite this, as shown Talluri and Van

Ryzin (2005), only a few cases of RM applications in the television industry had been documented

in the operations literature.

However, in recent years there has been a growing need in the operations management com-

munity for applications in the television industry. For a full description of the television industry,
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see Blumenthal and Goodenough (2006). To classify the literature, we have divided out the cable

network business processes broadly into four process. Each of these process has significant opportu-

nities for yield management and has attracted the attention of researchers over time. We describe

the four processes and the most important contributions found in the operations management and

related literature.

Planning of creative goods: Creative goods help to attract the audience that can be sold to adver-

tisers. Therefore, a thoughtful generation of this material is essential and is at the core of the media

and broadcasting business. This first process is a complex task that involves creative people, project

directors, and network managers who decide which creative goods to air and how to produce them.

This process is complex because it involves a large number of agents with sometimes conflicting

interests. For example, they may be forced to decide whether to air a reality show, which brings

a large audience but only provides nothing but entertainment, or air a cultural show, which could

have a smaller audience but provide valuable information. Also, there is high uncertainty in vari-

ous types of programs. For example, there is significant uncertainty associated with predicting the

viewership of a new season of a popular show or the viewership of a new show which is believed to

have significant audience potential. Despite its importance, this process of planning creative goods

has not received attention from the management science literature. Caves and Guo (2009) review

this first process in detail.

Scheduling shows: The objective of this process is to organize the network’s schedule of shows to

maximize its audience. For marketers, two important measures are reach and frequency, which

quantify how many different viewers view a specific commercial and how many times a particular

viewer see the commercial, respectively (Headen et al. (1977)). Hence, to have projections on how

many viewers would watch a show is as important as having projections on how many viewers

would watch two different shows. Goodhardt and Ehrenberg (1969) find empirically a linear relation

between the audience of two different shows and the audience that watches both shows. The authors

refer to this common pattern as the Duplication of Viewing Law. Several papers contain in-depth
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studies regarding the shared audience between shows (e.g, Headen et al. (1979), Henry and Rinne

(1984), Webster (1985), Rust et al. (1986), Danaher (1991), and Lees and Wright (2013)). Horen

(1980) and Reddy et al. (1998) use linear regression to predict the audience based on past ratings

and, in a second step, propose integer programming models to schedule shows to maximize the total

audience. Rust and Alpert (1984), Rust and Eechambadi (1989) and Rust et al. (1992) develop

heuristics that take segmentation into account using a viewer choice model. In a different stream

of research, Cancian et al. (1996) study the Nash equilibrium allocation of competitor channel

shows when viewers are distributed in a Hotelling fashion with respect to air time. Kelton and

Schneider Stone (1998) also study a competitive environment, but in a more realistic setting using

industry data to forecast audience with a linear regression model in which each competitor uses an

integer programming model to schedule shows. Danaher and Mawhinney (2001) use a choice model

to estimate the audience for a given show schedule. The authors design several show schedules

with potentially large audiences by using heuristics rules, and then choose the show schedule with

the larger audience according to the choice model. Goettler and Shachar (2001) use an empirical

structural estimation approach to study the scheduling strategies used by the major television

networks in the US, and they conclude that the actual show schedules are very similar to the

optimal schedules predicted by their model of competition. To answer a different question, Wilbur

et al. (2008) empirically investigate the effect of advertisement time upon audience volume and the

preference of viewers and advertisers according to the type of show. Their results can be used as

input to schedule shows.

Inventory sales: The sales of audience inventory occurs in two periods (Phillips and Young 2012),

the upfront market and the scatter market (forward and spot markets in finance parlance). The

upfront market takes place approximately four months before the broadcast season, when the

networks publicize the show schedule. At this time, the advertisers buy rating points that are guar-

anteed. All the remaining inventory that is unsold during the upfront market (about 20%–40%),

is sold on the scatter market during the broadcasting season. To sell inventory during the upfront
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market, it is necessary to have projections of the ratings inventory and the advertisers demand.

Bollapragada et al. (2002) develop a decision support system based on integer programming and

heuristics to support the sales process at the NBC’s television network. In subsequent work devoted

to advertiser demand forecasting, Bollapragada et al. (2008) implement a combination of the Del-

phi and Grass Roots techniques to forecast ratings. Bollapragada and Mallik (2008) propose a

chance constrained model to decide how much inventory to sell in each market period. Their model

maximizes the expected revenue, subject to a lower bound of the probability of generating revenue

greater or equal to a given revenue threshold. Zhang (2006) combines the two markets into one,

models it as a winner determination problem, and solves it using column generation. A similar

formulation is presented and heuristics are developed in Kimms and Muller-Bungart (2007). Ara-

man and Popescu (2010) define the allocation problem of stochastic ratings between upfront and

scatter markets as the media revenue management or capacity planning problem, and formulate

it as a random yield multiple lot-sizing in production to order system (Grosfeld-Nir and Gerchak

2004). The authors obtain structural results that define the optimal capacity allocation depending

on the contract parameters, audience, and time. Popescu and Seshadri (2013) study a similar but

complementary problem. The authors assume a deterministic audience per show, and a stochastic

arrival of advertisers per demographic who are willing to pay a price dependent on the demographic

and the final allocation. Their formulation is inspired by classic network revenue management

problems (i.e., the model determines the optimal allocation of audience to advertiser as time goes

by). Using a different approach, Banciu et al. (2010) examine network bundling strategies to sell

to advertisers. These bundles can be composed of different demographic audiences or air times.

Spots scheduling : Once the content (i.e., the programming) is acquired and scheduled, and after

the deals have been signed for spots, the spots must be scheduled at the right times to make the

most effective use of air time. Our paper deals with this process. The first paper on this topic is

by Bollapragada et al. (2004), who solve the scheduling problem of programming a given set of

commercials of the same duration that should be aired a pre-specified number of times as uniformly
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as possible with respect to break position. The authors formulate the model as a network flow

problem with a nonlinear loss objective function, and they construct ad-hoc heuristics that can

produce good solutions for test instances. For the same problem and test instances, Brusco (2008)

improves the solution time and optimality gap using a specialized branch and bound procedure and

a simulated annealing heuristic, and also tests alternative loss functions. Brusco and Singh (2010)

incorporate time separability conditions and the possibility of having spots of different durations.

Bollapragada and Garbiras (2004) develop heuristic methods for scheduling spots in breaks using

an integer programming model with real world conditions such as advertisers preferences for specific

positions within the break. This system is used by NBC. Gaur et al. (2009) extend the previous

model by adding flexibility to model commercial conflicts and by developing a specialized algorithm.

Zhang (2006), as a second step, proposes a quadratic integer program to minimize the deviations

from the original schedule generated in the previous process of inventory sales. Their formulation

is a simplification of the real world problem and it is separated by shows, which results in one small

problem per show that is easy to solve. Our paper differs from previous ones in that we develop

a detailed spot schedule to minimize the penalty of under delivery while honoring a myriad of

constraints. Our work does not separate per show; we can move spots from one show to another. In

fact, several constraints apply for the entire day (and some across days); therefore, the scheduling

problem is complex. Several papers are devoted to ratings forecasting; for example, Danaher et al.

(2011), Danaher and Dagger (2012), Webster et al. (2013) and citations within. A related problem

is scheduling spots for live television, in which the schedule the length of the breaks are uncertain,

so the decision to air spots must be made in real time (Crama et al. 2012). Another challenge is

posed by digital technology that allows personal TV advertisements (Adany et al. 2012).

3. An Overview of the Problem and Solution Approach

The problem of assigning spots to exact positions in the schedule is very challenging and fraught

with practical issues, incomplete information and uncertainty. In any given day multiple deals are

competing for spots in the schedule. Some deals have been running for a long time and have either
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been under-performing or over-performing. Some deals are due to end soon (i.e., next week) whereas

some will not expire for some time (i.e., this quarter). Furthermore, the creative work for the spots

are not ready until the day prior to airing and their relative lengths, specific requirements as well as

their restrictions are unknown for future schedules. Finally, the ratings of programs are not known.

Forecasts are imprecise and become less precise with increasing time lengths. Mathematically, it is

possible to cast the entire problem, with all its associated uncertainty, into a very large dynamic

program and solve it daily. However, solving the large program is impossible given today’s state

of the art machines and software within the available budget. Instead we chose to focus on the

day-to-day scheduling problem. Even that problem was broken into three stages due to running

time considerations. Figure 1 shows the schematic processes and information flow. The sequence

adopted is as follows:

Stage 1: Estimate Deal Weights. Every week, we solve a model to determine the relative weights

for deals. The inputs to this model are (i) all the contractual details of the deals for which spots are

under consideration for inclusion in the coming week, (ii) how the deals have performed relative

to their target audience, (iii) the number of weeks remaining in the deals, and (iv) information

regarding spots yet to be scheduled for each deal. The output from this stage comprises the deal

weights that are used in the next two stages to produce the daily schedule. The deal weight reflects

the relative price per impression given to the deal in the desired demographic.

