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Abstract

In this paper, we propose a new dynamic programming decomposition method for the network
revenue management problem with customer choice behavior. The fundamental idea behind our
dynamic programming decomposition method is to allocate the revenue associated with an itinerary
among the different flight legs and to solve a single-leg revenue management problem for each flight
leg in the airline network. The novel aspect of our approach is that it chooses the revenue allocations
by solving an auxiliary optimization problem that takes the probabilistic nature of the customer
choices into consideration. We compare our approach with two standard benchmark methods. The
first benchmark method uses a deterministic linear programming formulation. The second benchmark
method is a dynamic programming decomposition idea that is similar to our approach, but it chooses
the revenue allocations in an ad hoc manner. We establish that our approach provides an upper
bound on the optimal total expected revenue, and this upper bound is tighter than the ones obtained
by the two benchmark methods. Computational experiments indicate that our approach provides
significant improvements over the performances of the benchmark methods.

Keywords: Network revenue management; customer choice; approximate dynamic programming.



An interesting feature of network revenue management systems is the customer choice behavior, where
a customer arriving into the system observes the itineraries that are available for purchase and makes a
choice among the itineraries that can satisfy its needs. Up until recently, this customer choice behavior
has been largely ignored and many network revenue management models followed the assumption that
each customer arrives into the system with the intention of purchasing a fixed itinerary. If this itinerary
is available for purchase, then the customer purchases it. Otherwise, the customer leaves the system
without purchasing anything. However, modeling the customer choice behavior is particularly important
nowadays with the online sales channels offering easy access to a large variety of itineraries.

Incorporating the customer choice behavior into the network revenue management problem has
recently started seeing attention in the literature. To address this issue, Liu and van Ryzin (2008)
propose a deterministic linear program that is formulated under the assumption that the customer
choices are deterministic and the itineraries can be sold in fractional amounts. This linear program
includes one constraint for each flight leg and the right sides of these constraints are the remaining
leg capacities. As a result, we can use the optimal values of the dual variables associated with these
constraints to estimate the opportunity cost of a unit of capacity. As shown by Liu and van Ryzin
(2008), this observation allows us to extend the traditional bid pricing and dynamic programming
decomposition methods to deal with the customer choice behavior.

In this paper, we particularly focus on the dynamic programming decomposition method for the
network revenue management problem with customer choice behavior. This method was proposed by
Liu and van Ryzin (2008). Throughout the paper, we refer to this method as LvR decomposition, where
the acronym stands for the initials of the authors. The fundamental idea behind LvR decomposition
is to allocate the revenue associated with an itinerary among the different flight legs and to solve a
single-leg revenue management problem for each flight leg in the airline network. In this case, we sum
up the value functions obtained from the single-leg revenue management problems to construct value
function approximations for the network revenue management problem. This approach performs quite
well in practice, but it has some shortcomings when viewed from a theoretical standpoint. To begin
with, LvR decomposition uses the opportunity costs obtained from the aforementioned deterministic
linear program when allocating the revenue associated with an itinerary among the different flight
legs. This deterministic linear program ignores the probabilistic nature of the customer choices and
we ideally would like to have a less crude approach for allocating the revenue associated with an
itinerary. Furthermore, approximating the value functions for the network revenue management problem
by using the sum of the value functions obtained from the single-leg revenue management problems is
entirely based on a heuristic argument. In particular, the value function approximations used by LvR
decomposition are not necessarily upper or lower bounds on the exact value functions.

In this paper, we propose an alternative dynamic programming decomposition method to address
some of the shortcomings of LvR decomposition. The novel aspect of our decomposition approach
is that when allocating the revenue associated with an itinerary among the different flight legs, we
view the revenue allocations as decision variables, and choose the revenue allocations by solving
an auxiliary optimization problem. Throughout the paper, we refer to our dynamic programming
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decomposition method as AP decomposition, where the acronym stands for auxiliary problem. When
compared with LvR decomposition, AP decomposition has several advantages. To begin with, unlike the
deterministic linear program used by LvR decomposition, the auxiliary optimization problem used by AP
decomposition takes the probabilistic nature of the customer choices into consideration. Furthermore,
we can show that the value function approximations used by AP decomposition are upper bounds
on the exact value functions. Another useful feature of AP decomposition becomes apparent when
we want to compute upper bounds on the optimal total expected revenue. As shown by Liu and
van Ryzin (2008), the optimal objective value of the deterministic linear program provides one such
upper bound. Similarly, Zhang and Adelman (2009) show that it is also possible to obtain an upper
bound on the optimal total expected revenue by building on LvR decomposition. It turns out that AP
decomposition provides an upper bound on the optimal total expected revenue as well and the upper
bound obtained by AP decomposition is provably tighter than the ones obtained by the deterministic
linear program and LvR decomposition. Finally, our computational experiments indicate that the
total expected revenues obtained by AP decomposition can provide significant improvements over those
obtained by the deterministic linear program and LvR decomposition.

Incorporating the customer choice behavior into revenue management problems is an active area
of research. There are several models that deal with a single flight leg or a number of parallel flight
legs that operate between the same origin-destination pair. Belobaba and Weatherford (1996) propose
extensions of the expected marginal seat revenue heuristic of Belobaba (1987) on a single flight leg to
capture the possibility that a customer purchases a more expensive fare level when the cheaper fare
level is not available. Talluri and van Ryzin (2004b) study the single-leg revenue management problem
under the customer choice behavior and show that generalized protection level policies are optimal under
reasonable conditions. Karaesmen and van Ryzin (2004) propose an overbooking model for dealing with
multiple flight legs that serve as substitutes of each other, which is the case when we have parallel flight
legs that operate between the same origin-destination pair. They develop a stochastic approximation
method to compute overbooking limits that dictate by how much the number of accepted reservations
should exceed the physically available seats. Zhang and Cooper (2005) also consider parallel flight legs
that operate between the same origin-destination pair. They construct upper and lower bounds on the
value functions when the customers are allowed to make a choice among the parallel flight legs. They
ultimately use these bounds to construct tractable control policies.

There are also several models that take place over an airline network. The paper by Gallego,
Iyengar, Phillips and Dubey (2004) is particularly noteworthy from the standpoint of incorporating
the customer choice behavior into network revenue management models. The authors consider flexible
itineraries that allow the customers to buy a reservation between a particular origin-destination pair
in advance, but choose the specific itinerary just before the departure time. They analyze the benefit
from offering flexible itineraries by formulating a deterministic linear program that approximates the
optimal total expected revenue. This deterministic linear program captures the fact that the choices
of the customers are driven not only by their personal preferences, but also by the availability of the
different itineraries in the market. Liu and van Ryzin (2008) build on the deterministic linear program
and extend the traditional bid pricing and dynamic programming decomposition methods to deal with
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the customer choice behavior. On one hand, the model developed by Liu and van Ryzin (2008) does
not incorporate flexible products and it can be considered as a restriction of the one in Gallego et al.
(2004). On the other hand, Liu and van Ryzin (2008) construct realistic dynamic control policies to
decide which itineraries to make available to the customers over time. Topaloglu (2009) proposes a
Lagrangian relaxation strategy to decompose the network revenue management problem by the flight
legs. AP decomposition that we develop in this paper can be visualized as an extension of his strategy
to deal with the customer choice behavior. However, it is not possible to derive our AP decomposition
simply by using the Lagrangian relaxation ideas of Topaloglu (2009), since the probabilities that govern
the evolution of the system in the presence of the customer choice behavior depend on what itineraries
are offered to the customers. As a result, our derivations resort to entirely new arguments. Zhang and
Adelman (2009) construct value function approximations by using the linear programming formulation
of the Markov decision process that characterizes the network revenue management problem. The
numbers of decision variables and constraints in this linear program increase exponentially with the
number of flight legs and they use linear value function approximations to make this problem tractable.
Kunnumkal and Topaloglu (2008) build on the work of Zhang and Adelman (2009) to construct linear
approximations to the value functions, but their approach tends to be more computationally tractable.
Finally, van Ryzin and Vulcano (2008) propose a stochastic approximation method to compute good
protection levels in the presence of the customer choice behavior. The important aspect of their work
is that it avoids parametric assumptions regarding the model that governs the customer choices.

