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Abstract

The choice network revenue management model incorporates customer purchase behavior as
a function of the offered products, and is the appropriate model for airline and hotel network
revenue management, dynamic sales of bundles, and dynamic assortment optimization. The
optimization problem is a stochastic dynamic program and is intractable, and a linear program
approximation called choice deterministic linear program (CDLP ) is usually used to generate
dynamic controls. Recently a compact linear programming formulation of CDLP for the multi-
nomial logit (MNL) model of customer choice has been proposed. In this paper we obtain a
better approximation to the dynamic program than CDLP while retaining the appealing prop-
erties of a compact linear programming representation. Our formulation is based on the affine
relaxation of the dynamic program. We first show that the affine relaxation is NP-complete even
for a single-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive new
linear programs that approximate the dynamic programming value function provably better,
between the CDLP value and the affine relaxation, and often coming close to the latter in our
numerical experiments. We give extensions to the case with multiple customer segments where
choice by each segment is according to the MNL model. Finally we perform extensive numerical
comparisons on the various methods to evaluate their performance.

1 Introduction

Revenue management (RM) involves controlling the availability of products to customers who arrive
over time to purchase them. RM models incorporating customer choice behavior have received much
attention in recent years as the purchasing decision depends on the assortment of products made
available for sale. Therefore, decisions on what products to make available for sale (the offer set)
have to consider resource availabilities as well as estimates of customer purchase probabilities as a
function of the offer set.

In Network Revenue Management (NRM), the products consume multiple resources, and is
relevant for the airline, advertising, hotel and car rental industries. In the canonical airline example,
products correspond to itineraries while resources correspond to seat capacities on the flight legs;
for hotels, the products correspond to multi-night stays while resources are hotel rooms. The NRM
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problem can be formulated as a stochastic dynamic program. However, solving the optimality
equations and computing the value functions become intractable even for moderately sized problems.
We refer the reader to Talluri and van Ryzin [19] for background on NRM.

Considering the intractability of the NRM dynamic program, Gallego, Iyengar, Phillips, and
Dubey [6] and Liu and van Ryzin [11] proposed a linear-programming approximation called the
CDLP (Choice Deterministic Linear Program). The optimal objective function value of this linear
program gives an upper bound on the value function. Upper bounds are useful both for deriving
controls from them, as well as to assess the sub-optimality of policies. CDLP however, has a
drawback: the number of columns are exponential in the number of products, and so it has to be
solved using column generation. Liu and van Ryzin [11] show that the CDLP column generation
procedure is tractable for the multinomial logit (MNL) choice model with multiple customer segments
when the customers’ consideration sets do not overlap. More recently, Gallego, Ratliff, and Shebalov
[7] show that CDLP has a compact linear programming formulation under the MNL model with
disjoint consideration sets. On the other hand, if the consideration sets overlap, CDLP is intractable
even for the MNL model, as shown by Bront, Méndez-Dı́az, and Vulcano [3], Rusmevichientong,
Shmoys, Tong, and Topaloglu [16]. Related to this body of research, Zhang and Adelman [23]
propose an affine relaxation to the NRM dynamic program and show that it obtains a tighter upper
bound than CDLP .

This paper builds on these advances and makes the following research contributions:

1. We show that the affine relaxation of Zhang and Adelman [23] is NP-hard even for the single-
segment MNL model, arguably one of the simplest possible choice models. This motivates
solution methods that tighten the CDLP bound and remain tractable at least for the single-
segment MNL model.

2. We propose new, compact linear programming formulations that give a tighter bound on the
dynamic program value function than CDLP , improving upon the work of Gallego et al. [7].
Compact representations are attractive from an implementation perspective since it eliminates
the need for customized coding in the form of constraint-separation or column-generation
techniques. To our knowledge, these are the first tractable approximation methods that are
provably tighter than CDLP .

3. We show how our ideas can be extended to the mixture of multinomial logits (MMNL) model
that can approximate any random utility choice model arbitrarily closely; McFadden and Train
[12].

4. We propose control policies based on the new formulations and test their performance through
an extensive numerical study. We show that our methods can yield noticeable benefits both
in terms of tighter bounds and improved revenue performance.

Our computational experiments reveal that the proposed methods strike a good balance between
the improved quality of the bound versus the increase in solution time. An interesting observation is
that the revenue improvements from our methods typically exceed the corresponding improvements
in the upper bounds. Our methods obtains sharper value function approximations towards the end of
the selling horizon when capacity is relatively scarce. It turns out that the ability to make improved
decisions in such capacity constrained scenarios has a significant payoff.

The remainder of the paper is organized as follows: In §2 we review the literature and in §3 we
describe the choice NRM model, the notation, and the basic dynamic program. In §4 we describe
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the CDLP and the affine relaxation of the NRM dynamic program. Next, in §5 we show that the
affine relaxation is NP-hard even for the single-segment MNL model. We describe our first tractable
approximation method in §6 and build on it to obtain tractable, tighter approximations in §7. §8
discusses extensions to variants of the MNL model including the MMNL model. §9 contains our
computational study using the new formulations.

2 Literature review

As mentioned earlier, our paper advances the line of research on choice NRM initiated in Gallego
et al. [6], Liu and van Ryzin [11] and Zhang and Adelman [23]. These papers use the well-known
MNL choice model (see Ben-Akiva and Lerman [2]) which is attractive from an estimation and
optimization standpoint, and has been widely used in transportation modeling, operations and
marketing. For instance, van Ryzin and Mahajan [21] and Topaloglu [20] use the model in retail
assortment planning, and Feldman, Liu, Topaloglu, and Ziya [5] in an application in healthcare. Dai,
Ding, Kleywegt, Wang, and Zhang [4] describe a choice RM project at a major airline where they
find that optimization with the MNL model gives superior policies to more complicated models.

Under the MNL choice model, Liu and van Ryzin [11] show that column generation for CDLP
can be efficiently carried out if the consideration sets of the segments are disjoint (consideration sets
arise this way: the population is made of segments, and each segment is interested in only a subset
of products, its consideration set; for instance a segment may be interested in an itinerary and its
consideration set are the flights on this itinerary). Recently Gallego et al. [7] give an equivalent,
compact linear programming formulation of CDLP for the MNL choice model which eliminates
the need for column generation. On the other hand, if the consideration sets overlap, CDLP is
intractable even for the MNL model as shown in Bront et al. [3] and Rusmevichientong et al. [16].

There are a number of other approaches to obtain upper bounds on the NRM value function.
Zhang and Adelman [23] and Meissner and Strauss [13] use the linear programming approach to
approximate dynamic programming with Zhang and Adelman [23] using affine approximations, and
Meissner and Strauss [13] piecewise-linear approximations. Talluri [18] proposes a segment-based
concave program and Meissner, Strauss, and Talluri [14] show how to further strengthen this formu-
lation by adding equalities called product-cuts.

There are two important dimensions to assess the different approximation methods. One is the
quality of the upper bound and the other is computational tractability. On the quality dimension,
the approaches proposed by Zhang and Adelman [23] and Meissner and Strauss [13] are provably
tighter than CDLP . However, in this paper, we show that the affine relaxation (AF ) of Zhang and
Adelman [23] turns out to be intractable even for the MNL model with a single segment. Since
piecewise-linear value function approximations include affine functions as a special case, this implies
a similar hardness result for the approach proposed by Meissner and Strauss [13].

3 Problem formulation

A product is a specification of a price and the set of resources that it consumes. For example, a
product would be an itinerary-fare class combination for an airline network, where an itinerary is a
combination of flight legs; in a hotel network, a product would be a multi-night stay for a particular
room type at a certain price point.
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Time is discrete and the sales horizon is assumed to consist of τ intervals, indexed by t. The
sales horizon begins at time t = 1 and ends at t = τ ; all the resources perish instantaneously at
time τ + 1. We make the standard assumption that the time intervals are fine enough so that the
probability of more than one customer arriving in any single time period is negligible.

We let I denote the set of resources and J the set of products. We index resources by i and
products by j. We let fj denote the revenue associated with product j and use Ij ⊆ I to denote the
set of resources used by product j. We let 1[·] denote the indicator function, 1 if true and 0 if false
and 1[Ij ] denote the vector of resources used by product j, with a 1 in the ith position if i ∈ Ij and
a 0 otherwise. We use Ji ⊆ J to denote the set of products that use resource i.

In each period the firm offers a subset S of its products for sale, called the offer set. We write
i ∈ IS whenever there is a j ∈ S with i ∈ Ij ; that is, there is at least one product in the offer set S
that uses resource i.

We use superscripts on vectors to index the vectors (for example, the resource capacity vector
associated with time period t would be rt) and subscripts to indicate components (for example, the
capacity on resource i in time period t would be rti). Therefore, r1 = [r1i ] represents the initial
capacity on the resources and rt = [rti ] denotes the remaining capacity on the resources at the
beginning of time period t. The remaining capacity rti takes values in the set Ri = {0, . . . , r1i } and
R =

∏
iRi represents the state space at each time t.

3.1 Demand model

We have multiple customer segments, each with distinct purchase behavior. We let L denote the
set of customer segments. In each period a customer from segment l ∈ L arrives with probability λl
so that λ =

∑
l λl is the total arrival rate. Note that conditioned on a customer arrival, λl/λ is the

probability that the customer belongs to segment l.

Customer segment l has a consideration set Cl ⊆ J of products that it considers for purchase.
We assume this consideration set is known to the firm (by a previous process of estimation and
analysis). The choice probabilities of a segment-l customer are not affected by products not in its
consideration set. Given an offer set S, an arriving customer in segment l purchases a product j in
the set Sl = Cl ∩ S or leaves without making a purchase. The no-purchase option is indexed by 0
and is always present for the customer.

Within each segment, choice is according to the MNL model. The MNL model associates a
preference weight with each alternative including the no-purchase alternative. We let wlj denote the
preference weight associated with a segment-l customer for product j. Without loss of generality,
by suitably normalizing the weights, we set the no-purchase weight wl0 to be 1. The probability that
a segment-l customer purchases product j when S is the offer set is

P lj(S) =
wlj1[j∈Sl]

1 +
∑
k∈Sl

wlk
. (1)

The probability that the customer does not purchase anything is P l0(S) = 1/(1 +
∑
k∈Sl

wlk). We
note that the preference weights are inputs to our model; estimating them is outside the scope of
the paper. We refer the reader to Ben-Akiva and Lerman [2] for further background on this popular
choice model.

Given a customer arrival, and an offer set S, the probability that the firm sells j ∈ S is given by
Pj(S) =

∑
l
λl

λ P
l
j(S) and makes no sale with probability P0(S) = 1 −

∑
j∈S Pj(S). The expected
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sales for product j is therefore λPj(S) =
∑
l λlP

l
j(S), while 1 − λ + λP0(S) = 1 −

∑
j∈S λPj(S) is

the probability of no sales in a time period. Given an offer set S, Qli(S) =
∑
j∈Ji

P lj(S) denotes the
expected capacity consumed on resource i conditional on a segment-l customer arrival and Qi(S) =∑
l
λl

λ Q
l
i(S) denotes the expected capacity consumed on resource i conditional on a customer arrival.

Note that λQi(S) =
∑
l λlQ

l
i(S) gives the expected capacity consumed on resource i in a time period.