Stage 2: Schedule Spots in Breaks. The network constructs the details of the schedule showing

the minute-by-minute airing of shows, advertisements and promotions, or logs, until nearly the

evening prior to airing the schedule. These logs are created manually and provide a feasible schedule

that finally is optimized. The decision to continue the practice of manually scheduling the log

was made based on several considerations. The management did not want the entire schedule to

be managed by a machine. The schedulers preferred to decide which spots to air and whether to

give favored slots to certain deals. Moreover, the log is developed several weeks prior to airing.

In the initial versions, the log is quite incomplete and filled with generic information or place-

holders that become more specific as the date of airing approaches. Therefore, it is practical to
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allow the schedulers to develop the log gradually and deliver it for optimization at the final step.

The log is downloaded from the production system on to the optimization server. Several pre-

checks are performed to determine data accuracy as well as automatic detection of rule violations

by schedulers who may occasionally relax rules to satisfy a client requirement or make a human

decision to override the constraint. These violations are frozen in the final schedule. The initial

schedule as well as the final schedule produced by the optimization are vetted by a traffic system.

This system has a scheduling engine which automatically checks most of the rules imposed by the

network and, more importantly, checks the rules imposed by government regulators. Therefore, the

initial feasibility is guaranteed unless the scheduler has revised the schedule and has overridden the

scheduling engine. This “close-to-final” schedule is optimized in Stage 2 to assign spots to breaks.

Stage 3: Arrange Spots in Break Positions. This model arranges the spots inside the breaks to

which they were assigned in the previous stage. To the user, Stages 2 and 3 happen simultaneously

and are not visible as separate steps. Afterward, the optimized schedule is pushed back into the

log of the network using integration software. The traffic system verifies the schedule suggested

by the optimizer. The human scheduler may make further changes until he or she is satisfied and

then pushes the schedule to the production system. The production system sends the schedule

for broadcast. The ads are only one component of what is finally aired. The actual programs, the

creative for the ads, the promotional advertisements for the network’s own programs, the local TV

station content, and the local advertisements are all assembled before reaching the subscriber.

The resulting schedule and revenue gains are scrutinized on a regular basis. The metrics of

performance are both quantitative and qualitative. The evaluation frequencies are daily, weekly,

and monthly. Some sample metrics are:

• The revenue difference between the original schedule and the optimized schedule helps mea-

sure the lift in advertisement revenue once the actual ratings are obtained. The accounting is

straightforward and the details are omitted.

• Other metrics are used, such as the distribution of spots of an advertiser or an agency by

time, the day-to-day performance of deals, the use of prime time spots, the analysis of the source

of revenue lift, and the forecast performance.
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Figure 1 Processes and information flow.
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The management of the performance of deals to monitor the quality of the schedule is termed

stewardship. The stewardship team uses the above information to analyze the effects of deal posi-

tions and the effects of the number of spots released for production on deal performance. The

knowledge gained is used to fine-tune Stages 1 and 2. For example, the network may add additional

spots to remediate the condition of the deal, optimization can increase weights on these deals to

improve delivery, or more prime time spots can be reserved for these deals.

4. Three Stages for Scheduling Spots

As discussed in Section 3, we carry out the daily scheduling of spots into breaks, and positions

within breaks, in three stages. The first stage estimates the deals’ weights, that is, the relative
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importance of the deals for the next week according to the remaining number of target impressions;

and the cost per thousand impressions (CPM) of the deals’ target demographics. The demographic

CPM is the cost of reaching 1,000 viewers the specified audience demographic, a standard measure

used by the television industry. Stage 2 allocates the spots to breaks per day. This model schedules

spots into the breaks on the actual day, so that the deals assigned higher weights in Stage 1 are

given a larger share of the impressions, both in terms of number of spots and preferred time zones

per day. Finally, Stage 3 schedules the spots to their actual positions within the breaks on the

actual day. Any unscheduled spots are stored in a repository referred to as the bin. Stages 2 and

3 ensure that all the required constraints on the spots are satisfied. In the following subsections,

we describe the mathematical formulation of each stage. For easy reference, we present summary

tables of the sets and parameters used in each model. Some of the notation is used in more than

one stage.

4.1. Stage 1: Estimate Deal Weights

This model is solved at the beginning of every week to define each open deal’s relative importance,

or weight, with respect to other open deals. Basically, the model creates a tentative arrangement

of spots into breaks for the next week. The arrangement of spots is tentative because the length of

all the video spots are not known, some of the advertiser constraints for the complete week may

be not defined, and the timetable of breaks may change as the week proceeds. At the moment of

solving Stage 1, the available information consists of the following:

• The set of open deals D.

• The set of breaks Θ for the next week. Each break b∈Θ has a Lb time length.

• The set Q of demographics. For each demographic q ∈ Q, the network provides the value

for CPMq, or the cost per thousand impressions based on historical viewership and marketing

considerations.

• The deals’ specifications given by the advertisers. These specifications define the q(d) ∈ Q

target demographic of each deal d ∈D. Also, the set ΘD(d)⊂Θ of breaks in which deal d can be
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shown, for all d∈D; and, for notational convenience, we define the set DΘ(b)⊂D of deals that can

be scheduled in break b, for all b ∈Θ. Also, each open deal has a target impressions status Id for

the next week, which is the difference between the promised number of impressions to be delivered

on the requested demographic and the impressions already delivered for the deal from the start

day, divided by the number of weeks until the deal expires. In the industry, the Deal Stewardship

system closely monitors delivery and provides targets for the remaining life of the deal. In addition,

each deal has a restriction on the maximum number of spots that can be broadcasted, Nd. For the

next week, some of the video spots are already recorded, so their lengths are determined; however,

others are not yet available. Given this lack of information, in order to create the tentative schedule,

we use the historic average length of spots H̄ in the model.

• To meet the target impressions status, our algorithm estimates a rating forecast Rbq, for each

break b∈Θ and demographic d∈Q, using the models presented in Section 6.

Table 1 presents a summary of the notation described above.

Table 1 Notation Stage 1.

Sets and indices:

D, d All open deals.
Θ, b All breaks of the following week. The schedule of breaks is tentative and can change

as the week proceeds.
Q, q Demographics.
DΘ(b)⊂D Deals that can be scheduled in break b, for all b∈Θ.
ΘD(d)⊂Θ Breaks in which deal d can be shown, for all d∈D.
q(d)∈Q Target demographic for deal d, for all d∈D.

Parameters:

CPMq CPM of demographic q, for all q ∈Q.
Lb Length in seconds of break b, for all b∈Θ.
H̄ Average spot length in seconds.
Rbq Ratings forecast of break b and demographic q, for all b∈Θ, q ∈Q.
Id Target number of impressions for deal d for the following week, for all d∈D.
Nd Maximum number of deal d spots planned for delivery in the following week, for all

d∈D.

Decision Variables:

cdb Number of spots of deal d in break b, for all d∈D, and b∈ΘD(d).
ed Shortfall decision variable for deal d , for all d∈D.

As explained in above, the schedule cannot be determined exactly because the description of the

spots to be scheduled are often incomplete, as several detailed scheduling constraints are missing
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for spots that are to be aired in the future. Also, the breaks, programs, and lengths are defined but

can change significantly over the next few days. Given the available information at this stage, we

formulate a linear programming model to generate a tentative multi-day schedule. A set of weights

for the day-to-day scheduling problem of Stage 2 is generated as a by-product. The alternative

approach would have been to rely upon decision-makers to prioritize deals in a quantitative manner

to enable making trade-offs among spots from different deals in Stage 2.

Weight Problem: The decision variables of the Stage 1 model are the cdb number of spots of deal

d in break b, for all d∈D, and b∈ΘD(d); and the ed shortfall or number of impressions that cannot

be delivered of deal d in the case of a lack of forecasted viewership in the target demographic, for

all d ∈ D. We relax the integrality restriction of the number of spots and plan on an aggregate

basis at the break level. The Stage 1 linear programming model is as follows:

min
∑
d∈D

edCPMq(d) (1)

s.t.
∑

d∈DΘ(b)

cdb ≤
Lb

H̄
∀b∈Θ, (2)

∑
b∈ΘD(d)

cdb ≤Nd ∀d∈D, (3)

∑
b∈ΘD(d)

cdbRbq(d) + ed ≥ Id ∀d∈D, (4)

ed, cdb ≥ 0 ∀d∈D, b∈ΘD(d). (5)

The objective function (1) minimizes the value of under-delivered impressions. Constraint (2)

ensures that the number of spots that are delivered in each break is less than or equal to the

number of spots available. Constraint (3) ensures that the planned number of spots are allocated

as required by the corresponding advertiser of each deal. Constraint (4) links the number of spots

delivered, the forecasted ratings in the target demographic, the shortfall of impressions, and the

target number of impression for each deal. And constraint (5) is the nature of variables.