We make the following research contributions in this paper. 1) We propose a new decomposition
approach for the network revenue management problem with customer choice behavior. The
fundamental idea behind our approach is to allocate the revenue associated with an itinerary among the
different flight legs and solve a single-leg revenue management problem for each flight leg. The novel
aspect of our approach is that we view the revenue allocations as decision variables and choose the
revenue allocations by solving an auxiliary optimization problem that takes the probabilistic nature of
the customer choices into consideration. 2) We show that our approach provides upper bounds on the
value functions. This result naturally implies that our approach provides an upper bound on the optimal
total expected revenue. 3) We show that the upper bound obtained by our approach is tighter than
the ones obtained by the deterministic linear program and LvR decomposition. 4) Our computational
experiments indicate that the total expected revenues obtained by our approach can significantly improve
those that are obtained by the deterministic linear program and LvR decomposition.

The rest of the paper is organized as follows. In Section 1, we formulate the network revenue
management problem with customer choice behavior as a dynamic program. In Section 2, we describe
our decomposition approach and formulate an auxiliary optimization problem to choose the revenue
allocations. In Section 3, we show that our decomposition approach provides an upper bound on
the optimal total expected revenue and this upper bound is tighter than the ones obtained by the
deterministic linear program and LvR decomposition. In Section 4, we show that the objective function
of the auxiliary optimization problem is convex and it is easy to make projections onto the feasible set
of this problem. These results allow us to solve the auxiliary optimization problem by using subgradient
search. In Section 5, we present computational experiments.
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1 Problem Formulation

We have a set of flight legs to serve the customers who arrive over time with the intention of purchasing
itineraries. At each time period, we need to decide which itineraries to offer to the customers. An
arriving customer reviews the offered itineraries and purchases at most one of them according to a
probability distribution defined over the set of offered itineraries. A sold itinerary generates a revenue
and consumes the capacities on the relevant flight legs. We are interested in maximizing the total
expected revenue over the decision horizon.

The set of flight legs in the airline network is L and the set of itineraries that we can offer to the
customers is J . An itinerary j is characterized by the pair (rj ,Lj), where rj is the revenue that we
generate by selling a ticket for itinerary j and Lj is the set of connecting flight legs that are used by
itinerary j. It is important to note that there can be multiple itineraries that use the same set of
connecting flight legs and are offered at different revenues. This observation allows us to model multiple
fare classes. Furthermore, there can be multiple itineraries that connect the same origin-destination
pair through different sets of connecting flight legs, which is the case when the airline offers multiple
routes to travel between the same origin-destination pair. In certain settings, an itinerary is referred
to as an origin-destination pair and fare class combination, but we prefer not to use this terminology
since it does not emphasize that an itinerary is characterized not only by its origin-destination pair
and fare class, but also by its set of connecting flight legs. The initial capacity on flight leg i is ci. If
a customer purchases itinerary j, then we generate a revenue of rj and consume aij units of capacity
on flight leg i. We note that aij can take values that are greater than one when we are interested
in modeling the possibility of group reservations. In the presence of group reservations, however, an
itinerary j is characterized by the triplet (rj ,Lj , sj), where rj and Lj are as defined above and sj is the
size of the group corresponding to itinerary j. Naturally, if itinerary j does not use flight leg i, then we
have aij = 0, whereas if i ∈ Lj , then we have aij > 0.

The problem takes place over the finite decision horizon T = {1, . . . , τ} and all flight legs depart at
time period τ + 1. We assume that the time periods correspond to small intervals of time so that there
is at most one customer arrival at each time period. The probability that there is a customer arrival at
a time period is λ. We use the vector ut = {ujt : j ∈ J } ∈ {0, 1}|J | to denote the set of itineraries that
we offer to the customers at time period t with the interpretation that ujt = 1 if we offer itinerary j at
time period t and ujt = 0 otherwise. If the set of itineraries that we offer to the customers at time period
t is given by ut, then an arriving customer purchases itinerary j with probability Pj(ut). Naturally, if
ujt = 0, then we have Pj(ut) = 0. We use Pφ(ut) = 1 −∑

j∈J Pj(ut) to denote the probability that a
customer purchases nothing when the set of itineraries that we offer to the customers at time period
t is given by ut. We assume that the customer arrivals at different time periods and the purchasing
decisions of different customers are independent. As evident from our notation, we also assume that the
customer arrival and purchase probabilities do not depend on the specific time periods. However, this
assumption is only for notational brevity and it is straightforward to make these probabilities dependent
on the time period.

We use xit to denote the remaining capacity on flight leg i at time period t so that the vector
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xt = {xit : i ∈ L} captures the state of the leg capacities at time period t. Since we can offer an
itinerary only if there is enough remaining capacity on all of the flight legs that are used by this
itinerary, the set of itineraries that we can offer to the customers at time period t is given by

U(xt) = {ut ∈ {0, 1}|J | : aij ujt ≤ xit ∀ i ∈ L, j ∈ J }.

We can formulate the problem as a dynamic program by using xt as the state variable. Letting C =
maxi∈L{ci} and C = {0, . . . , C}, we use C|L| as the state space. Using ei to denote the |L|-dimensional
unit vector with a one in the component corresponding to i ∈ L, we can find the optimal policy by
computing the value functions through the optimality equation

Vt(xt) = max
ut∈U(xt)

{ ∑

j∈J
λPj(ut)

[
rj + Vt+1(xt −

∑
i∈L aij ei)

]
+

[
1− λ + λPφ(ut)

]
Vt+1(xt)

}

= max
ut∈U(xt)

{ ∑

j∈J
λPj(ut)

[
rj + Vt+1(xt −

∑
i∈L aij ei)− Vt+1(xt)

]}
+ Vt+1(xt), (1)

where the second equality follows from the fact that Pφ(ut) = 1−∑
j∈J Pj(ut). For notational brevity,

we assume that λ = 1 throughout the rest of the paper. We note that this assumption is without loss
of generality, since assuming λ = 1 is equivalent to letting P̃j(ut) = λPj(ut) and working with the
probabilities {P̃j(ut) : j ∈ J } instead of {Pj(ut) : j ∈ J }.

Since the number of possible values for the state variable xt in the optimality equation in (1) grows
exponentially with the number of flight legs, it is quite difficult to compute the value functions through
this optimality equation. In the next two sections, we describe several approaches to approximate the
value functions.

2 Decomposing the Network Revenue Management Problem

In this section, we present an approximate method that decomposes the optimality equation in (1)
by the flight legs. This method corresponds to AP decomposition that we mention in the introduction
section. To this end, we begin by allocating the revenue associated with an itinerary among the different
flight legs. In particular, we let αijt be the portion of the revenue generated from selling itinerary j at
time period t that is allocated to flight leg i. We do not specify yet how the revenue allocations are
chosen, but they should clearly satisfy

∑

i∈L
αijt = rj ∀ j ∈ J , t ∈ T . (2)

The revenue allocations {αijt : i ∈ L, j ∈ J , t ∈ T } immediately allow us to formulate a single-
leg revenue management problem for each flight leg in the airline network. In the single-leg revenue
management problem that takes place over flight leg i, if a customer purchases itinerary j at time period
t, then we generate a revenue of αijt and consume aij units of capacity. We use zit = {zijt : j ∈ J } ∈
{0, 1}|J | to denote the set of itineraries that we offer to the customers at time period t in the single-leg
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revenue management problem that takes place over flight leg i. Since we focus only on flight leg i, the
set of itineraries that we can offer to the customers at time period t is given by

Ui(xit) = {zit ∈ {0, 1}|J | : aij zijt ≤ xit ∀ j ∈ J }.

In this case, following the same argument that we use to obtain the optimality equation in (1) but
focusing only on flight leg i, the single-leg revenue management problem that takes place over flight leg
i can be formulated as a dynamic program as

vit(xit |α) = max
zit∈Ui(xit)

{ ∑

j∈J
Pj(zit)

[
αijt + vi,t+1(xit − aij |α)− vi,t+1(xit |α)

]}
+ vi,t+1(xit |α), (3)

where the argument α = {αijt : i ∈ L, j ∈ J , t ∈ T } in the value functions emphasizes that the
solution to the optimality equation above depends on the revenue allocations.