The revenue functions can be written as Rl(S) =
∑
j∈Sl

fjP
l
j(Sl) and R(S) =

∑
j∈S fjPj(S).

In what follows if we are considering a single-segment MNL model, we drop the subscript l from
the probabilities.

We assume that the arrival rates and choice probabilities are stationary. This is for brevity of
notation and all of our results go through with non-stationary arrival rates and choice probabilities.

3.2 Choice dynamic program

The dynamic program (DP) to determine optimal controls is as follows. Let Vt(r
t) denote the

maximum expected revenue to go, given remaining capacity rt at the beginning of period t. Then
Vt(r

t) must satisfy the Bellman equation

Vt(r
t) = max

S⊆S(rt)

∑
j∈S

λPj(S)
[
fj + Vt+1

(
rt − 1[Ij ]

)]
+ [λP0(S) + 1− λ]Vt+1

(
rt
) , (2)

where
S(r) =

{
j |1[i∈Ij ] ≤ ri ∀i

}
represents the set of products that can be offered given the capacity vector r. The boundary
conditions are Vτ+1(r) = Vt(0) = 0 for all r and for all t, where 0 is a vector of all zeroes.
V DP = V1(r

1) denotes the optimal expected total revenue over the sales horizon, given the initial
capacity vector r1.

3.3 Linear programming formulation of the dynamic program

The value functions can, alternatively, be obtained by solving a linear program (LP). The linear
programming formulation of (2) has a decision variable for each state vector in each period Vt(r)
and is as follows:

V DPLP = min
V

V1(r
1) (3)

(DPLP ) s.t. Vt(r) ≥
∑
j

λPj(S)
[
fj + Vt+1

(
r − 1[Ij ]

)
− Vt+1 (r)

]
+ Vt+1 (r)

∀ r ∈ R, S ⊆ S(r), t.

Both dynamic program (2) and linear program DPLP are computationally intractable, but linear
program DPLP turns out to be useful in developing value function approximation methods, as
shown in Zhang and Adelman [23].
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4 Approximations and upper bounds

In the following, we outline the two approximations studied in this paper. We first describe the
choice deterministic linear program and then outline the affine relaxation method.

4.1 Choice deterministic linear program (CDLP )

The choice deterministic linear program (CDLP ) proposed in Gallego et al. [6] and Liu and van
Ryzin [11] is a certainty-equivalence approximation to (2). We write CDLP as the following LP:

V CDLP = max
h

∑
t

∑
S

λR(S)hS,t

(CDLP ) s.t.
t∑

k=1

∑
S

λQi(S)hS,k ≤ r1i ∀i, t (4)∑
S

hS,t = 1 ∀t (5)

hS,t ≥ 0 ∀S, t.

The decision variable hS,t can be interpreted as the frequency with which set S (including the empty
set) is offered at time period t . The first set of constraints ensure that the total expected capacity
consumed on resource i up until time period t does not exceed the available capacity. Note that
since hS,t ≥ 0, constraints (4) are redundant except for the last time period. Still, this expanded
formulation is useful when we compare CDLP with other approximation methods. The second set
of constraints states that the sum of the frequencies adds up to 1.

The dual of CDLP turns out to be useful in our analysis. Associating dual variables γ =
{γi,t | ∀i, t} with constraints (4) and β = {βt | ∀t} with constraints (5), the dual of CDLP is

V dCDLP = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(dCDLP ) s.t. βt +
∑
i

(
τ∑
k=t

γi,k

)
λQi(S) ≥ λR(S) ∀t, S (6)

γi,t ≥ 0 ∀i, t.

Liu and van Ryzin [11] show that the optimal objective function value of CDLP , V CDLP is an
upper bound on V DPLP . Besides giving an upper bound on the value function, CDLP can also
be used to construct different heuristic control policies. Let γ̂ = {γ̂i,t | ∀i, t} denote the optimal
values of the dual variables associated with constraints (4), we interpret γ̂i,t as giving the value of
an additional unit of capacity on resource i from time period t to t + 1. With this interpretation,∑τ
s=t γ̂i,s gives the marginal value of capacity on resource i at time period t. Zhang and Adelman

[23] approximate the value function as

V̂t(r) =
∑
i

(
τ∑
s=t

γ̂i,s

)
ri (7)
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and if rt is the vector of remaining resource capacities at time t, solve the problem

max
S⊆S(rt)

∑
j∈S

λPj(S)
[
fj + V̂t+1

(
rt − 1[Ij ]

)]
+ [λP0(S) + 1− λ] V̂t+1

(
rt
) , (8)

and use the policy of offering the set that achieves the maximum in the above optimization problem.

The number of decision variables in CDLP is exponential in the number of products and so it
has to be solved using column generation. The tractability of column generation depends on the
underlying choice model. Liu and van Ryzin [11] show that the column generation procedure can be
efficiently carried out when choice is according to the MNL model and the consideration sets of the
different segments do not overlap. That is, we have Cl ∩ Cm = ∅ for segments l and m. Under the
same set of assumptions, Gallego et al. [7] further show that CDLP has the following equivalent,
compact formulation

V SBLP = max
x

∑
t

∑
l

∑
j∈Cl

λlfjx
l
j,t

(SBLP ) s.t.
∑
t

∑
l

∑
j∈Ji∩Cl

λlx
l
j,t ≤ r1i ∀i, t (9)

xl0,t +
∑
j∈Cl

xlj,t = 1 ∀l, t

xlj,t
wlj

− xl0,t ≤ 0 ∀l, j ∈ Cl, t

xl0,t, x
l
j,t ≥ 0 ∀l, j, t.

In the above sales-based linear program (SBLP ), the decision variables xlj,t can be interpreted as
the sales rate for product j at time t. Note that SBLP is a compact formulation since the number
of constraints and decision variables is polynomial in the number of products and resources. On the
other hand, if the consideration sets overlap, Bront et al. [3] and Rusmevichientong et al. [16] show
that the CDLP column generation is NP-complete even under the MNL choice model.

4.2 Affine relaxation

The second approximation method we consider is the affine relaxation, where the value function is
approximated as Vt(r) = θt +

∑
i Vi,tri. Note that Vi,t can be interpreted as the marginal value of

capacity on resource i at time t. Substituting this value function approximation into the formulation
DPLP we get the affine relaxation LP

V AF = min
θ,V

θ1 +
∑
i

Vi,1r
1
i

(AF ) s.t. θt +
∑
i

Vi,tri ≥
∑
j

λPj(S)

fj − ∑
i∈Ij

Vi,t+1

+ θt+1 +
∑
i

Vi,t+1ri

∀ r ∈ R, S ⊆ S(r), t
θt ≥ 0, Vi,t ≥ 0 ∀i, t

with the boundary conditions θτ+1 = 0, Vi,τ+1 = 0. Zhang and Adelman [23] show that the optimal
objective function value V AF is an upper bound on the value function and that there exists an
optimal solution (θ̂, V̂ ) of AF that satisfies V̂i,t − V̂i,t+1 ≥ 0 for all i and t.
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While the number of decision variables in AF is manageable, the number of constraints is ex-
ponential both in the number of products as well as the number of resources. Vossen and Zhang
[22] use Dantzig-Wolfe decomposition to derive a reduced, equivalent formulation of AF , where the
number of constraints is exponential only in the number of products.

We give an alternative, simpler proof of the reduction below. The analysis we present also turns
out to be useful in the development of our tractable solution methods later. We make a change of
variables βt = θt − θt+1, and γi,t = Vi,t − Vi,t+1 and write AF equivalently as

min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

s.t. βt +
∑
i

γi,tri +
∑
j

λPj(S)

∑
i∈Ij

τ∑
k=t+1

γi,k

− fj

 ≥ 0 ∀r ∈ R, S ⊆ S(r), t (10)

γi,t ≥ 0 ∀i, t,

where we use the fact that Vi,t =
∑τ
k=t γi,k and so

∑τ
k=t γi,k can be interpreted as the marginal

value of capacity on resource i at time t. Note that the nonnegativity constraint on γi,t is without
loss of generality, since there exists an optimal solution to AF that satisfies Vi,t − Vi,t+1 ≥ 0.

Now, constraints (10) can be written as

min
r∈R,S⊆S(r)

βt +∑
i

γi,tri +
∑
j

λPj(S)

∑
i∈Ij

τ∑
k=t+1

γi,k

− fj

 ≥ 0 (11)

for all t. Since γi,t ≥ 0, the coefficient of ri in minimization problem (11) is nonnegative, and we
can assume ri ∈ {0, 1} in the minimization (as larger values of ri would be redundant in S ⊆ S(r)
and would only increase the objective value). Moreover, since γi,t ≥ 0, for any set S, we have ri = 0
for i ̸∈ IS . On the other hand, feasibility requires we have ri = 1 for i ∈ IS . Therefore, (11) can be
written as

min
S

βt +∑
i

1[i∈IS ]γi,t +
∑
j

λPj(S)

∑
i∈Ij

τ∑
k=t+1

γi,k

− fj

 ≥ 0.

and we can write AF equivalently as

V RAF = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(RAF ) s.t. βt +
∑
i

1[i∈IS ]γi,t +
∑
i

[(
τ∑

k=t+1

γi,k

)
λQi(S)

]
≥ λR(S) ∀t, S (12)

γi,t ≥ 0 ∀i, t.

Notice that the number of constraints in the reduced formulation RAF is an order of magnitude
smaller than AF . Taking the dual of RAF by associating dual variables hS,t with constraints (12),
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we get

V dRAF = max
h

∑
t

∑
S

λR(S)hS,t

(dRAF ) s.t.
∑
S

(
t−1∑
k=1

λQi(S)hS,k + 1[i∈IS ]hS,t

)
≤ r1i ∀i, t∑

S

hS,t = 1 ∀t

hS,t ≥ 0 ∀S, t.

The above arguments imply that

Proposition 1. (Vossen and Zhang [22]) V AF = V RAF = V dRAF .

We close this section with two remarks. First, in addition to giving an upper bound on the
optimal expected total revenue, the affine relaxation can also be used to construct heuristic control
policies. Letting (β̂, γ̂), with β̂ = {β̂t | ∀t} and γ̂ = {γ̂i,t | ∀i, t}, denote an optimal solution to
RAF , we use

∑τ
s=t γ̂i,k to approximate the marginal value of capacity on resource i at time t. We

approximate Vt(r) using (7) and solve problem (8) using this value function approximation to decide
on the set of products to be offered at time period t. Second, Zhang and Adelman [23] show that the
upper bound obtained by AF is tighter than CDLP . In that sense, AF is a better approximation
than CDLP . At the same time, it is important to understand the computational effort required by
AF to obtain a tighter bound. We explore this question in the following section.

5 Tractability of the affine relaxation for MNL with a single
segment

In this section, we focus on the tractability of the affine relaxation for the single-segment MNL
model. We restrict our attention to the single-segment MNL since it is one of the few cases where
CDLP is tractable. We show that the affine relaxation is NP-complete even for this simple choice
model.