Let Wd be the shadow price of constraint (4), for all d ∈ D. It can be interpreted as the price

the network is willing to pay for decreasing the target Id of deal d by one impression of the target
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demographic. This equivalent to consider Wd as the price of each deal-d-impression. We use this

price to determine the penalty in the single-day problem that is solved in Stage 1 that we present

bellow.

4.2. Stage 2: Schedule Spots in Breaks

As described in Section 3, we optimize the schedule created by the schedulers. For the actual day

to be scheduled, the network allows the model to move only a given number of spots to avoid

disturbing the elegance of the schedule. Moreover, we ignore the scheduling rules within each break

to maintain a manageable computational complexity. We focus on optimizing the scheduling at the

break level in Stage 3.

Given the Stage 1 deal weights, Stage 2 assigns the spots to breaks in the actual day so that a

series of constraints are met, and the ratings per demographic allocated to spots are maximized

according to the deal weights. The formulation is a mixed integer linear programing model.

Table 2 presents the sets and the indices, while Table 3 summarizes the parameters used in

Stage 2. Table 4 presents the decision variables. Where possible, brief notes are given to make the

notation understandable without reference to the model.
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Table 2 Sets and Indices used in Stage 2.

Supply sets and indices:

B, b Breaks within the actual day to be scheduled.
H, h Hours. H= 1, . . . ,24
BH(h)⊂B Breaks in hour h, for all h∈H.
Q, q Demographics.

Demand sets and indexes:

A, a Advertisers.
K, k Brands.
D, d Open deals that can be scheduled in at least one of the breaks b∈B.
S, i, j Spots.
P, p Product categories.
SA(a)⊂S Spots that belong to advertiser a, for all a∈A.
SK(k)⊂S Spots of brand k, for all k ∈K.
SD(d)⊂S Spots that belong to deal d, for all d∈D.
d(i)∈D Deal to which spot i belongs, for all i∈ S.

ŜD(d)⊂SD(d) Spots of deal d that are guaranteed ( i.e., must be aired and together must achieve
the viewership target), for all d∈D.

SP(p)⊂S Spots that belong to product category p, for all p∈P.

Sets that define constraints:

SA ⊂S Spots that must be scheduled at the first position within a break∗.
SZ ⊂S Spots that must be scheduled at the last position within a break∗.
S2
Sep ⊂S ×S Pair of spots that must be separated by time∗.
S2
ASdw(a)⊂SA(a)×SA(a) Pair of spots that must satisfy sandwich constraint∗ for advertiser a, for all a∈A.
S2
APig(a)⊂SA(a)×SA(a) Pair of spots that must satisfy piggyback constraint∗ for advertiser a, for all a∈A.
S2
ACon(a)⊂SA(a)×SA(a) Pair of spots that must be scheduled in consecutive breaks∗ for advertiser a, for all

a∈A.

Demand-Supply sets and indices:

BS(i)⊂B Valid breaks for spot i (i.e., breaks within which the spot can be aired), for all i∈ S.
SB(b)⊂S Valid spots for break b, for all b∈B.

ŜB(b)⊂SB(b) Spots assigned to break b in the original schedule, for all b∈B.
b(i)∈B Original break to which spot i was assigned, for all i∈ S \Sbin.
Sbin ⊂S Spots that are in the bin in the original schedule.
HD(d)⊂H Set of hours within which deal d can be shown, for all d∈D.
q(d)∈Q Target demographic for deal d, for all d∈D.

Note. Latin calligraphic uppercase denotes set. ∗ Constraints explained in the formulation. The notation |C| refers to the cardinality
of a set C.
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Table 3 Parameters used in Stage 2.

Rbq Rating forecast in 30 seconds of break b, demographic q, for all b∈B, q ∈Q.
Fb Start time of break b, for all b∈B.
Lb Length of break b in seconds, for all b∈B.
L̄ Average break length in seconds.
Hi Length of spot i in seconds, for all i∈ S.
Wd Weight of deal d that was obtained in Stage 1, for all d∈D.
P B Brand separation penalty factor∗.
P A Advertiser separation penalty factor∗.
P U Vertical uniformity penalty factor∗.
Dij Minimum separation∗ between spots i and j, for all (i, j)∈ S2

Sep.
M bin Maximum number of spots allowed in the bin. M bin ≥ |Sbin|.
M move Maximum number of spots that may be moved. Policy variable to ensure the original

log’s “beauty” is preserved.
M dev

d Maximum number of spots of deal d per hour allow to deviate from the average
number of spots per hour, for all d∈D.

M B
pb Maximum number of spots from the same product category p that can be placed

within break b, for all p∈P and b∈B.

Note. Latin uppercase denotes parameter. ∗The extended definition of these parameters are presented in the formulation.

Table 4 Decision Variables Stage 2.

Binary decision variables:

xib Equal to 1 if spot i is scheduled in break b, 0 otherwise, for all spots i ∈ S, and
breaks b∈BS(i).

yi Equal to 1 if spot i is added to the bin, 0 otherwise, for all spots i∈ S.
zkb Equal to 1 if at least one spot of brand k is scheduled in break b, 0 otherwise, for

all brands k ∈K, and breaks b∈B.
vab Equal to 1 if at least one spot of advertiser a is scheduled in break b, 0 otherwise,

for all advertisers a∈A, and breaks b∈B.
wij Equal to 1 if spot i is scheduled before spot j, 0 otherwise, for all pairs of spots

(i, j)∈ S2
Sep.

Non negative decision variables:

αkb Penalty for scheduling two spots of brand k in consecutive breaks b and b+ 1, for
all brands k ∈K and breaks b∈B.

βab Penalty for scheduling two spots of advertiser a in consecutive breaks b and b+ 1,
for all advertisers a∈A and breaks b∈B.

γdh Penalty for vertical uniformity deviation, of deal d and hour h, for all deals d ∈D
and hours h∈HD(d).

δdh Vertical uniformity deviation of deal d and hour h, for all deals d ∈ D and hours
h∈HD(d).

Note. Latin lowercase denotes binary decision variable. Greek letter denotes non-negative decision variable.
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Break Problem: Let B be the set of breaks on the actual day to be scheduled; let D be the set of

deals with spots that can be scheduled in the day; and let Q be the set of audience demographics.

For each deal d∈D, q(d)∈Q is the targeted demographic and SD(d) is the set of spots that belong

to deal d. From this set, only ŜD(d) ⊂ SD(d) are guaranteed to be shown on the actual day due

to contract considerations. The set of all spots is S. For each spot i ∈ S, d(i) is the deal to which

spot i belongs. Given the deal specifications of d(i), BS(i)⊂ B is the set of breaks in which spot

i can be scheduled. Reciprocally, SB(b)⊂ S is the set of spots that can be scheduled in break b,

for each break b∈B. The main decision variable of the model is xib, a binary indicator of whether

spot i is in break b, for each spot i ∈ S and break b ∈ BS(i). If a spot i cannot be scheduled in

any break because of infeasibility, then it is assigned to the bin. Let yi be the binary decision

variable that indicates bin assignation. Recall that Stage 2 receives an original schedule that can

be modified by a given maximum number of moves, namely M move. Let ŜB(b)⊂SB(b) be the set of

spots scheduled in break b, for each b ∈ B, and let Sbin ⊂ S be the set of spots that are originally

in the bin. Accordingly, let b(i) be the scheduled break of spot i, for each i ∈ S \ Sbin. In this

given schedule, all the guaranteed spots are scheduled in a break, that is ŜD(d)∩ Sbin = ∅ for all

d∈D. At a demand level, the other three relevant dimensions at this stage are the advertisers, the

brands, and the product categories. Let A be the set of advertisers who sign the deals; and, for

each advertiser a∈A, let SA(a)⊂S be the set of spots that belong to advertiser a. Each advertiser

can have several brands. Let K be the set of brands; and, for each brand k ∈K, let SK(k)⊂S be

the set of brand k spots. Finally, across brands, P is the set of product categories; and, for each

p ∈P, SP(p)⊂S is the set of spots that belong to product category p. At a supply level, the day

is broken into hours H= 1, . . . ,24, such that BH(h) is the set of breaks to be air in hour h, for all

h∈H. Finally, for modeling purposes that will become clear later, let HD(d) be the set of hours in

which the spots of deal d can be shown for all d ∈D. Notice that HD(d) can be inferred from the

set of spots that belong to deal d and the set of hours in which these spots can be shown. Formally,

HD(d) :=
⋃

i∈SD(d),b∈BS(i)