It is possible to show that we obtain upper bounds on the value functions for the network revenue
management problem by using the approach outlined above. In other words, it is possible to show that
we have Vt(xt) ≤

∑
i∈L vit(xit |α) for all xt ∈ C|L|, t ∈ T as long as {αijt : i ∈ L, j ∈ J , t ∈ T }

satisfy (2). Nevertheless, we can tighten this bound further by the following intuitive observation. We
ideally would like to offer the same set of itineraries in the single-leg revenue management problems that
take place over the different flight legs, as the network revenue management problem needs one set of
itineraries at each time period to offer to the customers. However, the single-leg revenue management
problems that take place over the different flight legs do not try to coordinate their decisions. For
example, we may offer itineraries {j1, j2} in the problem that takes place over flight leg i1, but at
the same time, offer itineraries {j3, j4} in the problem that takes place over flight leg i2. We propose
including a penalty term in the optimality equation in (3) to penalize the discrepancies of the decisions
in the single-leg revenue management problems for the different flight legs. In particular, we let β =
{βijt : i ∈ L, j ∈ J , t ∈ T } be penalty parameters that satisfy

∑

i∈L
βijt = 0 ∀ j ∈ J , t ∈ T (4)

and add the penalty term
∑

j∈J βijt zijt to the optimality equation in (3). Similar to the revenue
allocations, we do not specify yet how the penalty parameters are chosen and the reason for imposing
the condition in (4) will be clear shortly. With the addition of the penalty term, the single-leg revenue
management problem that takes place over flight leg i takes the form

vit(xit |α, β) = max
zit∈Ui(xit)

{ ∑

j∈J
Pj(zit)

[
αijt + vi,t+1(xit − aij |α, β)− vi,t+1(xit |α, β)

]

+
∑

j∈J
βijt zijt

}
+ vi,t+1(xit |α, β). (5)

The next proposition shows that we obtain upper bounds on the value functions for the network
revenue management problem by solving the optimality equation in (5). The proof of this proposition
also gives an algebraic justification for imposing the condition in (4).
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Proposition 1 If (α, β) satisfies the conditions in (2) and (4), then for all xt ∈ C|L|, t ∈ T , we have
Vt(xt) ≤

∑
i∈L vit(xit |α, β).

Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. Assuming that the result holds for time period t + 1, we let ût = {ûjt : j ∈ J } be the
optimal solution to problem (1). Using (2) and (4), we obtain
∑

j∈J
Pj(ût)

[
rj + Vt+1(xt −

∑
i∈L aij ei)− Vt+1(xt)

]
+ Vt+1(xt)

=
∑

j∈J
Pj(ût)

[ ∑

i∈L
αijt + Vt+1(xt −

∑
i∈L aij ei)

]
+

∑

j∈J

[ ∑

i∈L
βijt

]
ûjt +

[
1−

∑

j∈J
Pj(ût)

]
Vt+1(xt)

≤
∑

i∈L

∑

j∈J
Pj(ût)

[
αijt + vi,t+1(xit − aij |α, β)

]
+

∑

i∈L

∑

j∈J
βijt ûjt +

∑

i∈L

[
1−

∑

j∈J
Pj(ût)

]
vi,t+1(xit |α, β)

≤
∑

i∈L
vit(xit |α, β),

where the first inequality follows from the induction assumption and the second inequality follows from
the fact that ût is a feasible but not necessarily an optimal solution to problem (5). The result follows
by noting that the first expression in the chain of inequalities above is equal to Vt(xt). 2

In addition to the algebraic justification in the proof of Proposition 1, the intuitive reason for
imposing the condition in (4) on the penalty parameters is that if we make the same decision for
itinerary j in all of the single-leg revenue management problems (that is, we have zijt = zljt for all
i, l ∈ L), then we have

∑
i∈L βijt zijt = 0 so that the total penalty incurred for itinerary j by all

of the flight legs is equal to zero. We also emphasize that since the optimality equation in (3) is a
special case of (5) that is obtained by setting the penalty parameters to zero, Proposition 1 shows that
Vt(xt) ≤

∑
i∈L vit(xit |α) for all xt ∈ C|L|, t ∈ T .

Since the initial leg capacities are c = {ci : i ∈ L}, the optimal total expected revenue for the
network revenue management problem is V1(c). Proposition 1 implies that

∑
i∈L vi1(ci |α, β) provides

an upper bound on V1(c) as long as (α, β) satisfies (2) and (4). To obtain the tightest possible upper
bound on the optimal total expected revenue, we propose solving the problem

min
(α,β)∈P

{ ∑

i∈L
vi1(ci |α, β)

}
, (6)

where the feasible set P is defined as

P =
{

(α, β) :
∑

i∈L
αijt = rj ∀ j ∈ J , t ∈ T

∑

i∈L
βijt = 0 ∀ j ∈ J , t ∈ T

}
.

By Proposition 1 and the preceding discussion, the optimal objective value of problem (6) provides an
upper bound on the optimal total expected revenue. We also note that problem (6) gives us a concrete
method to choose the revenue allocations and the penalty parameters. We refer to problem (6) as the
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auxiliary optimization problem, and the objective function of problem (6) as the dual function. AP
decomposition takes its name from this auxiliary optimization problem. In Section 4, we show that
the dual function is convex. We also show how to compute subgradients of the dual function and how
to carry out projections onto the feasible set P. By using this information, problem (6) can be solved
through subgradient search; see Wolsey (1998). Before doing so, however, we take a detour in Section 3
and compare the upper bound on the optimal total expected revenue that we obtain by solving problem
(6) with the upper bounds obtained by using other solution methods in the literature.

3 Comparing the Upper Bounds

In this section, we first describe two alternative solution methods for the network revenue management
problem with customer choice behavior, both of which provide upper bounds on the optimal total
expected revenue. After this, we show that the upper bound obtained by our AP decomposition is
tighter than the upper bounds obtained by these two solution methods.

3.1 Deterministic Linear Program

One alternative solution method involves formulating a linear program under the assumption that the
customer choices are deterministic and the itineraries can be sold in fractional amounts. The decision
variables in this linear program are {ht(S) : S ⊂ J , t ∈ T } with the interpretation that ht(S) is
the frequency with which we offer the set of itineraries S at time period t. In this case, the expected
revenue that we generate at time period t is

∑
S⊂J

∑
j∈S Pj(S) rj ht(S), where with slight notational

abuse, we use Pj(S) to denote the probability that a customer purchases itinerary j when we offer the
set of itineraries S. Similarly, the expected consumption of the capacity on flight leg i at time period t

is
∑
S⊂J

∑
j∈S Pj(S) aij ht(S). Therefore, we can use the optimal objective value of the problem

max
∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S) rj ht(S) (7)

subject to
∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S) aij ht(S) ≤ ci ∀ i ∈ L (8)

∑

S⊂J
ht(S) = 1 ∀ t ∈ T (9)

ht(S) ≥ 0 ∀S ⊂ J , t ∈ T (10)

as an approximation to the optimal total expected revenue; see Liu and van Ryzin (2008). The number
of decision variables in problem (7)-(10) increases exponentially with the number of itineraries, but Liu
and van Ryzin (2008) show that solving this problem by using column generation is relatively easy when
the customer choices are governed by the multinomial logit model with disjoint consideration sets. We
briefly review this choice model in Section 5.

There are two uses of problem (7)-(10). First, we can use this problem to decide which set of
itineraries to offer. In particular, if we let {π̂i : i ∈ L} be the optimal values of the dual variables
associated with constraints (8), then π̂i essentially captures the opportunity cost of a unit of capacity
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on flight leg i. In this case, we can approximate Vt(xt) with a linear function of the form Ṽt(xt) =∑
i∈L π̂i xit. Plugging this approximation into the right side of the optimality equation in (1) and

noting that Ṽt+1(xt)− Ṽt+1(xt −
∑

i∈L aij ei) =
∑

i∈L aij π̂i, we can solve the problem

max
ut∈U(xt)

{ ∑

j∈J
Pj(ut)

[
rj −

∑

i∈L
aij π̂i

]}
+

∑

i∈L
π̂i xit (11)

to decide which set of itineraries to offer to the customers at time period t. This idea is used in
Zhang and Adelman (2009) and it parallels the traditional bid pricing approach for the network revenue
management problem without customer choice behavior; see Talluri and van Ryzin (2004a).

Second, letting ZLP be the optimal objective value of problem (7)-(10), Liu and van Ryzin (2008)
show that we have V1(c) ≤ ZLP . Therefore, ZLP provides an upper bound on the optimal total expected
revenue and this information can be useful when assessing the optimality gap of a suboptimal control
policy. Later in this section, we show that the upper bound on V1(c) obtained by solving problem (6)
is provably tighter than the one provided by ZLP and this is one of the advantages of our approach.