Since we restrict attention to the single-segment MNL model, we drop the segment superscript l
for ease of notation. So we write the preference weights as wj , and the choice probabilities, expected
resource consumptions and expected revenues as

Pj(S) =
1[j∈S]wj

1 +
∑
k∈S wk

Qi(S) =

∑
j∈Ji∩S wj

1 +
∑
j∈S wj

R(S) =

∑
j∈S fjwj

1 +
∑
j∈S wj

.

Since RAF has an exponential number of constraints, we have to generate on the fly constraints
(12) violated by a solution. Following the result of Grötschel, Lovász, and Schrijver [8] polynomial-
solvability of a linear program is equivalent to polynomial-time generation of violated constraints.

Substituting the MNL choice probabilities, expected resource consumptions and expected rev-
enues into constraint (12), we obtain

βt + γS,t +
∑
i

[(
τ∑

k=t+1

γi,k

)
λ

∑
j∈Ji∩S wj

1 +
∑
j∈S wj

]
≥ λ

∑
j∈S fjwj

1 +
∑
j∈S wj
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where
γS,t =

∑
i

1[i∈IS ]γi,t.

Multiplying both sides by the positive quantity 1+
∑
j∈S wj and simplifying, constraint (12) of RAF

can be equivalently written as

βt ≥ −γS,t

1 +
∑
j∈S

wj

−
∑
j∈S

ζj,t(β, γ), (13)

where

ζj,t(β, γ) = wj

βt + λ

∑
i∈Ij

τ∑
k=t+1

γi,k

− fj

 .
Since the constraint has to be satisfied for every S and t, we have βt ≥ ΠAFt (β, γ) for all t, where

ΠAFt (β, γ) = max
S

−γS,t

1 +
∑
j∈S

wj

−
∑
j∈S

ζj,t(β, γ)

 (14)

and the affine relaxation constraint (12) can be equivalently written as

βt ≥ ΠAFt (β, γ) ∀t. (15)

Generating constraints on the fly involves checking, given a set of values (β, γ), if constraint
(13) is satisfied for all S. If not, we add the violated constraint to the LP. In other words, the
RAF separation problem at time t involves solving optimization problem (14) and determining if
βt ≥ ΠAFt (β, γ). If βt ≥ ΠAFt (β, γ), then constraint (13) is satisfied for all S at time t. Otherwise, the
set Ŝ which attains the maximum in problem (14) violates the constraint, and we add the constraint
for set Ŝ to the LP. Therefore, solving problem (14) in an efficient manner is key to separating
constraints (13) efficiently. Proposition 2 below states that the affine relaxation separation problem
for MNL with a single segment, as given in (13) is NP-complete.

Proposition 2. The following problem is NP-complete:
Input: wj ≥ 0, 1 ≥ λ ≥ 0, fj ≥ 0, and values βt and γi,t ≥ 0.
Question: Is there a set S that violates (13)?

Proof
Our reduction is from the NP-complete maximum edge biclique problem (Peeters [15]). We state
first the definitions and notation in the problem.

The problem is defined on an undirected, bipartite graph G = (V1 ∪ V2, E), with |V2| = m2. A
(k1, k2)-biclique is a complete bipartite subgraph of G, i.e., a subgraph consisting of a pair (X,Y )
of vertex subsets X ⊆ V1 and Y ⊆ V2, |X| = k1 > 1, |Y | = k2 > 1, such that there exists an edge
(x, y) ∈ E, ∀x ∈ X, y ∈ Y . Note that the number of edges in the biclique is k1k2.

Maximum edge biclique problem (MBP)
Input: A bipartite graph G = (V1 ∪ V2, E) and a positive integer p.
Question: Does G contain a biclique with at least p edges.

10



Consider the complement bipartite graph Ḡ of G defined on the same vertex set as G, where
there is an edge e = (u, v) in graph Ḡ if and only if there is no edge between u and v in G.

Define a cover CS ⊆ V2 of a subset S ⊆ V1 in the complement graph Ḡ, as CS = {v ∈ V2 | ∃e =
(u, v) ∈ Ḡ, u ∈ S}. By definition if CS is a cover of some subset S, it means there is no edge from
any u ∈ S to any v ∈ V2\CS in the graph Ḡ. Hence, as G is a complement of Ḡ, there is an edge
from every u ∈ S to every v ∈ V \C(S) in G, thus representing a biclique between S and V \C(S) in
the graph G.

Now we set up the reduction for the separation for (13). In equation (13), for each u ∈ V1, we

associate a product j with fj = m2
(p+1)
p and wj = m2. For each v ∈ V2, we associate a resource i

with weights γi,t =
1
p and γi,k = 0, k > t. The resource consumptions of the products j are defined

from the graph Ḡ: j contains all the i such that there is an edge between the associated nodes in
Ḡ. We let λ = 1, βt = m2.

We now claim that G has a (k1, k2)-biclique with k1k2 > p if and only if there is a set S that
violates the inequality (13) for this instance.

With the above values, S ⊆ V1, with |S| = k1, |C(S)| = m2 − k2 violates (13) if and only if

m2 −
∑
j∈S

(p+1)
p (m2)

2

(1 +
∑
j∈Sm2)

< −
∑

i∈C(S)

1

p

or,

m2 −
(p+ 1)m2k1

p
(

1
m2

+ k1

) < − (m2 − k2)

p

or multiplying both sides by the positive number p( 1
m2

+ k1),

m2p

(
1

m2
+ k1

)
− (p+ 1)m2k1 < −(m2 − k2)

(
1

m2
+ k1

)
or,

p < − (m2 − k2)

m2
+ k2k1.

The term 0 < (m2−k2)
m2

< 1 implies, if and only if

p < k2k1.

2

Therefore, even though the affine relaxation tightens the CDLP bound, it comes at a significant
cost. This motivates the solution method that we propose in the following section, which tightens
the CDLP bound while remaining tractable.

6 Weak affine relaxation

In this section we propose our first tractable approximation method that tightens the CDLP bound.
We also show that our approximation method can, in fact, be formulated as a compact LP. In our

11



initial development, we restrict attention to the single-segment MNL choice model. We emphasize
that this is only for clarity of exposition. In §8 we show how the ideas can be readily extended to
more realistic variants of the MNL model that consider multiple customer segments. Moreover, all
of the test problems in our computational experiments involve multiple customer segments with and
without overlapping consideration sets.

6.1 Preliminaries

All of our approximation methods involve solving an optimization problem of the form minβ,γ
∑
t βt+∑

t

∑
i γi,tr

1
i subject to the constraints βt ≥ Πt(β, γ), where Πt(·, ·) is a scalar function of β =

{βt | ∀t} and γ = {γi,t | ∀i, t}. The following observation is useful in comparing the upper bounds
obtained by the different approximation methods.

Lemma 1. Let

V I = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(I) s.t. βt ≥ ΠIt (β, γ) ∀t
γi,t ≥ 0 ∀i, t,

and let

V II = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(II) s.t. βt ≥ ΠIIt (β, γ) ∀t
γi,t ≥ 0 ∀i, t.

If ΠIt (β, γ) ≤ ΠIIt (β, γ) for all t, then V I ≤ V II .

Proof
The proof follows by noting that a feasible solution to problem (II) is also feasible to problem (I)
and both optimization problems have the same objective function.

2

6.2 CDLP vs. AF for single-segment MNL

We begin by comparing the CDLP and AF separation problems for the single-segment MNL model.
For this choice model, the CDLP constraints can be separated efficiently, while the AF separation
problem is intractable. Comparing the CDLP and AF separation problems helps us identify the
difficult term in the affine relaxation. Replacing this difficult term in the AF separation problem
with something more tractable yields our approximation method.

Using the single-segment MNL formulas for the expected resource consumptions and expected
revenues, the CDLP dual constraint (6) can be written as

βt ≥ −
∑
j∈S

wj

βt + λ

∑
i∈Ij

τ∑
k=t

γi,k

− fj

 ∀t, S

12



which looks similar to the right-hand-side of (13) except that the inner summation over k runs from
t instead of t+ 1. To make the comparison with AF easier, we rewrite the above constraint as

βt ≥ ΠCDLPt (β, γ) ∀t (16)

where

ΠCDLPt (β, γ) = max
S

−λ
∑
j∈S

wj

∑
i∈Ij

γi,t

−
∑
j∈S

ζj,t(β, γ)

 . (17)

Since 0 ≤ λ ≤ 1, and γS,t =
∑
i 1[i∈IS ]γi,t ≥

∑
i∈Ij

γi,t ≥ 0 for all j ∈ S, we have

γS,t

1 +
∑
j∈S

wj

 ≥ λ
∑
j∈S

wj

∑
i∈Ij

γi,t

 .

Therefore ΠAFt (β, γ) ≤ ΠCDLPt (β, γ) and by Lemma 1, V AF ≤ V CDLP , which gives an alternative
proof of the AF bound being tighter than the CDLP bound. More importantly, the comparison
hints at how we can obtain tractable relaxations that are tighter than CDLP .

6.3 A tractable approximation

We are now ready to describe our first tractable approximation method, which we refer to as weak
affine relaxation (wAR). The difficult term in (14) is the γS,t(1+

∑
j∈S wj), and CDLP is tractable

as it replaces this by λ
∑
j∈S wj(

∑
i∈Ij

γi,t). We instead replace the γS,t(1 +
∑
j∈S wj) term in (14)

with γS,t +
∑
j∈S wj(

∑
i∈Ij

γi,t) and solve the linear program

V wAR = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(wAR) s.t. βt ≥ ΠwARt (β, γ) ∀t (18)

γi,t ≥ 0 ∀i, t,

where

ΠwARt = max
S

−γS,t −
∑
j∈S

wj

∑
i∈Ij

γi,t

−
∑
j∈S

ζj,t(β, γ)

 . (19)

Proposition 3 below shows that wAR obtains an upper bound on the value function that is
weaker than AF but stronger than CDLP . Kunnumkal and Talluri [9] show that it also gives a
tighter upper bound than by working with a continuous relaxation of ΠAFt (β, γ).

Proposition 3. V AF ≤ V wAR ≤ V CDLP .

Proof
The proof follows by noting that

γS,t

1 +
∑
j∈S

wj

 ≥ γS,t +
∑
j∈S

wj

∑
i∈Ij

γi,t

 ≥ λ
∑
j∈S

wj

∑
i∈Ij

γi,t

 .
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Therefore ΠAFt (β, γ) ≤ ΠwARt (β, γ) ≤ ΠCDLPt (β, γ) and the result now follows from Lemma 1.
2

In the remainder of this section, we show that the weak affine relaxation upper bound, V wAR,
can be obtained in a tractable manner; moreover we show that the weak affine relaxation LP can,
in fact, be reformulated as a compact linear program where the number of variables and constraints
is polynomial in the number of products and resources.

Observe that solving problem (19) in an efficient manner is key to separating the weak affine
relaxation constraints efficiently. Therefore, we focus on solving optimization problem (19). Intro-
ducing decision variables qi,t and uj,t, respectively, to indicate if resource i and product j are open
at time t, problem (19) can be formulated as the integer program

ΠwARt (β, γ) = max
q,u

−
∑
i

γi,tqi,t −
∑
j

ζj,t(β, γ) + wj

∑
i∈Ij

γi,t

uj,t (20)

s.t. uj,t − qi,t ≤ 0 ∀i ∈ Ij , ∀j (21)

qi,t ≤ 1 ∀i (22)

uj,t ≥ 0, integer ∀j. (23)

Note that the first constraint ensures that a product is open only if all the resources it uses are open.