{
h : h≤ Fb ≤ h̄

}
, where h and h̄ are the start and end day-minutes of hour

h, and Fb is the start day-minute of break b.
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Objective function (6) maximizes the allocated ratings minus four penalties. The first term is

the sum over deals d∈D, guaranteed spots i∈ ŜD(d), and breaks b∈BS(i) of the allocated ratings

in the targeted demographic q(d). This means that the rating per 30 seconds Rbq(d) factored by the

proportion of this rating that would be assigned to spot i Hi
30

, multiplied by the allocation variable

xib and factored by the weight of the deal Wd, which is obtained by the weight model presented in

Subsection 4.1. The second term is the penalty for allocating guaranteed spots to the bin, which is

the sum of spots assigned to the bin, yi, multiplied by the ratings allocated in the original schedule

Hi
30
Rb(i)q(d), and weighted by Wd. The third term is the sum of decision variable penalties αkb for

placing spots of the same brand k scheduled in consecutive breaks b and b+ 1. These penalties are

defined in the block of constraints (8). Similarly, the fourth term is the sum of decision variable

penalties βab for placing spots of the same advertiser a scheduled in consecutive breaks b and b+1,

which are defined in the block of constraints (9). The fifth term is the sum of decision variable

penalties γdh for not having a uniform scheduled distribution of deal d spots at hour h, defined in

the block of constraints (10). The parameters P B, P A and P U are input multipliers that calibrate the

importance of the penalties in the objective function, and are chosen based on trial and error. The

decision variable γduh is an artifact to model an idea that is somewhat subjective. For example,

when an advertiser requires an hour of separation between spots, the advertiser often can tolerate

a separation of 59 minutes, but a separation of 45 minutes is less likely to be accepted. The Stage

2 objective function is as follows:

max
∑

d∈D,i∈ŜD(d),
b∈BS (i)

Wd

Hi

30
Rbq(d)xib−

∑
d∈D,

i∈ŜD(d)

Wd

Hi

30
Rb(i)q(d)yi−P B

∑
k∈K,
b∈B

αkb−P A
∑
a∈A,
b∈B

βab−P U
∑
d∈D,

h∈HD(d)

γduh

(6)

For later reference in Section 7, we label the five terms as metrics M1 to M5. Hence, the Stage

2 objective function is equal to M1 - M2 - M3 - M4 - M5.

Block of constraints (7) is the network feasibility constraints: Constraint (7a) imposes that each

spot i∈ S is scheduled for exactly one break or goes into the bin. Constraint (7b) restricts for each
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break b ∈ B that the sum of the spots’ length, Hi, scheduled in the break should be less than or

equal to the break length, Lb. Constraint (7c) imposes that the number of spots that goes into the

bin must be less than or equal to M bin, the maximum number of spots that are allowed in the bin.

Lastly, constraint (7d) establishes that the number of spots not moved from the original schedule

must be greater than or equal to the total number of spots minus the maximum number of moves

allowed, M move. The value M move was initially chosen equal to 10% of spots and increased steadily

with growing confidence in the model to 50%. The initial fear was that a machine may be unable

to generate an elegant schedule—that is a schedule appreciated by experienced schedulers.

yi +
∑

b∈BS(i)

xib = 1, ∀i∈ S, (7a)

∑
i∈SB(b)

xibHi ≤Lb, ∀b∈B, (7b)

∑
i∈S

yi ≤M bin, (7c)

∑
b∈B,i∈ŜB(b)

xib +
∑

i∈Sbin

yi ≥ |S|−M move. (7d)

Block of constraints (8) defines the brand uniform dispersion constraints: It is desirable that

spots of the same brand are separated by at least one break of difference. We impose the following

constraint to define penalties measured in terms of ratings times deal weights when this requirement

is not satisfied. For each brand k ∈K and break b∈B, (8a) imposes the relation between the binary

variable zkb—which indicates whether at least one brand k spot is scheduled in break b—and the

total number of brand k spots in break b; (8b) and (8c) define the brand separation penalty αkb,

which must be greater than or equal to the sum over the spots that are scheduled in consecutive

breaks of the delivered ratings (Hi
30
Rbq(d(i))), weighted by the deal weight Wd.∑

i∈SB(b)∩SK(k)

xib ≤ |SK(k)∩SB(b)|zkb, ∀k ∈K, b∈B, (8a)

αkb ≥
∑

i∈SB(b)∩SK(k)

Wd(i)

Hi

30
Rbq(d(i))(xib− 1 + zkb+1), ∀k ∈K, b∈B \ {|B|}. (8b)

αkb ≥
∑

i∈SB(b)∩SK(k)

Wd(i)

Hi

30
Rbq(d(i))(xib− 1 + zkb−1), ∀k ∈K, b∈B \ {1}. (8c)
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Block of constraints (9) defines the advertiser uniform dispersion constraints: These are similar

to brand uniform dispersion constraints, but these apply to advertisers instead of brands.

∑
i∈SB(b)∩SA(a)

xib ≤ |SA(a)∩SB(b)|vab, ∀a∈A, b∈B, (9a)

βab ≥
∑

i∈SB(b)∩SA(a)

Wd(i)

Hi

30
Rbq(d(i))(xib− 1 + vab+1), ∀a∈K, b∈B \ {|B|}. (9b)

βab ≥
∑

i∈SB(b)∩SA(a)

Wd(i)

Hi

30
Rbq(d(i))(xib− 1 + vab−1), ∀a∈K, b∈B \ {1}. (9c)

Block of constraints (10) imposes the time based uniform dispersion constraints: Advertisers want

spots to be as uniformly distributed as possible in each hour. To model this, we define penalties

that measure the deviation in the number of spots per hour from the average number of spots

scheduled in an hour. For each deal d∈D and hour h∈HD(d), constraints (10a) and (10b) define

the difference δdh over the maximum allowed deviation M dev
d from the average number of spots per

hour. (10c) defines the incurred penalty (γdh) because of the extra difference.

δdh +M dev
d ≥

∑
i∈SD(d),

b∈BS (i)∩BH(h)

xib−

∑
i∈SD(d),b∈BS(i)

xib

|HD(d)|
, ∀d∈D, h∈HD(d), (10a)

δdh +M dev
d ≥

∑
i∈SD(d),b∈BS(i)

xib

|HD(d)|
−

∑
i∈SD(d)

b∈BS (i)∩BH(h)

xib, ∀d∈D, h∈HD(d), (10b)

γdh ≥ δdhWd(i)

∑
b∈BH(h)

Hi
30
Rbq(d)

|BH(h)|
, ∀d∈D, h∈HD(d). (10c)

Block of constraints (11) is the A-position and Z-position constraints: By advertisement require-

ments, some of the spots must be scheduled at the first positions of breaks, which in industry

parlance are called A-position spots. Let SA ⊂ S be this set of spots. The positioning inside the

break is determined in Stage 3, so Stage 2 must ensure that in each break there must be assigned

at most one of the spots of SA. Constraint (11a) ensures that this happens. Similarly, some of the

spots must be scheduled at the end of a break, or, the Z-position spots. Let SZ ⊂ S be this set of

spots. Constraint (11b) imposes that for each break b∈B only one of these spots can be assigned.
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The other specific positions inside the breaks are determined by Stage 3, which is explained in

Subsection 4.3. ∑
i∈SA∩SB(b)

xib ≤ 1, ∀b∈B, (11a)

∑
i∈SZ∩SB(b)

xib ≤ 1, ∀b∈B. (11b)

Block of constraints (12) defines the minimum separation constraints: The contracts define that

certain pairs of spot must be scheduled in breaks separated by at least a given amount of time.

For example, an advertiser may want to have their spots separated by at least 30 minutes, or may

want a separation of 45 minutes from other spots of the same product category, or may want a

separation of one hour from spots of a rival brand. Let S2
Sep ⊂S ×S be the set of pair of spot that

must be separated; and, for each (i, j)∈ S2
Sep, let Dij be the requested separation time, in minutes.

Because at this stage we only schedule at a break level and not at a position inside the break, the

constraints must ensure that the start time of the breaks where spots i and j are scheduled must

be separated by at least Dij plus the average length of a break in minutes, L̄. For that, we define

the binary decision variable wij that is equal to 1 if spot i is scheduled before spot j. Constraints

(12a) and (12b) impose that the difference between the start time of the spot that is scheduled

later in the day and the spot that is scheduled earlier must be at least Dij + L̄, where Fb is the

start day-minute of break b.∑
b∈BS(j)

Fbxjb−
∑

b∈BS(i)

Fbxib ≥ (Dij + L̄)wij − (24× 60)(1−wij), ∀(i, j)∈ S2
Sep, (12a)

∑
b∈BS(i)

Fbxib−
∑

b∈BS(j)

Fbxjb ≥ (Dij + L̄)(1−wij)− (24× 60)wij, ∀(i, j)∈ S2
Sep. (12b)

The set S2
Sep is defined for three different pairs of spot types: 1) separation of spots from the same

advertiser or spots from a specific set of advertisers, 2) separation of spots from the same brand or

spots from a specific set of brands, and 3) separation of spots from the same product category or

spots from a specific set of product categories. If a pair of spots has multiple separation requests,

only the constraint for the maximum separation is created.