3.2 Dynamic Programming Decomposition Method of Liu and van Ryzin (2008)

A second solution method is the dynamic programming decomposition method proposed by Liu and
van Ryzin (2008). This solution method corresponds to LvR decomposition that we mention in the
introduction section. The starting point for LvR decomposition is a simple linear programming duality
argument on problem (7)-(10). In particular, letting {π̂i : i ∈ L} be the optimal values of the dual
variables associated with constraints (8) in problem (7)-(10), we choose a fixed flight leg i and relax
constraints (8) for all other flight legs by associating the dual multipliers {π̂l : l ∈ L\ {i}}. In this case,
linear programming duality implies that the linear program

ZLP = max
∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S)

[
rj −

∑

l∈L\{i}
alj π̂l

]
ht(S) +

∑

l∈L\{i}
π̂l cl

subject to (9), (10)∑

t∈T

∑

S⊂J

∑

j∈S
Pj(S) aij ht(S) ≤ ci

has the same optimal objective value as problem (7)-(10). Ignoring the constant term
∑

l∈L\{i} π̂l cl in
the objective function and comparing the problem above with problem (7)-(10), it is easy to see that the
problem above is the deterministic linear program for the single-leg revenue management problem that
takes place over flight leg i and associates the revenue rj −

∑
l∈L\{i} alj π̂l with itinerary j. Therefore,

ZLP −
∑

l∈L\{i} π̂l cl is an upper bound on the optimal total expected revenue in the single-leg revenue
management problem that takes place over flight leg i.

On the other hand, we can obtain the optimal total expected revenue in the single-leg revenue
management problem that takes place over flight leg i by solving the optimality equation

ϑit(xit) = max
zit∈Ui(xit)

{ ∑

j∈J
Pj(zit)

[
rj −

∑

l∈L\{i}
alj π̂l + ϑi,t+1(xit − aij)− ϑi,t+1(xit)

]}
+ ϑi,t+1(xit). (12)
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The optimality equation above is similar to the one in (3), but instead of using the revenue allocations
{αijt : i ∈ L, j ∈ J , t ∈ T }, the optimality equation above assumes that rj −

∑
l∈L\{i} alj π̂l is the

portion of the revenue associated with itinerary j that is allocated to flight leg i. Since the optimal
total expected revenue in the single-leg revenue management problem that takes place over flight leg i

is given by ϑi1(ci), we have ϑi1(ci) ≤ ZLP −
∑

l∈L\{i} π̂l cl by the discussion in the previous paragraph.
Furthermore, it is possible to use an induction argument over the time periods to show that ϑi1(ci) +∑

l∈L\{i} π̂l cl provides an upper bound on the optimal total expected revenue in the original network
revenue management problem; see Proposition 3 in Zhang and Adelman (2009). In other words, we
have V1(c) ≤ ϑi1(ci)+

∑
l∈L\{i} π̂l cl. Therefore, we obtain V1(c) ≤ ϑi1(ci)+

∑
l∈L\{i} π̂l cl ≤ ZLP , which

implies that we can solve the optimality equation in (12) to obtain an upper bound on the optimal total
expected revenue, and this upper bound is tighter than the one provided by ZLP . Furthermore, since
the last inequality is satisfied for all i ∈ L, we can take the minimum over all i ∈ L and use

min
i∈L

{
ϑi1(ci) +

∑

l∈L\{i}
π̂l cl

}

as an upper bound on the optimal total expected revenue.

Besides providing an upper bound on the optimal total expected revenue, another use of LvR
decomposition is that we can use

∑
i∈L ϑit(xit) as an approximation to Vt(xt). Therefore, we can

replace {Vt(xt) : xt ∈ C|L|, t ∈ T } in the right side of the optimality equation in (1) with the value
function approximations {∑i∈L ϑit(xit) : xt ∈ C|L|, t ∈ T } and solve the problem

max
ut∈U(xt)

{ ∑

j∈J
Pj(ut)

[
rj +

∑

i∈L
ϑi,t+1(xit − aij)−

∑

i∈L
ϑi,t+1(xit)

]}
+

∑

i∈L
ϑi,t+1(xit) (13)

to decide which set of itineraries to offer to the customers at time period t.

3.3 Comparison of the Solution Methods

An important shortcoming of the deterministic linear program is that it assumes that the customer
choices are deterministic, whereas both AP and LvR decomposition try to address the randomness in
the customer choices by using dynamic programming formulations. Furthermore, the control policy that
we derive from the deterministic linear program solves problem (11) to decide which set of itineraries
to offer to the customers at time period t. As mentioned above, problem (11) is obtained by using∑

i∈L π̂i xit as an approximation to Vt(xt). The value function approximation
∑

i∈L π̂i xit essentially
assumes that the marginal value of an additional unit of capacity on flight leg i is constant at π̂i and
does not depend on the time period or the remaining capacity on the flight leg. On the other hand,
AP and LvR decomposition respectively use the value function approximations

∑
i∈L vit(xit |α, β) and∑

i∈L ϑit(xit), both of which capture the fact that the marginal value of an additional unit of capacity
on a flight leg depends on the time period and the remaining capacity on the flight leg.

There are several advantages of AP decomposition when compared with LvR decomposition. Any
approach that decomposes the network revenue management problem into a sequence of single-leg
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revenue management problems can suffer from two sources of approximation error. First, the revenue
allocations associated with an itinerary in the different single-leg revenue management problems may
not sum up to the original revenue associated with the itinerary. We call this potential source of error
as the revenue decoupling effect. Second, the single-leg revenue management problems may not be able
to coordinate their decisions by considering their impacts on each other. We call this potential source
of error as the capacity decoupling effect. Noting the optimality equation in (12), LvR decomposition
assumes that rj−

∑
l∈L\{i} alj π̂l is the portion of the revenue associated with itinerary j that is allocated

to flight leg i. Since we do not necessarily have
∑

i∈L[rj −
∑

l∈L\{i} alj π̂l] = rj , the revenue allocations
associated with itinerary j in the different single-leg revenue management problems may not sum up
to the original revenue associated with itinerary j. Therefore, LvR decomposition may suffer from the
revenue decoupling effect. On the other hand, AP decomposition assumes that αijt is the portion of
the revenue associated with itinerary j that is allocated to flight leg i at time period t and the revenue
allocations satisfy

∑
i∈L αijt = rj for all j ∈ J , t ∈ T . Therefore, the revenue decoupling effect is

not an issue for AP decomposition. Furthermore, AP decomposition alleviates the capacity decoupling
effect by using the penalty parameters {βijt : i ∈ L, j ∈ J , t ∈ T } to penalize the discrepancies of the
decisions in the different single-leg revenue management problems. In contrast, LvR decomposition has
no such mechanism and it ignores the capacity decoupling effect. Due to the fact that AP decomposition
is more competent than LvR decomposition in dealing with the revenue and capacity decoupling effects,
we shortly show in Proposition 2 that the upper bound on the optimal total expected revenue obtained
by AP decomposition is tighter than the one obtained by LvR decomposition.

Another important distinction between AP and LvR decomposition lies in the value function
approximations used by these two methods. As mentioned above, LvR decomposition uses

∑
i∈L ϑit(xit)

as an approximation to Vt(xt). Although ϑit(xit) +
∑

l∈L\{i} π̂l xlt is an upper bound on Vt(xt),∑
i∈L ϑit(xit) is not necessarily an upper or a lower bound on Vt(xt). Using

∑
i∈L ϑit(xit) as an

approximation to Vt(xt) is based on a heuristic argument and it is disconcerting that the value function
approximations that are used by LvR decomposition are different from the upper bounds that it comes
up with. On the other hand, AP decomposition uses

∑
i∈L vit(xit |α, β) as an approximation to Vt(xt)

and Proposition 1 shows that
∑

i∈L vit(xit |α, β) is indeed an upper bound on Vt(xt).

The next proposition compares the upper bounds on the optimal total expected revenue obtained
by AP decomposition, the deterministic linear program and LvR decomposition.

Proposition 2 We have

V1(c) ≤ min
(α,β)∈P

{∑

i∈L
vi1(ci |α, β)

}
≤ min

i∈L

{
ϑi1(ci) +

∑

l∈L\{i}
π̂l cl

}
≤ ZLP .