Now, observe that the constraint matrix of the above integer program has exactly one +1 and
one −1 coefficient in each row, and hence is totally unimodular. So we can ignore the integer
restriction and solve (20)–(23) exactly as a linear program. In fact, problem (20)–(23) can also be
solved combinatorially as a flow problem: the dual of the LP can be transformed to be a network
flow problem on a bipartite graph with one set of nodes representing products and the other side
resources and edges representing product-resource incidence, and flow from a source to a sink node,
each connected to the product and resource nodes respectively; fast algorithms of Ahuja, Orlin,
Stein, and Tarjan [1] can then be used to solve the problem in time O(|I||E|+min(|I|3, |I|2

√
|E|))

where |I| is the number of resources and |E| is the number of edges in this graph. Therefore, problem
(20)–(23) can be solved efficiently and separating the wAR constraints is tractable.

We next show that wAR can be formulated as a compact LP eliminating the need for generating
constraints on the fly. Since the separation problem can be solved as a LP where all the fixed values
(β, γ) appear in the objective function only, we can fold it into the original LP as follows: First take
the dual of (20)–(23) with dual variables πi,j,t corresponding to (21), and ψi,t to (22):

ΠwARt (β, γ) = min
π,ψ

∑
i

ψi,t

s.t.
∑
i∈Ij

πi,j,t ≥ −

ζj,t(β, γ) + wj

∑
i∈Ij

γi,t

 ∀j

−
∑
j∈Ji

πi,j,t + ψi,t = −γi,t ∀i

πi,j,t, ψi,t ≥ 0 ∀i, j ∈ Ji.
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Then use the second constraint in the above LP to eliminate the variable ψi,t to write the dual as

ΠwARt (β, γ) = min
π

∑
i

∑
j∈Ji

πi,j,t − γi,t


s.t.

∑
i∈Ij

πi,j,t ≥ −

ζj,t(β, γ) + wj

∑
i∈Ij

γi,t

 ∀j (24)

∑
j∈Ji

πi,j,t ≥ γi,t ∀i (25)

πi,j,t ≥ 0 ∀i, j ∈ Ji.

Now we fold in the above LP formulation of ΠwARt (β, γ) into constraints (18) and write wAR
equivalently as

V wAR = min
β,γ,π

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

s.t. βt ≥
∑
i

∑
j∈Ji

πi,j,t − γi,t

 ∀t

(24), (25)∀t
γi,t, πi,j,t ≥ 0 ∀i, j ∈ Ji, t.

The size of the above LP is polynomial in the number of resources and products. Hence, not only
is wAR stronger than CDLP , it is also tractable and has a compact formulation. Notice that this
formulation would have been hard to derive and justify without the line of reasoning starting from
AF .

The dual of the above LP gives more insight into the weak affine relaxation. We get the dual LP
as

V wAR = max
x,ρ

∑
t

∑
j

λfjxj,t

(dwAR) s.t. x0,t +

t−1∑
s=1

∑
j∈Ji

λxj,s +
∑
j∈Ji

xj,t − ρi,t ≤ r1i ∀i, t

x0,t +
∑
j

xj,t = 1 ∀t

xj,t
wj

− x0,t + ρi,t ≤ 0 ∀i, j ∈ Ji, t

x0,t, xj,t, ρi,t ≥ 0 ∀i, j, t.

If we interpret xj,t as the sales rate for product j at time t and x0,t − ρi,t as the resource level no-
purchase rate at time t, then we can view wAR as a refinement of SBLP of Gallego et al. [7], where
the sales rates at each time period are modulated by the expected remaining resource capacities.
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7 Tighter, tractable relaxations

The weak affine relaxation is based on isolating the difficult term in the affine relaxation and replacing
it with a simpler, more tractable term. In this section, we build on this idea and propose two
tractable approximation methods that further tighten the wAR bound. We again restrict attention
to the single-segment MNL model to reduce notational overhead. In §8, we describe extensions to
multi-segment variants of the MNL model.

7.1 Weak affine relaxation+ (wAR+)

We describe a simple way to tighten the wAR bound, while retaining the compact formulation.
Associating decision variables qi,t and uj,t, respectively, to indicate if resource i and product j are
open, the AF separation problem (14) can be written as

ΠAFt (β, γ) = max
q,u

−
∑
i

γi,tqi,t

1 +
∑
j

wjuj,t

−
∑
j

ζj,t(β, γ)uj,t

s.t. (21), (22), (23).

Now wAR replaces the product term qi,tuj,t for j /∈ Ji in the first summation with 0 and since
qi,tuj,t ≥ 0, we have ΠAFt (β, γ) ≤ ΠwARt (β, γ). Noting that qi,tuj,t ≥ qi,t + uj,t − 1, we propose
replacing the right hand side of constraints (15) with

ΠwAR
+

t (β, γ) = max
q,u

−
∑
i

γi,tqi,t −
∑
i

∑
j /∈i

γi,twjχi,j,t −
∑
j

ζj,t(β, γ) + wj

∑
i∈Ij

γi,t

uj,t
s.t. (21), (22)

χi,j,t ≥ qi,t + uj,t − 1 ∀i, j /∈ i

uj,t, χi,j,t ≥ 0 ∀j, i /∈ Ij .

The following lemma is immediate.

Lemma 2. ΠAFt (β, γ) ≤ ΠwAR
+

t (β, γ) ≤ ΠwARt (β, γ).

Therefore, we replace the right hand side of constraints (15) with ΠwAR
+

t (β, γ) and solve the LP

V wAR
+

= min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(wAR+) s.t. βt ≥ ΠwAR
+

t (β, γ) ∀t (26)

γi,t ≥ 0 ∀i, t.

We refer to this method as weak affine relaxation+ (wAR+). Lemma 2 together with Lemma 1

implies that V AF ≤ V wAR
+ ≤ V wAR. Therefore, wAR+ further tightens the wAR bound. Note

however that the wAR+ separation problem can have as many as |I||J | additional constraints
compared to wAR. Still, the wAR+ separation problem involves solving a linear program and hence
is tractable. Moreover, it is possible to obtain a compact formulation of wAR+ by following the
steps in §6.3; we omit the details.
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7.2 A hierarchical family of relaxations

In this section we show how to construct a hierarchical family of relaxations that at the highest
level (level-n, the number of products) gives us the affine relaxation. Naturally, because of the NP-
hardness of solving the affine relaxation, we cannot expect tractability, and so we concentrate on
small levels. The level-1 relaxation already turns out to be a tighter relaxation than wAR. While
the level-1 relaxation separation problem can be solved in a tractable manner, a potential drawback
is that, unlike wAR and wAR+, it cannot be folded into the original problem to yield a compact
formulation.

For simplicity we describe the level-1 formulation and remark on how it extends to a hierarchy
of relaxations. In the level-1 relaxation, which we refer to as hierarchical affine relaxation (hAR),
we replace the γS,t(1+

∑
j∈S wj) term in (14) with γS,t+(

∑
j∈S wj)(maxj′∈S

∑
i∈Ij′

γi,t) and solve

the LP

V hAR = min
β,γ

∑
t

βt +
∑
t

∑
i

γi,tr
1
i

(hAR) s.t. βt ≥ ΠhARt (β, γ) ∀t (27)

γi,t ≥ 0 ∀i, t,

where

ΠhARt = max
S

−γS,t −

∑
j∈S

wj

max
j′∈S

∑
i∈Ij′

γi,t

−
∑
j∈S

ζj,t(β, γ)

 .

(28)

We have the following lemma.

Lemma 3. ΠAFt (β, γ) ≤ ΠhARt (β, γ) ≤ ΠwARt (β, γ).

Proof
By definition, we have Ij ⊆ IS for all j ∈ S. Therefore, γS,t =

∑
i∈IS

γi,t ≥
∑
i∈Ij

γi,t for all

j ∈ S and so γS,t ≥ maxj∈S
∑
i∈Ij

γi,t. The proof now follows by noting that γS,t

(
1 +

∑
j∈S wj

)
≥

γS,t +
(∑

j∈S wj

)(
maxj′∈S

∑
i∈Ij′

γi,t

)
≥ γS,t +

∑
j∈S wj

(∑
i∈Ij

γi,t

)
.

2

Lemma 3 together with Lemma 1 implies that V AF ≤ V hAR ≤ V wAR. Therefore, hAR obtains
a tighter bound than wAR.

Next, we show that hAR separation problem (28) can be solved in a tractable manner. Associ-
ating binary decision variables qi,t and uj,t, respectively, to indicate if resource i and product j are
open, problem (28) can be written as

ΠhARt (β, γ) = max
q,u

−
∑
i

γi,tqi,t −

∑
j

wjuj,t

max
j′

∑
i∈Ij′

γi,tuj′,t

−
∑
j

ζj,t(β, γ)uj,t

s.t. (21)− (23).

Although the above optimization problem has a nonlinear objective function, we can solve it through
a sequence of linear programs in the following manner. We fix a product ĵ as the one achieving the
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maximum value of maxj′ γi,tuj′,t. Since ĵ achieves the maximum value, we must have uĵ,t = 1 and

uj,t = 0 for j with
∑
i∈Ij

γi,t >
∑
i∈Iĵ

γi,t. Letting Ĵĵ =
{
j |
∑
i∈Ij

γi,t >
∑
i∈Iĵ

γi,t

}
, we solve the

following linear integer program for product ĵ:

ΠhAR,ĵt (β, γ) = max
q,u

−
∑
i

γi,tqi,t −
∑
j

ζj,t(β, γ) + wj

∑
i∈Iĵ

γi,t

uj,t
s.t. (21), (22)

uĵ,t = 1

uj,t = 0 ∀j ∈ Ĵĵ
uj,t ≥ 0 integer ∀j ∈ J \Ĵĵ .

Since the constraint matrix is totally unimodular, we can solve the above linear integer program
equivalently as a linear program. So we solve the linear program for each product ĵ ∈ J and obtain

ΠhARt (β, γ) = maxĵ∈J ΠhAR,ĵt (β, γ).

Since problem (28) can be solved in a tractable manner, separating the hAR constraints is
tractable, and hAR can be solved in polynomial time by the ellipsoid method. However, unlike
wAR+, hAR does not seem to have a compact linear programming formulation. This is because the
set Ĵĵ depends on the values of the γ’s in a nonlinear fashion and the duality argument in §6.3 that
we used to fold the separation problem back into the original LP does not hold. On the other hand,
an appealing feature of hAR is that its separation problem has fewer number of decision variables
and constraints than wAR+.

Remark: One can get further relaxations by considering pairs of elements j′, j
′′
for a level-2 relax-

ation (or triples for level-3, and so on) such that we find the offer set S that maximizes

−

1 +
∑
j∈S

wj


 max
{j′,j′′∈S}

∑
i∈I{j′,j′′ }

γi,t

 .
In this way, we can control the degree of approximation to the affine relaxation. We limit our
numerical results to fixing a single element j′.