Block of constraints (13) is the association constraints: These are three constraint types required

by the advertisers for specific spot pairs related by their content, so they must the broadcasted in
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a specific order and positions inside a break. The first type are the so called sandwich constraints.

These spot pairs must be shown in the same break but should be separated by at least one

spot within the break, hence the name sandwich. Equivalently, the second type are the piggyback

constraints. These spot pairs must be shown in the same break in consecutive positions, hence the

name “piggyback”. For each advertiser a∈A, let S2
ASdw(a)⊂SA(a)×SA(a) be the set of spot pairs

that must satisfy sandwich constraints, and let S2
APig(a)⊂SA(a)×SA(a) be the spot pairs set that

must satisfy piggyback constraints. Constraint (13a) imposes that each sandwich and piggyback

spot pair must be in the same break. Additionally, constraint (13b) ensures that if a sandwich pair

(i, j) is scheduled in break b ∈ BS(i), then at least one other spot that is not type A-position or

type Z-position must be assigned to the break, in order to have a spot between i and j for the

model of Stage 3. Last, the third constraints type are the consecutive breaks constraints (13c), for

which each pair of spots in S2
ACon(a)⊂SA(a)×SA(a) must be assigned to consecutive breaks.

xib = xjb, ∀a∈A, (i, j)∈ S2
ASdw(a)∪S2

APig(a), b∈BS(i), (13a)∑
i′∈SB(b)/{i,j}∪SA∪SZ

xbi′ ≥ xib, ∀a∈A, (i, j)∈ S2
ASdw(a), b∈BS(i), (13b)

xib = xj(b+1), ∀a∈A, (i, j)∈ S2
ACon(a), b∈B \ {|B|}. (13c)

Another type of business constraints required by advertisers are called the product category

constraints: In each break, a specific maximum number of spots of the same product category can

be shown. Let P be the set of product categories; and, for each p∈P, let SP(p)⊂S be the set of

spots that belong to product category p. Constraint (14) imposes that a maximum of M B
pb product

category p spots can be assigned to break b.

∑
i∈SP (p)∩SB(b)

xib ≤M B
pb, p∈P, b∈B, (14)

Last, block of constraints (15) defines the nature of variables.

xib ∈ {0,1}, ∀i∈ S, b∈BS(i),
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yi ∈ {0,1}, ∀i∈ S,

zkb ∈ {0,1}, αkb ≥ 0, ∀k ∈K, b∈B,

vab ∈ {0,1}, βab ≥ 0, ∀a∈A, b∈B, (15)

δdh, γdh ≥ 0, ∀d∈D, h∈HD(h),

wij ∈ {0,1}, ∀(i, j)∈ S2
Sep.

Formulation (6) to (15) is flexible in terms of including other considerations that may be required

by the advertisers or the network. For example, the user may wish to force the scheduling of certain

spots that are not guaranteed but must be shown for business considerations, or the user may wish

to impose a given number of spots on the log and add constraints that prevent under-delivered

deals from becoming worse than before.

4.3. Stage 3: Arrange Spots in Break Positions

As we discussed in Section 3, after the spots are assigned to breaks, it is necessary to sort them to

satisfy the internal break constraints. We can solve the arrangement problem by break. For each

break b ∈ B, let S̃(b) be the set of spots that are assigned to break b in Stage 2. Therefore, the

number of positions in break b is |S̃(b)|. Let x̂il be a binary variable that is equal to 1 if spot i is

scheduled in position l, for all i∈ S̃(b), l≤ |S̃(b)|. To model the piggyback and sandwich constraints,

let S̃2
Pig(b) be the set of piggyback spot pairs, and let S̃2

Sdw(b) be the set of sandwich spot pairs that

were assigned to break b in Stage 2. Let iA(b) and iZ(b) be the A-position and Z-position spots that

were assigned to break b in Stage 2, if any. Because of all these constraints, there is a chance that

the allocation of all the spots to positions is infeasible. In that case, we assign spots to the bin and

maximize the weighted ratings allocated, as in Stage 2. Let ŷi be the binary variable that indicates

whether spot i∈ S̃(b) goes into the bin. Table 5 summarizes the notation described above.

The Stage 3 integer programming model, or the Position Problem, is as follows:

max
∑

i∈S̃(b),l≤|S̃(b)|

Wd(i)

Hi

30
Rlq(d(i))x̂il−

∑
i∈S̃(b)

Wd(i)

Hi

30
Rb(i)q(d(i))ŷi (16)



26

s.t.
∑

i∈S̃(b)

x̂il ≤ 1 ∀l≤ |S̃(b)|, (17)

∑
l≤|S̃(b)|

x̂il + ŷi = 1 ∀i∈ S̃(b), (18)

x̂iA(b)1 = 1, x̂iZ(b)|S̃(b)| = 1, (19)

x̂il = x̂j(l+1) l≤ |S̃(b)| − 1,∀(i, j)∈ S̃2
Pig(b), (20)

x̂jl = 0 l ∈ {1,2},∀(i, j)∈ S̃2
Sdw(b), (21)

x̂il + x̂j(l+1) ≤ 1 l≤ |S̃(b)| − 1,∀(i, j)∈ S̃2
Sdw(b), (22)

l∑
t=1

x̂it ≥ x̂j(l+2) l≤ |S̃(b)| − 2,∀(i, j)∈ S̃2
Sdw(b), (23)

x̂il, ŷi ∈ {0,1} i∈ S̃(b), l≤ |S̃(b)|. (24)

The objective function (16) maximizes the weighted ratings allocated to spots as in Stage 2.

Constraint (17) ensures that no more than one spot is assigned per position, and constraint (18)

imposes that each spot must be assigned to only one position or to the bin. Constraint (19) imposes

A-position and Z-position constraints. This means that if Stage 2 assigns the A-position spot iA(b)

to break b, then that spot must be scheduled in the first position of the break. Similarly, if the

Z-position spot iA(b) is assigned to break b by Stage 2, then that spot must be scheduled in the

last position of the break. Constraint (20) imposes the piggyback condition, meaning that the

spots (i, j)∈ S̃2
Pig(b) must be scheduled in consecutive positions. Constraints block (21) to (23) are

the sandwich constraints: For each pair of sandwich spots (i, j) ∈ S̃2
Sdw(b), (21) imposes that j can

neither be in position 1 nor position 2, constraint (22) ensures that spots i and j are separated by

at least one position, and constraint (23) establishes that spot i must be scheduled before spot j.

Finally, constraint (24) is the nature of variables.

5. Solution Approach

The three stages are solved sequentially and with each stage we use a more granular formulation,

as discussed in the prior sections. Stage 1 is solved once every week. This stage is solved offline
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Table 5 Sets and indices for Stage 3.

B, b Breaks.
S, i, j Spots.

S̃(b)⊂S Spots that were assigned to break b in Stage 2, for all b∈B.
iA(b) A-position spots that were assigned to break b in Stage 2, if any, for all b∈B.
iZ(b) Z-position spots that were assigned to break b in Stage 2, if any, for all b∈B.

S̃2
Sdw(b)⊂ S̃(b)× S̃(b) Pairs of spots that must satisfy sandwich constraints and were assigned to break b

in Stage 2, for all b∈B.

S̃2
Pig(b)⊂ S̃(b)× S̃(b) Pairs of spots that must satisfy piggyback constraints and were assigned to break b

in Stage 2, for all b∈B.

so as to not impact any business operations. However, Stages 2 and 3 are solved one or more

times each day. The maximum acceptable solution time is determined by the following two factors:

First, all business operations related to the spots for the day in question must be suspended while

optimization occurs, and cannot resume until the optimization model has been solved and the

revised schedule has been created. Second, the network prefers to perform the optimization after

all the work and changes related to the schedule of programs and the spots to schedule have been

made, because any changes after Stages 2 and 3 can disturb the optimal solution. In this way,

the network can implement the schedule immediately after the optimization. Therefore, there is a

limited time for the optimization models to run. Typically, the network allows no more than 10

minutes for solving Stages 2 and 3 combined in order to have a final spot schedule. We describe

the solution approach for each stage bellow.

Stage 1: Estimate Deal Weights. This model is an LP that is easy to solve using a state-of-the-art

linear programming solver.

Stage 2: Schedule Spots in Breaks. Initially, we modeled and experimented computationally with

Stages 2 and 3 in a combined formulation. That formulation did not produce a feasible solution

after several hours of branch and bound using a state-of-the-art integer programming solver. So we

divided that formulation into Stages 2 and 3. In terms of problem size and computational effort,

Stage 2 is the most challenging. For a single day, the typical size of the IP model described in

Subsection 4.2 includes tens of thousands of variables and constraints (see Table 7). The integer

programming solver that we used for this project, Fico Xpress 7.6 (Daniel 2009), produces a near

optimal solution after more than three hours, by branch and bound and default settings. Given the
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limited time and the large problem size, the availability of a starting solution given by the network

is an advantage. After experimentation, we found that the solution approach that produces the

best solutions quickly is an iterative process in which we feed an initial solution, or warm start

solution, and allow a small number of changes. Recall that the network allows a maximum number

of moves M move, used in constraint (7d). As we described previously, that number is approximately

50% of the total number of spots. Initially, we set M move equal to 5%, feed the initial solution as

warm start producing a new near optimal solution in a few minutes. We then increase M move to 10%

using the previously obtained schedule as a warm start to produce a new near optimal solution.