Proof The first inequality follows from Proposition 1 and Zhang and Adelman (2009) show the third
inequality. Therefore, we only focus on the second inequality here. We fix flight leg i and let α̂ijt =
rj −

∑
l∈L\{i} alj π̂l for all j ∈ J , t ∈ T , α̂ljt = alj π̂l for all l ∈ L \ {i}, j ∈ J , t ∈ T and β̂ljt = 0

for all l ∈ L, j ∈ J , t ∈ T . We clearly have (α̂, β̂) ∈ P. Our proof shows that
∑

l∈L vlt(xlt | α̂, β̂) ≤
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ϑit(xit) +
∑

l∈L\{i} π̂l xlt for all xt ∈ C|L|, t ∈ T . The result then follows from the fact that the flight leg
i is arbitrary and (α̂, β̂) ∈ P.

First, it is easy to see that vit(xit | α̂, β̂) = ϑit(xit) for all xit ∈ C, t ∈ T . In particular, if we let
αijt = α̂ijt and βijt = β̂ijt for all j ∈ J , t ∈ T in (5), then the optimality equations in (5) and (12)
become identical. Second, we show that vlt(xlt | α̂, β̂) ≤ π̂l xlt for all xlt ∈ C, l ∈ L \ {i}, t ∈ T by using
induction over the time periods. It is easy to show the result for the last time period. Assuming that
the result holds for time period t, we let ẑlt be an optimal solution to problem (5) when we solve this
problem for flight leg l with (α, β) = (α̂, β̂). We have

vlt(xlt | α̂, β̂) =
∑

j∈J
Pj(ẑlt)

[
alj π̂l + vl,t+1(xlt − alj | α̂, β̂)− vl,t+1(xlt | α̂, β̂)

]
+ vl,t+1(xlt | α̂, β̂)

=
∑

j∈J
Pj(ẑlt)

[
alj π̂l + vl,t+1(xlt − alj | α̂, β̂)

]
+

[
1−

∑

j∈J
Pj(ẑlt)

]
vl,t+1(xlt | α̂, β̂)

≤
∑

j∈J
Pj(ẑlt)

[
alj π̂l + π̂l [xlt − alj ]

]
+

[
1−

∑

j∈J
Pj(ẑlt)

]
π̂l xlt = π̂l xlt,

where the inequality follows from the induction assumption and the fact that we have 0 ≤ xlt −
alj ∈ C whenever Pj(ẑlt) > 0. Therefore, we have vit(xit | α̂, β̂) = ϑit(xit) for all xit ∈ C, t ∈ T and
vlt(xlt | α̂, β̂) ≤ π̂l xlt for all xlt ∈ C, l ∈ L \ {i}, t ∈ T and the result follows. 2

4 Solving the Auxiliary Optimization Problem

In this section, we show that vi1(ci |α, β) is a convex function of (α, β) for all i ∈ L. Since the
dual function is of the form

∑
i∈L vi1(ci |α, β), this result implies that the dual function is convex, in

which case, we can solve problem (6) through subgradient search. To this end, we let zit(xit |α, β) =
{zijt(xit |α, β) : j ∈ J } be an optimal solution to problem (5). We use the arguments xit, α and β to
emphasize that the optimal solution to problem (5) depends on the remaining capacity on flight leg i,
the revenue allocations and the penalty parameters. In this case, (5) can be written as

vit(xit |α, β) =
∑

j∈J
Pj(zit(xit |α, β))αijt +

∑

k∈C

∑

j∈J
Pj(zit(xit |α, β))1(xit − aij = k) vi,t+1(k |α, β)

−
∑

k∈C

∑

j∈J
Pj(zit(xit |α, β))1(xit = k) vi,t+1(k |α, β) +

∑

j∈J
βijt zijt(xit |α, β)

+
∑

k∈C
1(xit = k) vi,t+1(k |α, β),

where 1(·) is the indicator function. Collecting the terms, we obtain

vit(xit |α, β) =
∑

j∈J
Pj(zit(xit |α, β))αijt +

∑

j∈J
βijt zijt(xit |α, β)

+
∑

k∈C

{ ∑

j∈J
Pj(zit(xit |α, β))1(xit − aij = k)

−
∑

j∈J
Pj(zit(xit |α, β))1(xit = k) + 1(xit = k)

}
vi,t+1(k |α, β). (14)
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Although we make use of (14) only algebraically, we note that we can interpret the expression in the
curly brackets above as the probability that the remaining leg capacity at the next time period is k

given that the remaining leg capacity at the current time period is xit and the set of itineraries that we
offer is given by zit(xit |α, β).

To write (14) in matrix notation, we define some vectors and matrices. We do not differentiate
between column and row vectors since the difference will always be clear from the context. We let
vit(α, β) be the vector {vit(xit |α, β) : xit ∈ C}, αit be the vector {αijt : j ∈ J } and βit be the
vector {βijt : j ∈ J }. We also let Pit(α, β) be the |C| × |J | dimensional matrix whose (xit, j)th
component is Pj(zit(xit |α, β)), Zit(α, β) be the |C|×|J | dimensional matrix whose (xit, j)th component
is zijt(xit |α, β) and Qit(α, β) be the |C| × |C| dimensional matrix whose (xit, k)th component is the
expression in the curly brackets in (14). With these definitions, we can write (14) in matrix notation as

vit(α, β) = Pit(α, β) αit + Zit(α, β) βit + Qit(α, β) vi,t+1(α, β). (15)

The next proposition shows that vi1(ci |α, β) has a subgradient when visualized as a function of (α, β).

Proposition 3 If we let (α, β) and (α̂, β̂) be two sets of revenue allocations and penalty parameters,
then for all i ∈ L, t ∈ T , we have

vit(α, β)− vit(α̂, β̂) ≥ Pit(α̂, β̂) [αit − α̂it] + Zit(α̂, β̂) [βit − β̂it]

+ Qit(α̂, β̂) Pi,t+1(α̂, β̂) [αi,t+1 − α̂i,t+1] + Qit(α̂, β̂) Zi,t+1(α̂, β̂) [βi,t+1 − β̂i,t+1]

+ . . . + Qit(α̂, β̂) Qi,t+1(α̂, β̂) . . . Qi,τ−1(α̂, β̂) Piτ (α̂, β̂) [αiτ − α̂iτ ]

+ Qit(α̂, β̂) Qi,t+1(α̂, β̂) . . . Qi,τ−1(α̂, β̂) Ziτ (α̂, β̂) [βiτ − β̂iτ ].

Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. We assume that the result holds for time period t+1 and show that it holds for time period
t. Since zit(xit | α̂, β̂) is not necessarily an optimal solution to problem (5) when the revenue allocations
and the penalty parameters are (α, β), (14) (or its equivalent in matrix notation in (15)) implies that

vit(α̂, β̂) = Pit(α̂, β̂) α̂it + Zit(α̂, β̂) β̂it + Qit(α̂, β̂) vi,t+1(α̂, β̂)

vit(α, β) ≥ Pit(α̂, β̂) αit + Zit(α̂, β̂) βit + Qit(α̂, β̂) vi,t+1(α, β).

Subtracting the two expressions above, we obtain

vit(α, β)− vit(α̂, β̂) ≥ Pit(α̂, β̂) [αit − α̂it] + Zit(α̂, β̂) [βit − β̂it] + Qit(α̂, β̂) [vi,t+1(α, β)− vi,t+1(α̂, β̂)].

The result follows by using the induction assumption in the right side of the expression above and noting
that all of the components of the matrix Qit(α̂, β̂) are positive. 2

If we let Πit(α, β) = Qi1(α, β) Qi2(α, β) . . . Qi,t−1(α, β) Pit(α, β) with Πi1(α, β) = Pi1(α, β) and
Ψit(α, β) = Qi1(α, β)Qi2(α, β) . . . Qi,t−1(α, β) Zit(α, β) with Ψi1(α, β) = Zi1(α, β), then Proposition 3
implies that

vi1(α, β) ≥ vi1(α̂, β̂) + Πi1(α̂, β̂) [αi1 − α̂i1] + Ψi1(α̂, β̂) [βi1 − β̂i1] + Πi2(α̂, β̂) [αi2 − α̂i2]

+ Ψi2(α̂, β̂) [βi2 − β̂i2] + . . . + Πiτ (α̂, β̂) [αiτ − α̂iτ ] + Ψiτ (α̂, β̂) [βiτ − β̂iτ ].
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Letting εi be the |C|-dimensional unit vector with a one in the cith component, if we multiply the
inequality above by εi and note that vi1(ci |α, β) = εi vi1(α, β), then we obtain

vi1(ci |α, β) ≥ vi1(ci | α̂, β̂) +
∑

t∈T
εi Πit(α̂, β̂) [αit − α̂it] +

∑

t∈T
εi Ψit(α̂, β̂) [βit − β̂it].