8 Extensions

In this section we describe how to extend the weak affine relaxation of §6 to variants of the MNL
model (the development for wAR+ and hAR is similar). In §8.1 we consider the MNL choice model
with multiple customer segments and disjoint consideration sets. In §8.2 we consider the case where
the consideration sets of the different segments may overlap. This model, also referred to as the
mixture of multinomial logits (MMNL), is a rich choice model that can approximate any random
utility choice model arbitrarily closely; McFadden and Train [12]. It is also possible to extend the
weak affine relaxation idea to the general attraction model of Gallego et al. [7] in a transparent
manner. Kunnumkal and Talluri [9] show how the same ideas can be extended to the nested-logit
choice model.
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8.1 Multiple segments with disjoint consideration sets

Now we consider the case where the total demand is comprised of demand from multiple customer
segments. The consideration sets of the different segments are disjoint and so we have Cl ∩ Cm = ∅
for segments l and m. We note that the case of disjoint consideration sets for the segments is one of
the few known cases where the CDLP formulation is tractable. We describe below how wAR can
be extended to tighten the CDLP bound in a tractable manner. The key idea is to look at the AF
separation problem for each customer segment, which again turns out to be intractable. We apply
the ideas from the single-segment case to get a tractable relaxation.

Let Il = {i ∈ I | ∃j ∈ Cl and j ∈ Ji} and Li = {l ∈ L | i ∈ Il}. We can interpret Il as the set of
resources that are used by segment l and Li as the set of segments that use resource i.

Now consider the separation problem for AF . Using λQi(S) =
∑
l λlQ

l
i(Sl) and λR(S) =∑

l λlR
l(Sl), where Sl = S ∩ Cl, constraint (12) can be written as

βt +
∑
i

1[i∈IS ]γi,t +
∑
i

[(
τ∑

k=t+1

γi,k

)∑
l

λlQ
l
i(S)

]
≥
∑
l

λlR
l(S). (29)

We first split this constraint into l separate constraints, one for each segment, by introducing variables
βl,t. The constraint for segment l at time t is that

βl,t +
∑
i∈Il

1[i∈ISl ]
γi,t

λl∑
l′∈Li

λl′
+
∑
i

[(
τ∑

k=t+1

γi,k

)
λlQ

l
i(Sl)

]
≥ λlR

l(Sl) (30)

for each Sl = S ∩Cl. The proof of Proposition 4 below shows that the segment level constraints (30)
imply (29) and that we obtain a looser upper bound by separating over (30) instead of (29).

We observe that the segment level constraints (30) have the same form as constraints (12) in the
single-segment case, and are therefore hard to separate. So we use the same relaxation as we did for
the single-segment case to obtain a tractable separation problem at the segment level:

ΠswARl,t (β, γ) = max
q,u

−
∑
i∈Il

λlγi,t∑
l′∈Li

λl′
qi,t

−
∑
j∈Cl

wlj

βl,t + λl

∑
i∈Ij

τ∑
k=t+1

γi,k

− fj +
∑
i∈Ij

γi,t∑
l′∈Li

λl′

uj,t
s.t. (21)− (23).

We replace constraint (30) with βl,t ≥ ΠswARl,t (β, γ) to obtain a segment-based weak affine relaxation
(swAR):

V swAR = min
β,γ

∑
t

∑
l

βl,t +
∑
t

∑
i

γi,tr
1
i

s.t. βl,t ≥ ΠswARl,t (β, γ) ∀l, t
γi,t ≥ 0 ∀i, t.

Moreover, by following the same steps as for the single-segment case, it is possible to show that
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swAR can be formulated as the compact LP

V swAR = min
γ,β,π

∑
t

∑
l

βl,t +
∑
i

∑
t

γi,tr
1
i

(swAR) s.t. βl,t ≥
∑
i∈Il

 ∑
j∈Ji,j∈Cl

πi,j,t −
λl∑

l′∈Li
λl′
γi,t

 ∀l, t

∑
i∈Ij

πi,j,t ≥ λℓjw
ℓj
j

fj − ∑
i∈Ij

(
τ∑

k=t+1

γi,k +
γi,t∑
l′∈Li

λl′

)
−
βℓj ,t

λℓj

 ∀j, t

∑
j∈Ji,j∈Cl

πi,j,t −
λl∑

l′∈Li
λl′
γi,t ≥ 0 ∀i, l ∈ Li, t

γi,t, πi,j,t ≥ 0 ∀, i, j ∈ Ji, t,

where ℓj denotes the segment to which product j belongs. swAR can be viewed as an extension of
wAR to the MNL model with multiple segments and disjoint consideration sets. Note that swAR
is again tractable as it is a compact LP. Proposition 4 below shows that it also obtains an upper
bound on the value function that is tighter than CDLP .

Proposition 4. V AF ≤ V swAR ≤ V CDLP .

Proof
Using the MNL choice probability (1) and rearranging terms, the swAR constraint βl,t ≥ ΠswARl,t (β, γ)
can be equivalently written as

βl,t ≥ λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γi,k

]
−
∑
i∈Il

1[i∈ISl ]
γi,t

λl∑
l′∈Li

λl′

∑
j∈Ji

P lj(Sl) + P l0(Sl)

 (31)

for all Sl ⊆ Cl.

Consider now two intermediate problems:

V = min
β,γ

∑
t

∑
l

βl,t +
∑
t

∑
i

γi,tr
1
i

s.t. (30) ∀l, Sl ⊆ Cl, t
γi,t ≥ 0 ∀i, t,

and

V̄ = min
β,γ

∑
t

∑
l

βl,t +
∑
t

∑
i

γi,tr
1
i

s.t. βl,t ≥ λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γi,k

]
∀l, Sl ⊆ Cl, t (32)

γi,t ≥ 0 ∀i, t.

We can interpret the first problem as a segment based relaxation of AF , while the second problem
can be viewed as a segment based relaxation of CDLP .

We next show that V AF ≤ V ≤ V swAR ≤ V̄ = V CDLP , which completes the proof of the
proposition.
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(i) V ≤ V swAR ≤ V̄ .

Since the objective functions of all the problems are the same, we only need to compare the
corresponding constraints. Since

∑
j∈Ji

P lj(Sl) + P l0(Sl) ≤ 1, it follows that constraint (31) implies

constraint (30) and we have V ≤ V swAR.

On the other hand, the right hand side of constraint (32) can be written as

λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γi,k

]
−
∑
i∈Il

λlQ
l
i(Sl)γi,t.

Now note that

λlQ
l
i(Sl)γi,t = λl1[i∈ISl ]

Qli(Sl)γi,t = λl1[i∈ISl ]

∑
j∈Ji

P lj(Sl)

 γi,t
≤ λl∑

l′∈Li
λl′

1[i∈ISl ]

∑
j∈Ji

P lj(Sl)

 γi,t ≤ λl∑
l′∈Li

λl′
1[i∈ISl ]

∑
j∈Ji

P lj(Sl) + P l0(Sl)

 γi,t
where the first equality holds since if 1[i∈ISl ]

= 0, then Qli(Sl) = 0 and the first inequality holds

since
∑
l′∈Li

λl′ ≤ 1. Therefore constraint (32) implies constraint (31) and we have V swAR ≤ V̄ .

(ii) V AF ≤ V.

Suppose that (β̂, γ̂) satisfies constraints (30). We show that it satisfies constraints (29) as well.
Fix a set S and let Sl = S ∩ Cl. Adding up constraints (30) for all the segments

∑
l

β̂l,t ≥
∑
l

{
λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γ̂i,k

]
−
∑
i∈Il

1[i∈ISl ]
γ̂i,t

λl∑
l′∈Li

λ′l

}

= λ

[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂i,k

]
−
∑
i

γ̂i,t
∑
l∈Li

1[i∈ISl ]
λl∑

l′∈Li
λ′l

≥ λ

[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂i,k

]
−
∑
i

γ̂i,t
∑
l∈Li

1[i∈IS ]
λl∑

l′∈Li
λ′l

= λ

[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂i,k

]
−
∑
i

γ̂i,t1[i∈IS ],

where the first equality uses the fact that Qli(Sl) = 0 for l /∈ Li and hence λQi(S) =
∑
l λlQ

l
i(Sl) =∑

l∈Li
λlQ

l
i(Sl). The second inequality holds since 1[i∈ISl ]

≤ 1[i∈IS ]. Letting β̃ = {β̃t =
∑
l β̂l,t | ∀t},

it follows that (β̃, γ̂) satisfies constraints (29). Therefore V AF ≤
∑
t β̃t +

∑
t

∑
i γ̂i,t = V.

Meissner et al. [14] prove the following that we include for completeness.

(iii) V̄ = V CDLP . (Meissner et al. [14])
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Constraints (6) in dCDLP are equivalent to

βt = max
S

{
λ

[
R(S)−

∑
i

τ∑
k=t

Qi(S)γi,k

]}

= max
S

{∑
l

λl

[
Rl(S ∩ Cl)−

∑
i∈Il

τ∑
k=t

Qli(S ∩ Cl)γi,k

]}

=
∑
l

max
Sl

{
λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γi,k

]}

where the last inequality uses the fact that the consideration sets are disjoint. Therefore, the dCDLP
constraint is equivalent to the constraints βt =

∑
l βl,t and

βl,t = max
Sl

{
λl

[
Rl(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γi,k

]}
,

which is exactly constraint (32).
2

As we show in the next section, it is possible to extend the swAR formulation to the MNL model
with multiple segments when the consideration sets overlap. The dual of swAR, which we give
below, turns out to be useful for this purpose.

V dswAR = max
x,ρ

∑
t

∑
l

∑
j∈Cl

λlfjx
l
j,t

(dswAR) s.t.
∑
l∈Li

λl

 xl0,t∑
l′∈Li

λl′
+

t−1∑
s=1

∑
j∈Ji∩Cl

xlj,s +

∑
j∈Ji∩Cl

xlj,t∑
l′∈Li

λl′

− ρlit∑
l′∈Li

λl′

]
≤ r1i ∀i, t (33)

xl0,t +
∑
j∈Cl

xlj,t = 1 ∀l, t

xlj,t
wlj

− xl0,t + ρli,t ≤ 0 ∀l, i, j ∈ Ji ∩ Cl, t (34)

xl0,t, x
l
j,t, ρ

l
i,t ≥ 0 ∀l, i, j ∈ Ji ∩ Cl, t.

8.2 Multiple segments with overlapping consideration sets

When the segment consideration sets overlap, the CDLP formulation is difficult to solve, even for
MNL with just two segments. So one would imagine that it is difficult to find a tractable bound
tighter than CDLP in this case. One strategy, pursued in Meissner et al. [14] is to formulate
the problem by segments and then add a set of consistency conditions called product-cut equalities
(PC-equalities). These equalities apply to any general discrete-choice model and appear to be quite
powerful in numerical experiments, often bringing the solution close to CDLP value. Strauss and
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Talluri [17] subsequently show that when the consideration set structure has a certain tree structure,
the cuts in fact achieve the CDLP value. Talluri [18] shows how to specialize the PC-equalities to
the MNL choice model. In this section we describe how the PC-equalities, specialized for MNL, can
be added to dswAR to tighten the formulation.