Our iterative procedure continues in this fashion until reaching the original M move. This procedure

produces a near optimal solution in more than 30 minutes, which is not quick enough. A second

enhancement that accelerates the iterative procedure is to randomly fix certain spots in breaks;

then unfixing them and fixing others; until the last iteration has all the spots unfixed.

The constraints that make the problem difficult to solve are the minimum separation constraints

(12). Without these constraints the problem solves relatively quickly. These constraints enforce an

ordering in every pair of breaks that the network imposes. This difficulty motivates the idea of

including in the fixing procedure at each iteration a certain number of the wij variables that model

the ordering between spots i and j, to be equal to the sequence of the warm start solution. If wij

is fixed to one at any iteration, then spot i must be scheduled before spot j and constraint (12)

associated to the tuple (i, j) is not needed. At the next iteration, this variable is unfixed.

Using these enhancements, Xpress computes a near optimal solution at the root node of the

branch and bound at each iteration of our approach. It produces a final solution with the original

M move in less than 10 minutes.

Stage 3: Arrange Spots in Break Positions. The Stage 3 model that positions the spots inside

the breaks is an IP that is easy to solve because the problem can be separated by breaks; therefore,

it reduces to arranging about 10 spots in an ordering that satisfies all the constraints.

In summary, by reformulating the problem in three stages and implementing the enhancements

of Stage 2, our approach solves the scheduling problem while satisfying all the constraints with a

near optimal solution in less than 10 minutes. Computational evidence is presented in Section 7.
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6. Rating Forecasts

Recall that the rating forecasts are used in the weight problem (WP) and the break problem (BP),

which we present in Subsections 4.1 and 4.2, respectively. The parameter to estimate is Rbq, the

rating forecast in break b of demographic q, for all b ∈ B, q ∈Q. We briefly describe the methods

followed and the issues encountered below.

Time considerations: We receive the realized ratings one week after the day of broadcasting.

Therefore, we have the history of ratings up to one week before the date of airing. Also, a full day

is broken into 15–minute intervals; hence, there are 96 quarter hours per day. So, we forecast the

ratings per quarter hour and then we map to the corresponding break(s) that are broadcasted in

each quarter hour.

Demographics: As we describe in Section 1, the demographics that the networks sell are defined

in two dimensions: gender and age group. The networks consider 2 possibilities for gender, Female

(F) and Male (M) (some media are starting to recognize other genders; for example, Facebook).

The age dimension is divided into eight groups (1-5, 6-10, 11-15, 16-20, 21-30, 31-40, 41-51, and

51+). Hence, there are 16 demographics in total (|Q|= 16). this results in a total of 96 × 16 time

series to forecast.

Rating Patterns: The ratings are highly variable, as the plots in Figure 2 show. Plots 2(a) are

ratings per day of the week in a representative demographic; each day of the week follows its

own pattern. Plots 2(b) are the ratings per quarter–hour from 07:00 to 23:45 on a representative

day. We can see that the ratings per consecutive quarter–hours are highly correlated, as it would

be expected in television programming. A typical quarter– hour–demographic time series has an

approximate coefficient of variation (standard deviation/sample mean) of 0.5. Also, when a new

season starts with different programming, the past ratings for different programs are often poor

predictors for the future. Therefore, as a policy, we restart the forecast every season.

Rating Models: We tested a battery of time series methods (past ratings average, Holt-Winters

and ARIMA); for reference, see any publication on time series (e.g., Shumway and Stoffer (2011)).
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Figure 2 Examples of ratings time series.

(a) Ratings by day of the week from August 25, 2008, to July 10, 2011.
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(b) Ratings per quarter hour from Mon 1st to Sun 7th of September, 2008.
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Note. Ratings are normalized to one and correspond to one particular large demographic.

Also, we evaluated different strategies of data usage: all past ratings or only a recent subset; all

the days of the week combined or only the corresponding day of the week; different aggregation

and disaggregation methods (aggregation per day, by show, and by demographic in one or two

dimensions). Our benchmark forecast is the past ratings average, which has an approximate 44%

mean absolute percentage error (MAPE). Measured by MAPE, none of the methods were found

to be superior for all the series. But, for a particular combination of day of the week, time of the

day, and demographic, a specific method often produced consistently superior results. We use the
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method that is the most competitive in terms of MAPE for test sets. The MAPEs that we obtain

for the actual ratings are around 32%.

In practice, we have found that spots are moved among a small set of breaks. Therefore, it is

adequate for practical purposes to focus on forecasting the difference in ratings between pairs of

breaks within the smaller set. Improving the accuracy of forecast is an ongoing area of research.

7. Results

Our optimization models have been used successfully for major US cable networks since 2008,

generating millions of dollars of additional revenue annually. In order to communicate with the

existing networks’ data bases and also to integrate the in-house software used for scheduling the

logs (before passing a feasible log to the optimizer) with our scheduler, we built an ad hoc decision

support system. As we mention in Section 5, we implemented the optimization models in Xpress

7.6.

To quantify the yield generated and the quality of the optimized schedules, in this section we

benchmark the schedules produced by our models against the ones provided before optimization

for one major network’s channel. We compare the daily schedules for a full month. On average,

the optimized schedules produce a conservative increase in revenue of more than $24,500 per day,

which translates to almost $9 million per year.

All data, while representative of the problem, are disguised for the purpose of maintaining

confidentiality.

7.1. Instances, problem size, and optimality gap

We benchmark the schedules of one major network’s channel for the 31 days of August 2010. In

this subsection, we present the mean, standard deviation and coefficient of variation across the 31

days of several measures. The disaggregated data is shown in the Appendix.

The average day instance has 150 breaks, 16 targeted demographics, 83 advertisers, 164 brands,

124 deals, 672 spots, and 255 product categories. See Table 6 for the descriptive statistics of the

instances and Table 11, in the Appendix, for the daily data.
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Table 6 Stage 2 instances size summary statistics for the 31 days of August 2010.

# Breaks # Demographics # Advertisers # Brands # Deals # Spots # PCat
|B| |Q| |A| |K| |D| |S| |P|

Mean 150 16 83 164 124 672 255
Stdev 19.77 2.04 6.50 20.01 18.07 82.62 0.00
CV 0.13 0.12 0.08 0.12 0.15 0.12 0.00

|Set|: number of elements in Set. Stdev: standard deviation. CV: coefficient of variation (Stdev/mean). PCat:
product categories.

Because the Stage 2 model is the most difficult to solve, we describe the problem size of that

model. The average problem has 11,661 binary variables, 13,489 continuous variables, and 24,007

constraints. After 10 minutes of optimization, our Stage 2 iterative procedure described in Section

5 produces a nearly optimal schedule as indicated by the 0.57% MIP gap on average (100×(LP

solution-IP solution)/LP solution). See Table 7 for the summary and Table 12, in the Appendix,

for the daily problem size.

Table 7 Stage 2 problems size summary statistics for the 31 days of August 2010.

Per day # Binary vars. # Continuous vars. # Constraints MIP gap

Mean 11,661 13,489 24,007 0.57%
Stdev 7,315 5,704 9,539 0.39%
CV 0.63 0.42 0.40 0.68

Stdev: standard deviation. CV: coefficient of variation (Stdev/mean). MIP gap =
((MIP objective function - best LP bound objective function)/best LP bound objective

function)× 100.

7.2. Benchmark

In this subsection, we present results showing the day-by-day yield for one month. We set bench-

marks using two metrics, namely, the weighted average ratings (M1) and the increase in revenue

(Value). The comparison is made between the original schedule provided by the network (ORG)

and the schedule obtained after optimization (OPT). The two metrics are:

M1 =
∑

d∈D,i∈ŜD(d),
b∈BS (i)

Wd

Hi

30
Rbq(d)xib; Value =

∑
d∈D,i∈ŜD(d),

b∈BS (i)

CPMq(d)Wd

Hi

30
Rbq(d)xib.

We compute the two measures for the ORG and OPT schedules using forecasted as well as actual

ratings.
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Recall that the weight Wd is an artifact that we compute in order to assign relative importance

to the deals as discussed in Section 4. However, the network assumes a weight equal to 1 for all

deals at the time its original schedule is generated. Hence, in order to establish a fair comparison,

in this benchmark we assume Wd = 1 for all deals.