The last inequality shows that vi1(ci |α, β) has a subgradient when visualized as a function of (α, β),
and hence, vi1(ci |α, β) is convex. The dual function, being a sum of convex functions, is also convex.
The last inequality also shows how to obtain a subgradient of the dual function. Therefore, we can solve
problem (6) by using subgradient search.

When solving problem (6) by using subgradient search, we may need to project the iterates onto the
feasible set P. Carrying out this projection turns out to be quite easy. To illustrate, we assume that
we want to project the revenue allocations p = {pijt : i ∈ L, j ∈ J , t ∈ T } and the penalty parameters
q = {qijt : i ∈ L, j ∈ J , t ∈ T } onto the feasible set P. This requires solving the problem

min
1
2

∑

t∈T

∑

j∈J

∑

i∈L
[αijt − pijt]2 +

1
2

∑

t∈T

∑

j∈J

∑

i∈L
[βijt − qijt]2 (16)

subject to (2), (4). (17)

Associating the Lagrange multipliers µ = {µjt : j ∈ J , t ∈ T } and σ = {σjt : j ∈ J , t ∈ T } with the
two sets of constraints, the Lagrange function is

L(α, β, µ, σ) =
1
2

∑

t∈T

∑

j∈J

∑

i∈L
[αijt − pijt]2 +

1
2

∑

t∈T

∑

j∈J

∑

i∈L
[βijt − qijt]2

+
∑

t∈T

∑

j∈L

[ ∑

i∈L
αijt − rj

]
µjt +

∑

t∈T

∑

j∈L

[ ∑

i∈L
βijt

]
σjt.

If we minimize the Lagrange function over (α, β), then the first order conditions imply that the minimizer
(α̂, β̂) is given by α̂ijt = pijt − µjt and β̂ijt = qijt − σjt for all i ∈ L, j ∈ J , t ∈ T . Plugging (α̂, β̂) into
(2) and (4), it is easy to see that the Lagrange multipliers should satisfy µjt =

[∑
i∈L pijt− rj

]
/|L| and

σjt =
∑

i∈L qijt/|L| for all j ∈ J , t ∈ T . Therefore, if we let α̂ijt = pijt−µjt = pijt−
[∑

i∈L pijt−rj

]
/|L|

and β̂ijt = qijt−σjt = qijt−
∑

i∈L qijt/|L| for all i ∈ L, j ∈ J , t ∈ T , then (α̂, β̂) is the optimal solution
to problem (16)-(17).

5 Computational Experiments

In this section, we numerically compare the performances of AP decomposition, the deterministic linear
program and LvR decomposition. We begin by describing the benchmark solution methods and the
experimental setup. After this, we present our computational results.

5.1 Benchmark Solution Methods

We compare the performances of the following three solution methods.

AP Decomposition This solution method corresponds to AP decomposition that we describe in
Section 2. In particular, AP decomposition solves problem (6) to obtain an optimal solution (α̂, β̂) and
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decides which itineraries to offer at time period t by using {∑i∈L vit(xit | α̂, β̂) : xt ∈ C|L|, t ∈ T } as
approximations to {Vt(xt) : xt ∈ C|L|, t ∈ T } in the optimality equation in (1). We use subgradient
search to solve problem (6) and use a step size of the form 1, 500/

√
k at iteration k. We note that our

step size selection does not guarantee convergence to an optimal solution, but it consistently provided
good solutions and stable performance for our test problems.

Deterministic Linear Program This solution method corresponds to the deterministic linear
program that we describe in Section 3. We refer to this solution method as DLP. Our practical
implementation of DLP divides the decision horizon into five equal segments and resolves problem
(7)-(10) at the beginning of each segment by replacing the right side of constraints (8) with the current
remaining leg capacities and the set of time periods T with the current set of remaining time periods.
In this case, DLP plugs the optimal values of the dual variables associated with constraints (8) into
problem (11) to decide which itineraries to offer at time period t.

LvR Decomposition This solution method corresponds to LvR decomposition that we describe in
Section 3. In particular, LvR decomposition solves the optimality equation in (12) and decides which
itineraries to offer at time period t by using {∑i∈L ϑit(xit) : xt ∈ C|L|, t ∈ T } as approximations to
{Vt(xt) : xt ∈ C|L|, t ∈ T } in the optimality equation in (1). Therefore, the only difference between AP
and LvR decomposition lies in the value function approximations that they use.

5.2 Experimental Setup

In all of our test problems, we assume that the customer choices are governed by the multinomial
logit model with disjoint consideration sets. For brevity, we refer to this choice model simply as the
logit model. The logit model assumes that there are multiple customer types and the customers of
different types are interested in disjoint sets of itineraries. We denote the set of customer types by G.
At each time period, a customer of type g arrives with probability λg. The set of itineraries that a
customer of type g is interested in is Jg. We assume that Jg1 ∩ Jg2 = ∅ whenever g1 6= g2 so that the
customers of different types are interested in disjoint sets of itineraries. For example, a customer type
may be associated with a particular origin-destination pair. In this case, Jg corresponds to the set of
itineraries that connect the origin-destination pair associated with customer type g and a customer of
type g makes a choice within the set of itineraries Jg. We note that there can be different itineraries
with different connecting flight legs and fare classes that connect the same origin-destination pair. To
describe the choice process, the logit model associates the positive preference weights {wj : j ∈ J }
with the itineraries. If the set of itineraries that we offer to the customers at time period t is given by
ut = {ujt : j ∈ J } and a customer of type g arrives at this time period, then this customer purchases
itinerary j ∈ Jg with probability

wj ujt∑
`∈Jg

w` u`t + w0
g

,

where w0
g is the preference weight for customer type g associated with purchasing nothing. With the

remaining probability w0
g/[

∑
`∈Jg

w` u`t + w0
g ], the customer leaves without purchasing anything.
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The logit model is crucial for the computational tractability of several problems that we work
with. As mentioned before, the number of decision variables in problem (7)-(10) increases exponentially
with the number of itineraries. However, Liu and van Ryzin (2008) show that the column generation
subproblem for problem (7)-(10) is tractable whenever the customer choices are governed by the logit
model. Similarly, noting the definition of Ui(xit), the number of possible values for the decision variable
zit in problem (12) can be as large as 2|J |, but Liu and van Ryzin (2008) show that problem (12) is
tractable under the logit model.

We present computational experiments on three groups of test problems. The first group involves
parallel flight legs that operate between the same origin-destination pair, whereas the second group
involves an airline network with one hub serving multiple spokes. These two groups of test problems
closely follow the experimental setup in Zhang and Adelman (2009). Finally, the third group involves
an airline network with two hubs serving multiple spokes.

5.3 Computational Results on Parallel Flight Legs

We consider n flight legs that operate between the same origin-destination pair. There is a high-fare
and a low-fare itinerary associated with each flight leg so that the number of itineraries is 2n. There
are two customer types. The first customer type is interested in the high-fare itineraries, whereas the
second customer type is interested in the low-fare itineraries. The preference weights associated with the
itineraries are generated from the Poisson distribution with mean 100. The preference weight associated
with purchasing nothing is set to

∑
j∈J wj/2. The revenues associated with the low-fare itineraries are

generated from the uniform distribution over [10, 100]. The revenue associated with a high-fare itinerary
is obtained by multiplying the revenue associated with the corresponding low-fare itinerary by κ. We
measure the tightness of the leg capacities by following the same approach as in Zhang and Adelman
(2009). In particular, we let ût be the optimal solution to the problem maxut∈{0,1}|J |

∑
j∈J Pj(ut) rj so

that ût captures the set of itineraries that should be offered to the customers so as to maximize the
immediate expected revenue. In this case, we use

γ =

∑
t∈T

∑
i∈L

∑
j∈J Pj(ût) aij∑

i∈L ci
(18)

to measure the tightness of the leg capacities. We note that the expression above computes the ratio
between the total expected capacity consumption and the total capacity over all flight legs. We label
our test problems by the triplet (n, κ, γ) ∈ {4, 5, 6}× {2, 4}× {1.2, 1.6}, where n is the number of flight
legs, κ is the revenue difference between the high-fare and low-fare itineraries and γ is the measure of
the tightness of the leg capacities.