We begin with a brief description of the PC-equalities: Meissner et al. [14] allow different sets to
be offered to different segments. However, to ensure consistency, they require that for any product
j ∈ Cl ∩Cm, the length of time it is offered to segment l must be the equal to the length of time it is
offered to segmentm. This leads to a set of consistency constraints which they term as PC-equalities.
Talluri [18] uses choice probabilities (1) to specialize the PC-equalities to the MNL model as:

xlj,t
wlj

=
∑

{S⊆(Cl∩Cm) | j∈S}

yl,mS ∀l,m, j ∈ Cl ∩ Cm (35)

yl,mS,j ≤ yl,mS ∀l,m, S ⊆ Cl ∩ Cm, j ∈ Cl \ Cm (36)

∑
{T⊆(Cl∩Cm) |T⊇S}

 ∑
j∈Cl\Cm

wljy
l,m
T,j + (1 +W l

T )y
l,m
T

 =

∑
{T ′⊆(Cm∩Cl) |T ′⊇S}

 ∑
j∈Cm\Cl

wmj y
m,l
T ′,k + (1 +Wm

T ′)y
m,l
T ′

 ∀l,m, S ⊆ Cl ∩ Cm, (37)

where W l
S =

∑
j∈S w

l
j and we have new variables of the form yl,mS defined for all pairs of segments

l,m and for all S ⊆ Cl ∩ Cm; see Talluri [18]. If the overlap in the consideration sets of the different
segments is not too large, then the number of PC-equalities is manageable.

Talluri [18] shows that adding PC-equalities (35)-(37) to the sales-based linear program (SBLP )
of Gallego et al. [7] further tightens the SBLP bound. We are also able to tighten the dswAR
bound by doing the same thing. Moreover, comparing dswAR with SBLP , it is easy to see that
a feasible solution to dswAR is also feasible to SBLP . Therefore, dswAR is tighter than SBLP .
It follows that dswAR augmented with the PC-equalities, continues to be tighter than SBLP with
the same PC-equalities. So in conclusion, when segment consideration sets overlap, we also have

Proposition 5. The objective function value of dswAR with (35–37) added, is less than or equal
to the objective function value of SBLP with (35–37) added.

In closing, we note that dswAR augmented with the PC-equalities is not guaranteed to be tighter
than CDLP . We numerically compare the performance of dswAR with CDLP in our computational
experiments that we present next.

9 Computational experiments

In this section, we compare the upper bounds and the revenue performance of the policies obtained
by the different benchmark solution methods. We test the performance of our benchmark solution
methods on a hub-and-spoke network, with a single hub serving multiple spokes. While comparing
the revenue performance of the benchmark methods, we divide the booking period into five equal
intervals. At the beginning of each interval, we re-solve the benchmark solution methods to get fresh
estimates for the marginal value of capacity on the resources. All of the benchmark methods give
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a solution of the form (β̂, γ̂) with
∑τ
s=t γ̂i,s being an estimate for the marginal value of capacity

on resource i at time t. We use these marginal values to construct a value function approximation
V̂t(r) =

∑
i(
∑τ
s=t γ̂i,s)ri and solve problem (8) to decide on the offer set. We continue to use

this decision rule until the beginning of the next interval where we re-solve the benchmark solution
methods. In all of our test problems, we have multiple customer segments and choice within each
segment is governed by the MNL model. We begin by describing the different benchmark solution
methods and the experimental setup.

9.1 Benchmark solution methods

Choice deterministic linear program (CDLP ) This is the solution method described in §4.1.

Weak affine relaxation (wAR) This is the version of weak affine relaxation that applies to multiple
segments and described in §8 (swAR).

Weak affine relaxation+ (wAR+) This is the version of wAR+ that applies to multiple segments.
As mentioned, it is possible to extend the wAR+ formulation described in §7.1 to the setting with
multiple segments by following the steps in §8.

Hierarchical affine relaxation (hAR) This is the version of the level-1 hierarchical affine relaxation
that applies to multiple segments. As mentioned, it is possible to extend the hierarchical affine
relaxation method described in §7.2 to the setting with multiple segments by following the steps in
§8. Since hAR does not admit a compact formulation, we solve hAR by generating constraints on
the fly and stop when we are within 1% of optimality.

Affine relaxation (AF ) This is the solution method described in §4.2. We work with the reduced
formulation RAF of Vossen and Zhang [22]. While the number of decision variables in RAF is
manageable, it has a large number of constraints. We solve RAF by generating constraints on the
fly (using integer programming) and stop when we are within 1% of optimality.

9.2 Hub-and-spoke network

We consider a hub-and-spoke network with a single hub that serves N spokes. Half of the spokes
have two flights to the hub, while the remaining half have two flights from the hub so that the total
number of flights is 2N . Figure 1 shows the structure of the network with N = 8. We note that the
flight legs correspond to the resources in our NRM formulation.

The total number of fare-products is 2N(N+2). There are 4N fare products connecting spoke-to-
hub and hub-to-spoke origin-destination pairs, of which half are high fare-products and the remaining
half are low-fare products. The high fare-product is 50% more expensive than the corresponding
low fare-product. The remaining 4N2 fare-products connect spoke-to-spoke origin-destination pairs.
Half of the 4N2 fare-products are high fare-products and the rest are low fare-products, with the
high fare-product being 50% more expensive than the corresponding low fare-product.

Each origin-destination pair is associated with a customer segment and each segment is only
interested in the fare-products connecting that origin-destination pair. Therefore, the consideration
sets are disjoint. Within each segment choice is governed by the MNL model. We sample the
preference weights of the fare-products from a poisson distribution with a mean of 100 and set the
no-purchase preference weight to be 0.5

∑
j∈Cl

wlj . So the probability that a customer does not
purchase anything when all the products in the consideration set are offered is around 33%.
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We measure the tightness of the leg capacities using the nominal load factor, which is defined in
the following manner. Letting Ŝt = argmax SR(S) denote the optimal set of products offered at
time period t when there is ample capacity on all flight legs, we define the nominal load factor

α =

∑
t

∑
i λtQi(Ŝt)∑
i r

1
i

,

where λt denotes the arrival rate at time period t. Initially, we assume stationary arrivals and set
the arrival rate to be 0.9 in each time period. We have τ = 200 in all of our test problems. We label
our test problems by (N,α) where N ∈ {4, 6, 8} and α ∈ {0.8, 1.0, 1.2, 1.6}, which gives us 24 test
problems in total.

Table 1 gives the upper bounds obtained by the benchmark solution methods. The first column
in the table gives the problem characteristics. The second to sixth columns, respectively, give the
upper bounds obtained by CDLP , wAR, wAR+, hAR, and AF . The last four columns give the
percentage gap between the upper bounds obtained by CDLP and wAR, CDLP and wAR+, CDLP
and hAR, and CDLP and AF , respectively. AF generates the tightest upper bound and CDLP
the weakest, with the remaining upper bounds sandwiched in between. The average percentage gap
between wAR and CDLP is 1.59%, although we observe instances where the gap is as high as 2.73%.
The percentage gap between wAR and CDLP seems to increase with the nominal load factor and
the number of spokes in the network. wAR+ and hAR tighten the wAR bound and obtain bounds
that are on average 1.81% and 1.63% tighter than CDLP . AF obtains bounds that are on average
2.16% tighter than CDLP .

Table 2 gives the CPU seconds required by the different solution methods for different numbers
of spokes in the network and different numbers of time periods in the booking horizon. All of our
computational experiments are carried out on a Pentium Core 2 Duo desktop with 3-GHz CPU and
4-GB RAM. We use CPLEX 11.2 to solve all linear programs. Since we have disjoint consideration
sets, CDLP has a compact sales-based formulation, SBLP , which can be solved in a matter of
seconds. The solution times of the other methods are generally in minutes. wAR typically runs
faster than AF and the savings can be significant especially for relatively large networks. In light
of the hardness result in Proposition 2, we only expect the savings in run times to increase with the
problem size. wAR+ and hAR have additional computational overheads associated with them and
can take longer than wAR.

If we compare the improvement in the upper bound relative to what AF achieves over CDLP
with the corresponding increase in solution time (relative to the overhead incurred by AF over
CDLP ), we find that wAR closes around 70% of the gap between the AF and CDLP bounds by
incurring a computational overhead of around 15% of that of AF . In contrast, wAR+ closes around
80% of the gap by incurring a 45% computational overhead, while hAR closes around 75% of the
gap by incurring roughly a 22% computational overhead. Overall, wAR seems to achieve a good
balance between the quality of the solution and the computational effort.

Table 3 gives the expected revenues obtained by the different benchmark methods. The columns
have a similar interpretation as in Table 1 except that they give the expected total revenues. We
evaluate the revenue performance by simulation and use common random numbers in our simulations.
In the last four columns, we use X to indicate that the corresponding benchmark method generates
higher revenues than CDLP at the 95% level, an ⊙ if the difference in the revenue performance of
the benchmark method and CDLP is not significant at the 95% level and a × if the benchmark
method generates lower revenues than CDLP at the 95% level. wAR on average generates revenues
that are 2.28% higher than CDLP , although we observe instances where the gap is as high as 7%.
wAR+, hAR and AF , respectively, generate revenues that are on average 3.02%, 2.94% and 2.34%,
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higher than the CDLP revenues.

It is interesting to note that the improvements in the revenue performance of wAR (over CDLP )
tend to be larger than the corresponding improvements in the upper bound. We understand this
as follows. Recall that wAR, CDLP and AF all yield a solution of the form (β̂, γ̂) with

∑τ
s=t γ̂i,s

being an estimate of the marginal value of capacity of resource i at time t. Figure 2 shows a
representative plot of how the marginal values of capacity obtained by wAR, CDLP and AF vary
with time. We note that the wAR and AF marginal values change with time, while CDLP yields
static marginal values. We observe that wAR does a much better job of tracking the AF marginal
values compared to CDLP . This implies that wAR obtains a sharper value function approximation
(7) and consequently is able to make better decisions on the set of products to offer by solving
problem (8). Figure 2 also reveals that the marginal values of capacity obtained by AF are constant
for the most part and start varying only towards the end of the sales horizon. This suggests that
much of the benefits of wAR better tracking the AF marginal values are likely to be accrued in
a short time window before the end of the sales horizon. Below, we describe an additional set of
computational experiments that further supports these observations.

Fluid scaling: We consider a fluid scaling of the hub-and-spoke test problems where we scale the
flight leg capacities and the length of the sales horizon by a factor 0 < θ ≤ 1. That is, in the θ-scaled
problem, the initial capacities given by θr1 and the length of the selling season is θτ . Note that if
we set θ = 1, then we get back the original set of test problems, and smaller values of θ correspond
to test problems with lower initial capacities and shorter sales horizons. Table 4 compares the upper
bounds obtained by CDLP , wAR and AF as we vary the scaling parameter θ. We consider the hub-
and-spoke network with N = 6 spokes and vary α ∈ {0.8, 1.0, 1.2, 1.6} and θ ∈ {1.0, 0.8, 0.6, 0.4, 0.2}.
The first column in Table 4 gives the problem characteristics (N,α, θ). The remaining columns have
a similar interpretation as in Table 1. Kunnumkal and Talluri [10] show that the gap between the AF
and CDLP bounds is inversely proportional to the initial capacities of the resources. This explains
the larger gaps between the CDLP and AF bounds as the scaling parameter θ becomes smaller.
The gaps between CDLP and wAR also get noticeably larger as θ becomes smaller and we observe
gaps as large as 10%. Furthermore, wAR is able to close roughly 75% of the gap between CDLP
and AF in such cases. Table 5 reports the CPU seconds required by the three solution methods
as we vary the scaling parameter θ. We observe that wAR can be solved in a matter of seconds
when the number of time periods and resource capacities are relatively small. On the other hand
the running time of AF is still in minutes.