Concerning penalties, we compare the sum of the penalties M2+M3+M4+M5 for the ORG

and OPT schedules. These penalties are used to impose the soft constraints in the design of the

schedule and they do not have an intrinsic monetary value. Therefore, we compare them only for

the schedule with forecasted ratings.

Table 8 presents the summary results based on the forecasted ratings, which are used to produce

the schedules. In terms of allocated ratings, or M1, the optimized schedule allocates, on average,

2.21% higher ratings to the spots. In terms of value, the average day of forecasted ratings has a

total value of $1.47 million, so each percent gain is equivalent to roughly $14,700. For the test

month using the forecasted ratings, the OPT schedules produce a 2.08% value gain. If we consider

the variability of value gain across days using the forecasted ratings, we observe that the coefficient

of variation is 0.62, which indicates that the gain is consistently superior. Evidently, the optimized

schedule for the forecasted ratings always dominates the original schedule, which was used as

starting solution. Table 13 in the Appendix shows the results disaggregated by day.

Table 8 Allocated Ratings and Value based on forecasted ratings.

Weighted average ratings (M1) Value
Per day ORG OPT gain ORG OPT gain

Mean 87,193,858 89,088,245 2.21% $1,439,032 $1,468,577 2.08%
Stdev 14,114,964 14,215,505 1.31% $279,133 $283,092 1.30%

CV 0.16 0.16 0.59 0.19 0.19 0.62

Stdev: standard deviation. CV: coefficient of variation (Stdev/mean). ORG: original
schedule. OPT: optimized schedule. gain = ((OPT-ORG)/ORG)× 100. We use a random

scaling factor to maintain confidentiality, but the order of magnitudes correspond to the
true values.

Table 9 displays the mean and standard deviation across the 31 days of the penalties

M2+M3+M4+M5 for the ORG and OPT schedules. The penalties of ORG are much higher than

OPT, as the 31.49 ratio indicates. When we examine the disaggregated data per day in Table 14,
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we observe that the OPT penalties are equal to 0 for many days. Therefore, the OPT schedules

violate far fewer the soft constraints (on some days they violate none of the soft constraints) than

the ORG schedules, which always incur penalties due to violations. Table 14 in the Appendix shows

the penalties disaggregated by day.

Table 9 Penalties based on forecast ratings.

Penalties (M2+M3+M4+M5)
ORG OPT ORG/OPT

Mean 3,734,878 118,604 31.49
Stdev 2,292,353 181,199 12.65

Stdev: standard deviation. ORG: original schedule.
OPT: optimized schedule. We use a random scaling

factor to maintain confidentiality, but the order of

magnitudes correspond to the true values.

Table 10 shows the allocated ratings and value that were obtained by inserting the actual ratings

into the schedules produced using the forecasted ratings. In terms of value gain, the OPT schedule

has daily a value of $1.85 million and is, on average, 1.34% superior to ORG, which translates into

a daily average of more than $24,500. However, the value gain coefficient of variation is 1.02, which

indicates a high variation. Observing the value gain in each day in Table 15, in the Appendix,

shows that the optimized schedule dominates the original schedule in 29 of the 31 days. In the two

days on which ORG is better than OPT (8/11/2010 and 8/31/2010), the difference is no more than

0.34%. Based on the data, we can compute the empirical probability of a gain using the following

expression:

Pr(having a gain) =

∑
day∈days with gain

gainday%∑
day∈days with gain

gainday% +
∑

day∈days with loss

lossday%
= 0.9899

Therefore, although it is possible that the original schedule is superior compared to the optimized

schedule for the actual ratings, the probability of that event is less than 0.0101 for the test month.

This unlikely event could occur because the forecasted ratings differ significantly from the actual

ratings; and, merely due to chance, the original schedule is better than the optimized schedule.

The feasibility of this event shows that the original schedules are of good quality, but because of
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the highly competitive nature of the US media industry, the networks are constantly searching for

sophisticated methods to extract more yield from their audience.

Table 10 Allocated Ratings and Value based on actual ratings.

Weighted average ratings (M1) Value
Per day org opt gain org opt gain

Mean 106,047,503 107,570,039 1.50% $1,825,764 $1,849,022 1.34%
Stdev 22,259,809 22,256,253 1.56% $500,914 $501,706 1.37%

CV 0.21 0.21 1.03 0.27 0.27 1.02

Stdev: standard deviation. CV: coefficient of variation (Stdev/mean). org: original sche-
dule. opt: optimized schedule. gain = ((opt-org)/org)× 100. We use a random scaling factor

to maintain confidentiality, but the order of magnitudes correspond to the true values.

Actual ratings are obtained after the spots are aired.

8. Conclusions

The major revenue source for television networks is the selling of viewers to advertisers. Therefore,

an efficient audience distribution among advertisers is essential to maximize the yield. This process

involves the scheduling of advertisements, or spots, within commercial breaks. The goal of the sche-

dule is to arrange the spots in the breaks so that each spot is shown to its targeted demographic.

This multi-period scheduling problem is very difficult to solve, because viewers of different demo-

graphics will be watching a particular break at the same time. Thus, at the moment of producing

the schedule, various spots are competing for the same break to reach different demographics.

On the other hand, the advertisers impose several business restrictions on the schedule, such as

minimum separation time between spots of the same product category, and uniform distribution

of spots from the same brand.

We designed and implemented a combined solution based on mathematical programming and

time series forecasting methods to schedule the spots within breaks in a way that maximizes

the value of the audience. The scheduler arranges the spots at the level of positions inside the

breaks, which is the maximum level of resolution. The optimization model is a large scale integer

programming model. We solve it close to optimality by using an ad-hoc iterative procedure in less

than 10 minutes, which is the time available to produce the daily schedule. The schedules are of



36

high quality as measured by standard business metrics and when compared to the mathematical

optimal bound.

Acknowledgments

Appendix. Disaggregated Results for August 2010

Table 11 Statistics of instances August 2010.

# Breaks # Demos # Advertisers # Brands # Deals # Spots # PCat.
Instance-Day |B| |Q| |A| |K| |D| |S| |P|

8/1/2010 132 16 69 138 98 622 255
8/2/2010 129 18 79 160 121 624 255
8/3/2010 126 18 82 166 133 663 255
8/4/2010 129 19 93 194 155 728 255
8/5/2010 133 18 90 181 152 715 255
8/6/2010 127 17 83 173 109 746 255
8/7/2010 135 18 85 160 118 786 255
8/8/2010 135 18 76 135 100 765 255
8/9/2010 128 16 86 174 129 655 255
8/10/2010 123 14 88 172 138 683 255
8/11/2010 128 14 86 173 127 669 255
8/12/2010 129 14 95 176 152 822 255
8/13/2010 132 12 84 158 113 858 255
8/14/2010 132 13 75 136 100 697 255
8/15/2010 137 13 80 147 106 756 255
8/16/2010 171 18 88 165 128 579 255
8/17/2010 167 18 85 177 132 638 255
8/18/2010 169 16 76 167 117 636 255
8/19/2010 171 15 84 160 126 607 255
8/20/2010 172 16 81 153 112 680 255
8/21/2010 173 16 81 159 113 635 255
8/22/2010 176 15 73 121 93 464 255
8/23/2010 165 17 83 126 129 582 255
8/24/2010 161 17 86 186 143 657 255
8/25/2010 168 16 81 170 129 625 255
8/26/2010 170 18 91 183 144 621 255
8/27/2010 173 15 85 174 124 745 255
8/28/2010 173 16 85 159 115 657 255
8/29/2010 170 16 72 134 97 505 255
8/30/2010 156 21 98 210 162 717 255
8/31/2010 168 20 88 185 142 700 255

Note. Stdev: standard deviation. CV: coefficient of variation (Stdev/mean). PCat: product categories.
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Table 12 Stage 2 problems size, and MIP gap.

Instance-Day # Binary vars. # Continuous vars. # Constraints MIP gap [%]

8/1/2010 7,248 11,187 20,445 0.82
8/2/2010 8,875 10,502 18,579 1.01
8/3/2010 7,495 9,955 18,022 0.03
8/4/2010 9,865 12,034 21,419 0.02
8/5/2010 11,064 11,971 21,562 0.06
8/6/2010 18,033 18,302 32,181 0.79
8/7/2010 8,560 12,889 23,007 0.62
8/8/2010 10,274 13,947 25,103 0.83
8/9/2010 6,623 9,086 16,451 0.76
8/10/2010 5,428 7,984 14,693 0.74
8/11/2010 9,224 11,723 20,847 0.04
8/12/2010 7,429 10,498 19,016 0.96
8/13/2010 6,845 10,230 19,135 0.99
8/14/2010 7,378 10,322 19,130 1.00
8/15/2010 12,968 16,241 29,659 0.99
8/16/2010 5,106 7,942 14,159 0.28
8/17/2010 12,517 14,297 24,860 0.78
8/18/2010 8,532 10,894 20,022 0.99
8/19/2010 10,669 12,101 21,686 0.08
8/20/2010 21,332 21,495 37,548 1.37
8/21/2010 17,095 17,955 31,709 0.03
8/22/2010 4,176 6,470 12,615 0.98
8/23/2010 2,188 4,728 9,335 0.21
8/24/2010 12,350 14,600 25,657 0.26
8/25/2010 24,694 23,538 39,791 0.12
8/26/2010 20,861 21,196 36,292 0.24
8/27/2010 37,418 32,206 55,563 0.43
8/28/2010 23,462 22,058 38,624 0.32
8/29/2010 6,277 9,256 16,555 0.70
8/30/2010 8,980 11,744 20,954 0.78
8/31/2010 8,512 10,822 19,610 0.48

Note. MIP gap = ((MIP objective function - best LP bound objective function)/best LP
bound objective function)× 100.
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Table 13 Weighted average ratings (M1) and Value by day based on forecast ratings.