We present our computational results in Table 1. The first column in this table shows the problem
characteristics by using the triplet (n, κ, γ). The second, third and fourth columns respectively show
the upper bounds on the optimal total expected revenue that are obtained by AP decomposition, DLP
and LvR decomposition. The fifth and sixth columns show the percent gaps between the upper bounds
obtained by AP decomposition and the remaining two solution methods. The seventh, eighth and
ninth columns respectively show the total expected revenues obtained by AP decomposition, DLP and
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LvR decomposition. We estimate these total expected revenues by simulating the decisions made by
the three solution methods under multiple customer arrival trajectories. The tenth column shows the
percent gap between the total expected revenues obtained by AP decomposition and DLP. This column
also includes a “X” whenever the total expected revenue obtained by AP decomposition is better than
the one obtained by DLP, a “×” whenever the total expected revenue obtained by DLP is better than
the one obtained by AP decomposition and a “¯” whenever there is no statistically significant difference
between the total expected revenues obtained by AP decomposition and DLP at 95% significance level.
The interpretation of the eleventh column is the same as that of the tenth column, but the eleventh
column compares the performances of AP and LvR decomposition.

Comparing the upper bounds obtained by the different solution methods, we observe that the upper
bounds obtained by AP decomposition are tighter than those obtained by LvR decomposition, which
are, in turn, tighter than those obtained by DLP. This ordering agrees with Proposition 2. The gaps
between the upper bounds obtained by AP decomposition and DLP range between 1.84% and 3.73%,
whereas the gaps between the upper bounds obtained by AP and LvR decomposition range between
1.11% and 1.74%. Comparing the total expected revenues obtained by the different solution methods,
AP decomposition improves on DLP by a margin that ranges between 2.54% and 4.74%. For a majority
of the test problems, the performances of AP and LvR decomposition are quite close. There are three
test problems where AP decomposition performs significantly better than LvR decomposition and the
performances of the two solution methods are indistinguishable for the remaining test problems. There
is one test problem where the performance of AP decomposition lags behind that of LvR decomposition
by a small margin, but the performance gap for this test problem is not statistically significant. The
number of flight legs emerges as an important factor that affects the performance gaps between AP and
LvR decomposition. For the test problems with three, four and five flight legs, the average performance
gaps between AP and LvR decomposition are respectively 0.20%, 0.53% and 0.96%. Finally, it is
worthwhile to note that the gaps between the upper bounds and the total expected revenues obtained
by AP decomposition are extremely small. Therefore, AP decomposition essentially obtains the optimal
solution for this group of test problems.

5.4 Computational Results on an Airline Network with One Hub

In this group of test problems, we consider an airline network with one hub serving n spokes. Half
of the spokes have two parallel flight legs to the hub and the other half have two parallel flight legs
from the hub. Figure 1 shows the structure of the airline network with n = 8. There is a high-fare
and a low-fare itinerary associated with every possible sequence of connecting flight legs in the airline
network. We associate a customer type with every origin-destination pair. Depending on its type, a
customer chooses among the itineraries that connect a particular origin-destination pair. The preference
weights associated with the high-fare and low-fare itineraries are respectively generated from the Poisson
distributions with means 50 and 200. The revenues associated with the low-fare spoke-to-hub and hub-
to-spoke itineraries are respectively generated from the uniform distributions over [1, 10] and [10, 100].
The revenue associated with a low-fare spoke-to-spoke itinerary is 95% of the sum of the revenues
associated with the corresponding spoke-to-hub and hub-to-spoke itineraries. Using κ and γ with the
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same interpretation as in the test problems with parallel flight legs, we label our test problems by the
triplet (n, κ, γ) ∈ {8, 10, 12} × {2, 4} × {1.2, 1.6}, where n is the number of spokes. This experimental
setup closely parallels the one in Zhang and Adelman (2009).

We present our computational results in Table 2. The organization of Table 2 is the same as
that of Table 1. For this group of test problems, the upper bounds on the optimal total expected
revenue that are obtained by AP decomposition can significantly improve those obtained by DLP and
LvR decomposition. The average gap between the upper bounds obtained by AP decomposition and
DLP is 3.06%. On the other hand, the average gap between the upper bounds obtained by AP and
LvR decomposition is 2.26%. Comparing the total expected revenues obtained by the different solution
methods, we observe that AP decomposition provides improvements over DLP that range between 1.30%
and 6.36%. For a majority of the test problems, the gaps between the total expected revenues obtained
by AP and LvR decomposition exceed 2.00%. Such gaps are considered quite significant in the network
revenue management setting. There is one test problem where the performance of LvR decomposition
is slightly better than that of AP decomposition, but the performance gap for this test problem is not
statistically significant. Finally, we note that the performance gaps between AP decomposition and
the other two solution methods tend to increase as the leg capacities get tighter. If the leg capacities
are very large, then we do not need to pay attention to the effects of the decisions at the current time
period on the future time periods and it becomes trivially optimal to offer the set of itineraries that
maximize the immediate expected revenue. Therefore, we intuitively expect the test problems with
tight leg capacities to be more difficult and it is encouraging that AP decomposition provides especially
good performance for such test problems.

5.5 Computational Results on an Airline Network with Two Hubs

We consider an airline network with two hubs serving n spokes. There are four parallel flight legs that
connect the first hub to the second hub. Half of the spokes have two parallel flight legs to the first
hub and the other half have two parallel flight legs from the second hub. Figure 2 shows the structure
of the airline network with n = 8. Among the set of all possible sequences of connecting flight legs in
the airline network, we randomly sample about 100 and associate a high-fare and a low-fare itinerary
with these sequences of connecting flight legs. Similar to the test problems with one hub, there is a
customer type associated with every origin-destination pair. The preference weights are generated in
the same fashion as in the test problems with one hub. The revenues associated with the low-fare
spoke-to-hub and hub-to-spoke itineraries are generated from the uniform distribution over [10, 100],
whereas the revenues associated with the low-fare hub-to-hub itineraries are generated from the uniform
distribution over [1, 10]. The revenue associated with an itinerary that involves more than one flight
leg is 95% of the sum of the revenues associated with the corresponding single-leg itineraries. Using κ

and γ with the same interpretation as in the test problems with parallel flight legs, we label our test
problems by the triplet (n, κ, γ) ∈ {4, 6, 8} × {2, 4} × {1.2, 1.6}, where n is the number of spokes.

We present our computational results in Table 3. This table is organized in the same fashion as
Table 1. AP decomposition continues to provide significantly tighter upper bounds on the optimal total
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expected revenue when compared with DLP and LvR decomposition. Furthermore, the gaps between the
upper bounds for this group of test problems are noticeably larger than those for the previous two groups.
On the average, the upper bounds obtained by AP decomposition improve the upper bounds obtained
by DLP and LvR decomposition by respectively 5.58% and 4.13%. The average gap between the total
expected revenues obtained by AP decomposition and DLP is 4.60%. The total expected revenues
obtained by AP decomposition are significantly better than those obtained by LvR decomposition for
seven test problems and the performance gaps for these test problems can exceed 3.00%. There is one
test problem where LvR decomposition performs better than AP decomposition with a statistically
significant performance gap. Although both AP and LvR decomposition provide upper bounds on the
optimal total expected revenue, making the decisions by using {∑i∈L vit(xit | α̂, β̂) : xt ∈ C|L|, t ∈ T }
and {∑i∈L ϑit(xit) : xt ∈ C|L|, t ∈ T } as approximations to the value functions is essentially a heuristic
idea. Therefore, LvR decomposition may perform better than AP decomposition, even though the
upper bounds provided by AP decomposition are tighter than those provided by LvR decomposition.
Similar to the test problems with one hub, the performance gaps between AP decomposition and the
other two solution methods tend to increase as the leg capacities get tighter.