Hybrid control: The results in tables 4 and 5 indicate that wAR can be much more beneficial towards
the end of the sales horizon when the remaining capacities of the resources tend to be low. This
suggests a hybrid control where we use CDLP -based controls early on in the booking period and
switch to wAR-based controls only towards the end of the sales horizon. Recall that for revenue
estimation, we divide the booking period into five equal intervals. We consider solving CDLP and
using the associated marginal values to make the control decisions for the first k ∈ {0, 1, . . . , 5}
intervals. We then switch to wAR and use the wAR marginal values to make the control decisions
for the remaining 5 − k intervals. We refer to this hybrid control as Hyb(k). Note that Hyb(0)
corresponds to wAR, while Hyb(5) corresponds to CDLP . Table 6 gives the revenue performance
of the hybrid control for the hub-and-spoke network test problems. We observe that Hyb(4), which
involves solving wAR only in the last interval can obtain around 30% of the revenue gains of Hyb(0)
over Hyb(5). Hyb(2) which involves using wAR-based controls for roughly half of the sales horizon,
is able to obtain about 75% of the revenue boost obtained by Hyb(0).

Next we test the performance of a dynamic programming decomposition approach based on
wAR. After that we test the impact of introducing nonstationarity in the problem parameters and
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overlap in the consideration sets of the segments on the performance of wAR.

Dynamic programming decomposition: wAR emerges as a solution method which strikes a good
balance between the quality of the solution and the computational cost. We test the effectiveness of
a dynamic programming decomposition scheme based on wAR. Liu and van Ryzin [11] show how
the CDLP dual solution can be used to decompose the network problem into a number of single
resource problems. Letting γ̂ = {γ̂i,t|∀i, t} denote the optimal values of the dual variables associated
with constraints (4) in CDLP , the dynamic programming decomposition idea described in Liu and
van Ryzin [11] is to solve the optimality equation

vγ̂i,t(r
t
i) = max

S⊆Si(rti)

{∑
j∈S

λPj(S)

[
fj −

∑
k ̸=i,k∈Ij

(
τ∑

s=t+1

γ̂k,s) + vγ̂i,t+1

(
rti − 1[j∈Ji]

) ]

+ [λP0(S) + 1− λ] vγ̂i,t+1

(
rti
)}

,

where Si(ri) = {j|1[i∈Ij ] ≤ ri} and the boundary conditions are vγ̂i,τ+1(ri) = 0 for all ri and

vγ̂i,t(0) = 0 for all t. Zhang and Adelman [23] show that mini{vγ̂i,1(r1i ) +
∑
k ̸=i(

∑τ
s=t γ̂k,s)r

1
k} is an

upper bound on the value function and that this bound is tighter than the CDLP bound.

It is possible to apply a similar decomposition idea to wAR as well by using the optimal dual
variables associated with constraints (33). Furthermore, it is possible to show that this dynamic pro-
gramming decomposition approach obtains an upper bound that is tighter than the wAR bound; we
omit the details. Table 7 gives the upper bounds obtained by dynamic programming decomposition
approaches based on CDLP and wAR, referred to as DP − CDLP and DP − wAR, respectively.
The second and third columns in Table 7 give the upper bounds obtained by DP − CDLP and
DP − wAR, respectively, while the last column gives the percentage gap in the upper bounds ob-
tained by DP − CDLP and DP − wAR. Although DP − wAR is not uniformly tighter than
DP − CDLP , it generates bounds that are on average 1.24% tighter, and we observe gaps as high
as 4.4%. It is also worthwhile noting that in many cases the wAR bound (from Table 1) is itself
tighter than DP − CDLP .

Nonstationary arrivals: So far, all of our test problems have involved stationary problem parameters.
We investigate the impact of nonstationarity in the arrival rates. We divide the booking period into
three intervals of equal length. The arrival rates remain the same within each interval, but increase
from the first interval to the third. The total arrival rate in the first, second, and third intervals are
0.3, 0.6 and 0.9, respectively.

Table 8 compares the upper bounds obtained by the benchmark solution methods for the hub-
and-spoke network with nonstationary arrivals, while Table 9 gives the expected revenues. The
results display the same trends as before. wAR obtains upper bounds that are on average 2.75%
tighter than CDLP and closes roughly 80% of the gap between the CDLP and AF bounds. In terms
of the revenue improvement, wAR generates revenues that are on average 3.8% higher than CDLP .
For both the upper bounds and the expected revenues, the percentage gaps between CDLP and
wAR increase on average, compared to the stationary arrivals case. Figure 3 shows how the marginal
values of capacity obtained by CDLP , wAR and AF vary with time in the case of nonstationary
arrivals. Compared to the stationary arrivals case, CDLP is a poorer approximation to AF . On
the other hand, wAR continues to do a good job of tracking the AF marginal values.

Overlapping consideration sets: Finally, we consider test problems where the consideration sets of
the segments overlap. We continue to work with the hub-and-spoke network test problems, except
that now each origin-destination pair is associated with two customer segments. The first segment
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considers only the low fare products connecting the origin-destination pair, while the second segment
considers the high fare products as well. Table 10 gives the upper bounds obtained by CDLP ,
wAR and AF . Note that by wAR, we mean the segment-based weak affine relaxation augmented
with product-cut equalities described in §8.2. As mentioned, when the consideration sets overlap,
wAR is not provably tighter than CDLP . However, we observe that overall wAR tends to obtain
tighter bounds than CDLP . Table 12 gives the expected revenues obtained by the different solution
methods. We find that wAR continues to provide noticeable revenue boosts over CDLP . Table
11 reports the CPU seconds required by CDLP , wAR and AF for the hub-and-spoke network
test problems with overlapping consideration sets. We note that CDLP does not have a compact
formulation anymore and has to be solved using column generation. When the consideration sets
overlap, the CDLP column generation problem is intractable. Hence the CDLP solution time
increases considerably compared to the case with disjoint consideration sets. The solution time for
wAR (with product-cut equalities) is roughly comparable to that of CDLP . Both wAR and CDLP
can be solved in a matter of minutes while AF can take hours.

Figure 1: Structure of the airline network with a single hub and eight spokes.

Problem Upper Bound % Gap with CDLP
(N,α) CDLP wAR wAR+ hAR AF wAR wAR+ hAR AF
(4, 0.8) 7,180 7,176 7,175 7,176 7,155 0.06 0.08 0.06 0.35
(4, 1.0) 6,462 6,377 6,368 6,377 6,352 1.31 1.45 1.32 1.70
(4, 1.2) 6,138 6,053 6,044 6,053 6,027 1.38 1.53 1.39 1.81
(4, 1.6) 5,389 5,304 5,298 5,303 5,277 1.57 1.70 1.60 2.08
(6, 0.8) 6,918 6,891 6,873 6,882 6,860 0.39 0.65 0.52 0.84
(6, 1.0) 6,357 6,241 6,224 6,234 6,205 1.83 2.08 1.93 2.39
(6, 1.2) 5,799 5,683 5,666 5,676 5,654 2.00 2.28 2.12 2.50
(6, 1.6) 4,796 4,704 4,697 4,703 4,672 1.91 2.05 1.94 2.57
(8, 0.8) 6,040 5,992 5,975 5,992 5,959 0.79 1.07 0.79 1.33
(8, 1.0) 5,460 5,328 5,307 5,328 5,288 2.43 2.81 2.43 3.15
(8, 1.2) 4,993 4,857 4,839 4,857 4,817 2.73 3.10 2.73 3.52
(8, 1.6) 4,243 4,129 4,119 4,129 4,089 2.70 2.92 2.70 3.63

avg. 1.59 1.81 1.63 2.16

Table 1: Comparison of the upper bounds for the hub-and-spoke test problems.
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No. of CPU secs. No. of CPU secs.
spokes CDLP wAR wAR+ hAR awAR AF time periods CDLP wAR wAR+ hAR awAR AF

6 0.4 16 46 23 30 98 100 0.2 6 15 20 10 73
8 0.8 46 135 59 109 405 200 0.4 16 46 23 30 98
10 1.2 105 347 127 213 1,595 300 0.6 21 62 41 49 132
12 1.9 191 698 335 407 5,204 400 0.8 31 104 59 77 169

Table 2: CPU seconds for the benchmark solution methods as a function of the number of spokes
in the airline network and the number of time periods in the booking horizon.

Problem Expected Revenue % Gap with CDLP
(N,α) CDLP wAR wAR+ hAR AF wAR wAR+ hAR AF
(4, 0.8) 5,755 5,748 5,814 5,819 5,744 -0.13 ⊙ 1.03 X 1.11 X -0.19 ⊙
(4, 1.0) 5,263 5,242 5,349 5,310 5,305 -0.39 ⊙ 1.64 X 0.90 X 0.80 X
(4, 1.2) 5,056 5,080 5,107 5,095 5,136 0.47 ⊙ 1.01 X 0.77 X 1.57 X
(4, 1.6) 4,413 4,570 4,601 4,569 4,580 3.56 X 4.26 X 3.55 X 3.78 X
(6, 0.8) 5,487 5,531 5,582 5,591 5,473 0.81 X 1.73 X 1.89 X -0.25 ⊙
(6, 1.0) 5,047 5,127 5,155 5,179 5,098 1.58 X 2.13 X 2.62 X 1.00 X
(6, 1.2) 4,665 4,764 4,796 4,797 4,760 2.12 X 2.80 X 2.82 X 2.02 X
(6, 1.6) 3,824 4,101 4,109 4,104 4,075 7.23 X 7.46 X 7.34 X 6.56 X
(8, 0.8) 4,829 4,888 4,926 4,928 4,862 1.22 X 2.01 X 2.06 X 0.69 X
(8, 1.0) 4,343 4,434 4,493 4,497 4,456 2.09 X 3.46 X 3.55 X 2.61 X
(8, 1.2) 3,969 4,091 4,106 4,097 4,125 3.08 X 3.46 X 3.24 X 3.93 X
(8, 1.6) 3,384 3,579 3,561 3,570 3,570 5.77 X 5.21 X 5.50 X 5.49 X

avg. 2.28 3.02 2.94 2.34

Table 3: Comparison of the expected revenues for the hub-and-spoke test problems.