M1 Value
Day ORG OPT gain [%] ORG [$] OPT [$] gain [%]

8/1/2010 115,915,000 117,609,000 1.46 1,565,770 1,589,100 1.49
8/2/2010 84,954,200 86,191,100 1.46 1,190,980 1,207,240 1.37
8/3/2010 107,126,000 108,123,000 0.93 1,962,410 1,979,820 0.89
8/4/2010 99,418,400 100,947,000 1.54 1,541,040 1,563,640 1.47
8/5/2010 75,768,000 77,270,100 1.98 1,109,250 1,131,060 1.97
8/6/2010 73,366,900 75,414,800 2.79 1,192,450 1,221,150 2.41
8/7/2010 94,228,400 95,529,900 1.38 1,503,240 1,519,120 1.06
8/8/2010 98,232,000 100,735,000 2.55 1,691,920 1,723,760 1.88
8/9/2010 78,514,900 79,433,600 1.17 1,289,620 1,302,440 0.99
8/10/2010 106,816,000 107,852,000 0.97 1,773,440 1,793,060 1.11
8/11/2010 81,675,700 82,654,400 1.20 1,347,240 1,359,650 0.92
8/12/2010 76,324,400 77,427,200 1.44 1,320,000 1,339,410 1.47
8/13/2010 67,917,900 68,933,900 1.50 1,147,950 1,165,090 1.49
8/14/2010 87,648,000 90,476,000 3.23 1,445,980 1,489,430 3.00
8/15/2010 83,754,100 85,588,900 2.19 1,356,760 1,381,780 1.84
8/16/2010 76,467,100 77,322,700 1.12 1,223,040 1,237,260 1.16
8/17/2010 98,908,900 101,478,000 2.60 1,844,080 1,894,520 2.74
8/18/2010 86,515,300 88,296,800 2.06 1,479,870 1,502,280 1.51
8/19/2010 78,213,600 79,785,100 2.01 1,412,880 1,437,550 1.75
8/20/2010 66,027,300 69,624,400 5.45 1,084,500 1,142,620 5.36
8/21/2010 76,425,900 78,742,200 3.03 1,223,300 1,258,260 2.86
8/22/2010 66,274,700 67,104,600 1.25 1,105,080 1,118,590 1.22
8/23/2010 78,573,000 78,941,700 0.47 1,274,720 1,279,520 0.38
8/24/2010 111,999,000 114,717,000 2.43 2,028,790 2,088,610 2.95
8/25/2010 89,990,800 95,485,200 6.11 1,520,670 1,606,590 5.65
8/26/2010 97,527,000 100,115,000 2.65 1,805,710 1,843,780 2.11
8/27/2010 89,293,200 93,426,700 4.63 1,459,230 1,525,290 4.53
8/28/2010 84,572,300 87,770,200 3.78 1,269,710 1,324,050 4.28
8/29/2010 66,996,400 68,641,000 2.45 1,028,270 1,048,840 2.00
8/30/2010 88,940,200 90,928,100 2.24 1,378,660 1,406,970 2.05
8/31/2010 114,625,000 115,171,000 0.48 2,033,440 2,045,400 0.59

Note. ORG: original schedule. OPT: optimized schedule. gain = ((OPT-ORG)/ORG)×
100. We use a random scaling factor to maintain confidentiality, but the order of magnitudes

correspond to the true values.
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Table 14 Sum of Penalties by day.

Penalties M2+M3+M4+M5
ORG OPT ORG/OPT

1,609,370 0 -
6,093,750 556,003 10.96
5,387,620 142,321 37.86
9,428,160 226,893 41.55
2,687,760 0 -

11,860,200 798,251 14.86
2,399,360 14,316 167.61
3,546,980 0 -
4,968,830 186,559 26.63
6,248,010 332,281 18.80
5,823,790 198,591 29.33
3,373,700 0 -
2,462,360 219,410 11.22
4,063,760 234,747 17.31
4,324,200 215,280 20.09
3,749,290 0 -
2,438,150 44,884 54.32
2,538,320 266,903 9.51
2,385,700 0 -
2,496,930 0 -
3,313,990 68,886 48.11

741,317 0 -
2,863,230 0 -
3,418,260 151,616 22.55
2,680,790 0 -
1,791,720 0 -
3,753,100 0 -
3,712,180 0 -

982,697 0 -
3,153,530 19,800 159.27
1,484,170 0 -

Note. ORG: original schedule. OPT:
optimized schedule. We use a random

scaling factor to maintain confidentiality,

but the order of magnitudes correspond
to the true values.
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Table 15 Allocated Ratings and Value by day based on actual ratings.

M1 Value
Day ORG OPT gain [%] ORG [$] OPT [$] gain [%]

8/1/2010 120,469,000 121,577,000 0.92 1,651,300 1,674,730 1.42
8/2/2010 98,553,200 99,305,600 0.76 1,375,570 1,388,250 0.92
8/3/2010 109,442,000 110,609,000 1.07 2,173,350 2,196,640 1.07
8/4/2010 123,849,000 125,280,000 1.16 2,028,000 2,050,400 1.10
8/5/2010 159,841,000 161,165,000 0.83 2,817,310 2,832,800 0.55
8/6/2010 112,041,000 113,524,000 1.32 1,820,170 1,837,830 0.97
8/7/2010 124,519,000 125,322,000 0.64 1,987,650 1,996,780 0.46
8/8/2010 92,648,400 93,947,800 1.40 1,558,510 1,576,390 1.15
8/9/2010 85,535,900 86,291,600 0.88 1,440,120 1,456,780 1.16
8/10/2010 108,325,000 109,629,000 1.20 1,884,040 1,929,940 2.44
8/11/2010 92,348,500 92,280,000 -0.07 1,596,280 1,590,920 -0.34
8/12/2010 135,347,000 137,014,000 1.23 2,661,940 2,693,500 1.19
8/13/2010 90,576,700 91,241,600 0.73 1,547,220 1,552,710 0.35
8/14/2010 89,458,100 91,624,100 2.42 1,483,750 1,520,410 2.47
8/15/2010 84,433,800 84,591,700 0.19 1,377,600 1,380,390 0.20
8/16/2010 94,496,100 94,551,500 0.06 1,464,360 1,473,050 0.59
8/17/2010 121,118,000 122,386,000 1.05 2,317,580 2,354,000 1.57
8/18/2010 109,291,000 111,762,000 2.26 1,940,750 1,978,660 1.95
8/19/2010 140,016,000 140,878,000 0.62 2,754,810 2,781,890 0.98
8/20/2010 89,270,100 94,830,900 6.23 1,459,720 1,542,500 5.67
8/21/2010 71,132,400 73,196,100 2.90 1,166,750 1,191,750 2.14
8/22/2010 71,899,700 72,694,700 1.11 1,211,100 1,225,200 1.16
8/23/2010 93,019,200 93,484,400 0.50 1,559,620 1,567,760 0.52
8/24/2010 94,542,800 94,859,100 0.33 1,739,730 1,748,140 0.48
8/25/2010 95,303,100 101,850,000 6.87 1,726,650 1,821,010 5.46
8/26/2010 151,335,000 154,379,000 2.01 3,118,450 3,141,130 0.73
8/27/2010 105,478,000 106,425,000 0.90 1,697,640 1,708,100 0.62
8/28/2010 98,512,300 102,000,000 3.54 1,522,060 1,578,000 3.68
8/29/2010 74,459,300 75,820,100 1.83 1,159,240 1,165,810 0.57
8/30/2010 110,574,000 112,516,000 1.76 1,827,100 1,836,320 0.50
8/31/2010 139,638,000 139,636,000 0.00 2,530,300 2,527,880 -0.10

Note. ORG: original schedule. OPT: optimized schedule. gain = ((OPT-ORG)/ORG)×
100. We use a random scaling factor to maintain confidentiality, but the order of magnitudes

correspond to the true values. Actual ratings are obtained after the spots are aired.
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