Table 4 shows the CPU seconds required for the different solution methods on a Pentium Core 2
Duo PC with 3 GHz CPU and 4 GB RAM. The three portions of the table correspond to the three
groups of test problems in our experimental setup. The CPU seconds for AP decomposition correspond
to the time required to solve problem (6) through 1,500 iterations of subgradient search. On the other
hand, the CPU seconds for DLP correspond to the time required to solve problem (7)-(10), and the
CPU seconds for LvR decomposition correspond to the time required to solve problem (7)-(10) and the
optimality equation in (12). Since n is the primary factor that affects the CPU seconds, we only provide
the average CPU seconds over the test problems. For larger test problems, the CPU seconds for AP
decomposition are larger than those for DLP and LvR decomposition by a factor of five to nine, but the
extra computational effort can be worthwhile noting that AP decomposition provides improvements in
both the upper bounds and the total expected revenues. We also note that as the number of parallel
flight legs or the number of spokes increases, the CPU seconds for AP decomposition scale essentially
in the same manner as the CPU seconds for DLP and LvR decomposition.

6 Conclusions

In this paper, we presented an alternative approach for decomposing the network revenue management
problem with customer choice behavior. Similar to LvR decomposition that appears in the earlier
literature, our approach allocates the revenue associated with an itinerary among the different flight
legs and solves a single-leg revenue management problem for each flight leg in the airline network. The
novel aspect of our decomposition approach is that it uses an auxiliary optimization problem to choose
the revenue allocations and this problem takes the probabilistic nature of the customer choices into
consideration. We showed that our decomposition approach provides an upper bound on the optimal
total expected revenue and this upper bound is tighter than the ones obtained by the deterministic
linear program and LvR decomposition. Computational experiments showed that our approach can
perform noticeably better than the deterministic linear program and LvR decomposition.
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Figure 1: Structure of the airline network with one hub and eight spokes.

Figure 2: Structure of the airline network with two hubs and eight spokes.

Upper Bnd. on % Gap Total Exp. Rev. % Gap
Problem Opt. Total Exp. Rev. with AP Obtained by with AP
(n, κ, γ) AP DLP LvR DLP LvR AP DLP LvR DLP LvR
(4, 2, 1.2) 3,302 3,397 3,347 2.88 1.36 3,267 3,140 3,253 3.88 X 0.44 ¯
(4, 2, 1.6) 2,649 2,726 2,688 2.91 1.47 2,623 2,499 2,625 4.74 X -0.08 ¯
(4, 4, 1.2) 5,016 5,151 5,093 2.69 1.54 4,961 4,835 4,945 2.54 X 0.32 ¯
(4, 4, 1.6) 4,322 4,483 4,395 3.73 1.69 4,282 4,171 4,278 2.60 X 0.10 ¯
(5, 2, 1.2) 3,978 4,051 4,024 1.84 1.16 3,933 3,781 3,897 3.86 X 0.91 X
(5, 2, 1.6) 3,229 3,301 3,265 2.23 1.11 3,192 3,077 3,190 3.60 X 0.06 ¯
(5, 4, 1.2) 5,986 6,116 6,064 2.17 1.30 5,923 5,751 5,873 2.91 X 0.84 ¯
(5, 4, 1.6) 5,211 5,366 5,283 2.97 1.38 5,155 5,009 5,138 2.83 X 0.32 ¯
(6, 2, 1.2) 4,960 5,053 5,027 1.88 1.35 4,879 4,712 4,802 3.42 X 1.58 X
(6, 2, 1.6) 3,960 4,042 4,012 2.07 1.31 3,913 3,773 3,901 3.57 X 0.31 ¯
(6, 4, 1.2) 7,394 7,557 7,508 2.20 1.54 7,301 7,102 7,198 2.72 X 1.42 X
(6, 4, 1.6) 6,368 6,546 6,479 2.80 1.74 6,299 6,125 6,266 2.76 X 0.52 ¯
Average 2.53 1.41 3.28 0.56

Table 1: Comparison between the three solution methods on parallel flight legs.
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Upper Bnd. on % Gap Total Exp. Rev. % Gap
Problem Opt. Total Exp. Rev. with AP Obtained by with AP
(n, κ, γ) AP DLP LvR DLP LvR AP DLP LvR DLP LvR
(8, 2, 1.2) 3,579 3,821 3,742 6.77 4.56 3,423 3,309 3,437 3.32 X -0.41 ¯
(8, 2, 1.6) 3,207 3,490 3,426 8.81 6.82 2,993 2,871 2,986 4.10 X 0.24 ¯
(8, 4, 1.2) 9,016 9,534 9,396 5.75 4.22 8,436 8,239 8,424 2.35 X 0.15 ¯
(8, 4, 1.6) 7,204 7,337 7,315 1.85 1.55 6,788 6,356 6,500 6.36 X 4.25 X
(10, 2, 1.2) 7,944 8,257 8,170 3.94 2.85 7,361 7,172 7,212 2.57 X 2.02 X
(10, 2, 1.6) 6,131 6,160 6,151 0.47 0.32 5,765 5,472 5,514 5.08 X 4.37 X
(10, 4, 1.2) 16,027 16,574 16,404 3.42 2.36 14,869 14,477 14,570 2.64 X 2.02 X
(10, 4, 1.6) 12,307 12,325 12,307 0.15 0.00 11,672 10,960 11,186 6.11 X 4.16 X
(12, 2, 1.2) 8,649 8,872 8,834 2.58 2.14 8,039 7,935 8,010 1.30 X 0.36 ¯
(12, 2, 1.6) 6,779 6,795 6,787 0.23 0.11 6,355 6,102 6,064 3.99 X 4.58 X
(12, 4, 1.2) 17,293 17,744 17,667 2.61 2.16 16,160 15,854 16,018 1.89 X 0.88 X
(12, 4, 1.6) 13,571 13,590 13,573 0.14 0.02 12,820 12,316 12,141 3.93 X 5.30 X
Average 3.06 2.26 3.64 2.33

Table 2: Comparison between the three solution methods on an airline network with one hub.

Upper Bnd. on % Gap Total Exp. Rev. % Gap
Problem Opt. Total Exp. Rev. with AP Obtained by with AP
(n, κ, γ) AP DLP LvR DLP LvR AP DLP LvR DLP LvR
(4, 2, 1.2) 3,654 4,023 3,934 10.10 7.66 3,477 3,339 3,499 3.97 X -0.63 ¯
(4, 2, 1.6) 3,093 3,431 3,332 10.93 7.73 2,932 2,839 2,944 3.17 X -0.39 ¯
(4, 4, 1.2) 8,051 8,777 8,542 9.02 6.10 7,657 7,025 7,675 8.26 X -0.24 ¯
(4, 4, 1.6) 6,710 7,162 7,004 6.74 4.38 6,354 5,935 6,155 6.59 X 3.13 X
(6, 2, 1.2) 5,982 6,444 6,337 7.72 5.93 5,591 5,381 5,633 3.75 X -0.76 ×
(6, 2, 1.6) 4,964 5,155 5,122 3.84 3.18 4,662 4,435 4,538 4.88 X 2.65 X
(6, 4, 1.2) 12,998 13,561 13,466 4.33 3.60 12,210 11,834 11,889 3.08 X 2.63 X
(6, 4, 1.6) 10,326 10,407 10,371 0.78 0.44 9,819 9,184 9,577 6.47 X 2.46 X
(8, 2, 1.2) 8,437 8,977 8,858 6.40 4.99 7,922 7,702 7,932 2.78 X -0.13 ¯
(8, 2, 1.6) 6,981 7,155 7,114 2.49 1.91 6,551 6,218 6,408 5.08 X 2.18 X
(8, 4, 1.2) 17,897 18,644 18,554 4.17 3.67 16,780 16,395 16,621 2.29 X 0.95 X
(8, 4, 1.6) 14,338 14,405 14,341 0.47 0.02 13,526 12,860 13,295 4.93 X 1.71 X
Average 5.58 4.13 4.60 1.13

Table 3: Comparison between the three solution methods on an airline network with two hubs.

Parallel Flights

CPU seconds
n AP DLP LvR
4 35 0.5 0.6
5 53 0.6 0.8
6 73 0.7 1.2

Air. Netw. with One Hub

CPU seconds
n AP DLP LvR
8 436 20 59
10 695 41 119
12 949 64 195

Air. Netw. with Two Hubs

CPU seconds
n AP DLP LvR
4 375 19 34
6 623 31 68
8 1,026 51 123

Table 4: CPU seconds required for the different solution methods.
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