Figure 2: Marginal values of capacity obtained by CDLP , wAR and AF as a function of time for
stationary arrivals. The plots are for the hub-and-spoke test problem with parameters (6, 1.6).
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Problem Upper Bound % Gap with CDLP
(N,α, θ) CDLP wAR AF wAR AF
(6, 0.8, 1.0) 6,918 6,891 6,860 0.39 0.84
(6, 1.0, 1.0) 6,357 6,241 6,205 1.83 2.39
(6, 1.2, 1.0) 5,799 5,683 5,654 2.00 2.50
(6, 1.6, 1.0) 4,796 4,704 4,672 1.91 2.57
(6, 0.8, 0.8) 5,586 5,558 5,531 0.49 0.98
(6, 1.0, 0.8) 5,142 5,026 4,993 2.26 2.89
(6, 1.2, 0.8) 4,750 4,634 4,603 2.45 3.09
(6, 1.6, 0.8) 4,030 3,896 3,863 3.31 4.14
(6, 0.8, 0.6) 4,102 4,038 4,006 1.56 2.33
(6, 1.0, 0.6) 3,918 3,804 3,774 2.92 3.70
(6, 1.2, 0.6) 3,605 3,488 3,451 3.24 4.26
(6, 1.6, 0.6) 2,934 2,823 2,794 3.77 4.76
(6, 0.8, 0.4) 2,793 2,741 2,711 1.85 2.95
(6, 1.0, 0.4) 2,644 2,531 2,504 4.26 5.28
(6, 1.2, 0.4) 2,401 2,281 2,250 4.98 6.29
(6, 1.6, 0.4) 2,086 1,929 1,901 7.52 8.84
(6, 0.8, 0.2) 1,375 1,316 1,286 4.26 6.45
(6, 1.0, 0.2) 1,280 1,162 1,135 9.28 11.31
(6, 1.2, 0.2) 1,197 1,076 1,049 10.12 12.38
(6, 1.6, 0.2) 1,076 959 921 10.92 14.41

Table 4: Comparison of the upper bounds for the hub-and-spoke test problems with N = 6 under a
fluid scaling.

Scaling param. CPU secs.
θ CDLP wAR AF
1 0.4 16 98
0.8 0.2 13 97
0.6 0.2 10 94
0.4 0.1 4 86
0.2 0.1 1 65

Table 5: CPU seconds for the benchmark solution methods as a function of the scaling parameter θ
for the hub-and-spoke test problems with N = 6.

Problem Expected Revenue % Gap with Hyb(5)
(N,α) Hyb(0) Hyb(1) Hyb(2) Hyb(3) Hyb(4) Hyb(5) Hyb(0) Hyb(1) Hyb(2) Hyb(3) Hyb(4)
(4, 0.8) 5,748 5,748 5,749 5,752 5,756 5,755 -0.13 ⊙ -0.13 ⊙ -0.10 ⊙ -0.04 ⊙ 0.02 ⊙
(4, 1.0) 5,242 5,265 5,310 5,305 5,298 5,263 -0.39 ⊙ 0.04 ⊙ 0.89 X 0.79 X 0.67 X
(4, 1.2) 5,080 5,112 5,098 5,063 5,071 5,056 0.47 X 1.10 X 0.83 X 0.14 ⊙ 0.29 ⊙
(4, 1.6) 4,570 4,535 4,535 4,485 4,452 4,413 3.56 X 2.76 X 2.77 X 1.64 X 0.88 X
(6, 0.8) 5,531 5,530 5,524 5,519 5,502 5,487 0.81 X 0.79 X 0.69 X 0.58 X 0.27 ⊙
(6, 1.0) 5,127 5,105 5,096 5,082 5,069 5,047 1.58 X 1.15 X 0.97 X 0.69 X 0.43 ⊙
(6, 1.2) 4,764 4,744 4,726 4,703 4,711 4,665 2.12 X 1.69 X 1.29 X 0.82 X 0.98 X
(6, 1.6) 4,101 4,041 4,007 3,960 3,880 3,824 7.23 X 5.68 X 4.78 X 3.57 X 1.47 X
(8, 0.8) 4,888 4,854 4,859 4,864 4,837 4,829 1.22 X 0.52 X 0.63 X 0.73 X 0.17 ⊙
(8, 1.0) 4,434 4,443 4,406 4,384 4,374 4,343 2.09 X 2.30 X 1.44 X 0.95 X 0.71 X
(8, 1.2) 4,091 4,099 4,048 4,028 4,009 3,969 3.08 X 3.28 X 2.01 X 1.51 X 1.01 X
(8, 1.6) 3,579 3,559 3,527 3,478 3,433 3,384 5.77 X 5.16 X 4.22 X 2.78 X 1.44 X

avg. 2.28 2.03 1.70 1.18 0.69

Table 6: Comparison of the expected revenues obtained by the hybrid controls for the hub-and-spoke
test problems.
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Problem Upper Bound % Gap between DP − CDLP
(N,α) DP − CDLP DP − wAR and DP − wAR
(4, 0.8) 7,146 7,158 -0.17
(4, 1.0) 6,415 6,363 0.82
(4, 1.2) 6,091 6,038 0.88
(4, 1.6) 5,323 5,266 1.08
(6, 0.8) 6,838 6,857 -0.28
(6, 1.0) 6,306 6,225 1.28
(6, 1.2) 5,750 5,667 1.43
(6, 1.6) 4,749 4,675 1.55
(8, 0.8) 5,961 5,969 -0.13
(8, 1.0) 5,408 5,310 1.80
(8, 1.2) 4,941 4,835 2.15
(8, 1.6) 4,200 4,015 4.41

avg. 1.24

Table 7: Comparison of the upper bounds obtained by the dynamic programming decomposition
approaches for the hub-and-spoke test problems.

Problem Upper Bound % Gap with CDLP
(N,α) CDLP wAR AF wAR AF
(4, 0.8) 4,400 4,396 4,380 0.09 0.45
(4, 1.0) 4,138 4,053 4,036 2.05 2.45
(4, 1.2) 3,796 3,711 3,689 2.23 2.81
(4, 1.6) 3,100 3,037 3,024 2.03 2.47
(6, 0.8) 4,311 4,256 4,236 1.28 1.72
(6, 1.0) 4,015 3,900 3,868 2.87 3.68
(6, 1.2) 3,628 3,508 3,481 3.31 4.04
(6, 1.6) 2,855 2,769 2,751 3.00 3.64
(8, 0.8) 3,802 3,678 3,650 3.25 3.99
(8, 1.0) 3,440 3,308 3,273 3.85 4.86
(8, 1.2) 3,082 2,940 2,909 4.61 5.63
(8, 1.6) 2,475 2,364 2,341 4.46 5.41

avg. 2.75 3.43

Table 8: Comparison of the upper bounds for the hub-and-spoke test problems with nonstationary
arrival rates.

Problem Expected Revenue % Gap with CDLP
(N,α) CDLP wAR AF wAR AF
(4, 0.8) 3,556 3,553 3,545 -0.08 ⊙ -0.33 ⊙
(4, 1.0) 3,290 3,334 3,329 1.33 X 1.19 X
(4, 1.2) 3,050 3,089 3,109 1.28 X 1.93 X
(4, 1.6) 2,468 2,630 2,616 6.57 X 6.00 X
(6, 0.8) 3,399 3,430 3,419 0.92 X 0.59 X
(6, 1.0) 3,134 3,181 3,173 1.48 X 1.23 X
(6, 1.2) 2,800 2,861 2,899 2.20 X 3.53 X
(6, 1.6) 2,154 2,409 2,417 11.83 X 12.21 X
(8, 0.8) 2,963 3,030 3,022 2.26 X 1.96 X
(8, 1.0) 2,642 2,733 2,703 3.41 X 2.29 X
(8, 1.2) 2,330 2,424 2,391 4.06 X 2.63 X
(8, 1.6) 1,810 1,996 1,996 10.29 X 10.29 X

avg. 3.80 3.63

Table 9: Comparison of the expected revenues for the hub-and-spoke test problems with nonstation-
ary arrival rates.
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Figure 3: Marginal values of capacity obtained by CDLP , wAR and AF as a function of time for
nonstationary arrivals. The plots are for the hub-and-spoke test problem with parameters (6, 1.6).

Problem Upper Bound % Gap with CDLP
(N,α) CDLP wAR AF wAR AF
(4, 0.8) 7,069 7,094 7,060 -0.35 0.13
(4, 1.0) 6,309 6,266 6,241 0.69 1.08
(4, 1.2) 5,975 5,907 5,879 1.14 1.60
(4, 1.6) 5,207 5,140 5,098 1.30 2.10
(6, 0.8) 6,783 6,807 6,773 -0.35 0.14
(6, 1.0) 6,240 6,149 6,109 1.46 2.10
(6, 1.2) 5,789 5,683 5,645 1.84 2.48
(6, 1.6) 4,770 4,704 4,675 1.38 2.01
(8, 0.8) 5,921 5,916 5,883 0.08 0.63
(8, 1.0) 5,342 5,233 5,193 2.04 2.79
(8, 1.2) 4,848 4,719 4,684 2.67 3.37
(8, 1.6) 4,170 4,044 3,998 3.03 4.14

avg. 1.24 1.88

Table 10: Comparison of the upper bounds for the hub-and-spoke test problems with overlapping
consideration sets.

No. of CPU secs. No. of CPU secs.
spokes CDLP wAR AF time periods CDLP wAR AF

6 43 26 171 100 22 7 71
8 122 90 867 200 43 26 171
10 335 286 2,782 300 60 101 295
12 613 673 12,228 400 100 301 349

Table 11: CPU seconds for the benchmark solution methods as a function of the number of spokes
in the airline network and the number of time periods in the booking horizon for overlapping con-
sideration sets.
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Problem Expected Revenue % Gap with CDLP
(N,α) CDLP wAR AF wAR AF
(4, 0.8) 6,862 6,828 6,835 -0.49 × -0.39 ⊙
(4, 1.0) 5,827 5,887 5,913 1.04 X 1.48 X
(4, 1.2) 5,515 5,584 5,650 1.24 X 2.45 X
(4, 1.6) 4,592 4,774 4,750 3.98 X 3.44 X
(6, 0.8) 6,337 6,439 6,291 1.61 X -0.73 ×
(6, 1.0) 5,799 5,738 5,730 -1.04 × -1.19 ×
(6, 1.2) 5,147 5,367 5,236 4.26 X 1.71 X
(6, 1.6) 4,109 4,357 4,390 6.06 X 6.85 X
(8, 0.8) 5,554 5,591 5,557 0.67 X 0.05 ⊙
(8, 1.0) 4,803 4,894 4,887 1.90 X 1.74 X
(8, 1.2) 4,267 4,384 4,370 2.73 X 2.41 X
(8, 1.6) 3,528 3,674 3,641 4.13 X 3.19 X

avg. 2.17 1.75

Table 12: Comparison of the expected revenues for the hub-and-spoke test problems with overlapping
consideration sets.

10 Contribution

CDLP and the affine relaxation are two methods in the literature that give upper bounds on the
value function for choice network revenue management. While CDLP is known to be tractable
for the MNL model with disjoint consideration sets, we show that the affine relaxation is NP-hard
even for the single-segment MNL model. Nevertheless, our analysis helps to isolate the term in the
affine relaxation which makes it hard to solve. By relaxing this difficult term, we obtain weaker, but
tractable approximations. We show that our approximations yield upper bounds that are in between
the CDLP and affine bounds. Our relaxations retain the appeal of the formulation discovered in
Gallego et al. [7] in that they involve solving compact linear programs, eliminating the need for
constraint or column generation. We extend our approximations to the mixture of multinomial logit
models. Our computational study indicates that our approximations often produce upper bounds
that are close to the affine bound, have good revenue performance and are tractable alternatives to
solving the affine relaxation.
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