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One of the fundamental issues in network revenue management is capacity control, which involves

deciding which itineraries to make available for sale at each time point during the booking period. A

widely used heuristic to make the capacity control decisions is a bid price control policy. A bid price

control policy associates a bid price with each flight leg, which can be interpreted as the opportunity

cost of a unit of capacity on that flight leg. In this case, an itinerary request is accepted only if the

revenue generated by it exceeds the sum of the bid prices of the flights legs that are in the requested

itinerary; see Talluri and van Ryzin (2004).

The literature on bid price controls can be broadly classified into two categories depending on

the underlying demand model. The first category consists of methods that work under the so called

independent demand assumption, which essentially states that each customer arrives into the system

with the intention of purchasing a fixed itinerary. If this itinerary is available for purchase, then the

customer purchases it. Otherwise, the customer leaves the system without purchasing anything. The

classical method to obtain bid prices in this setting involves solving a linear program. This linear

program is formulated under the assumption that itineraries can be sold in fractional quantities and

the demand for an itinerary always takes on its expected value. In this linear program, there is one

constraint for each flight leg, which ensures that the total capacity consumed by the accepted itinerary

requests do not exceed the capacity of that flight leg. The optimal values of the dual variables associated

with the flight leg capacity constraints can be viewed an approximation to the opportunity cost of a unit

of capacity on the flight legs. Therefore, these dual variables are used as bid prices. A clear deficiency

of the linear program is that it is a deterministic approximation to a problem that actually takes place

under uncertainty. Talluri and van Ryzin (1999) propose a randomized version of the linear program

that compensates for this deficiency by working with samples of the demand random variables rather

than their expected values. The latter linear program is solved for many samples of the demand random

variables and the sample average of the optimal dual variables associated with the flight leg capacity

constraints are used as the bid prices.

The second category of bid price control methods allow for the fact that there may be many itineraries

that are acceptable to a customer and the purchasing decision of a customer may change depending

on the set of itineraries that are made available for purchase. Many of the ideas from the independent

demand setting can be transferred to the setting where customers choose among the available itineraries.

For example, Liu and van Ryzin (2008) propose a linear program that can be viewed as an extension

of the aforementioned deterministic linear program to handle customer choice behavior.

In this paper, we propose a randomized linear program to obtain bid prices for network revenue

management problems with customer choice behavior. We start off with a mixed integer programming

formulation, which is a somewhat nonstandard deterministic approximation to the network revenue

management problem. This mixed integer program has a decision variable for each itinerary and each

time period which indicates whether the itinerary is offered at that time period. The optimal solution

to this mixed integer program therefore yields the set of itineraries to be offered at each time period.

We next formulate a linear program that resembles the one used in the so called independent demand

setting, but the key difference in our formulation is that the expected demand for an itinerary is not
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exogenously given. Rather, it is given by the expected demand for the itinerary when we offer the

itineraries in the optimal solution to the mixed integer program. The linear program that we propose

can be easily randomized. We solve it for many different demand samples and use the average of the

dual variables associated with the flight leg capacity constraints as our bid prices.

The approach that we propose has a number of appealing features. First, it can be easily imple-

mented using commercially available optimization software. As a matter of fact, if the customer choices

are governed by the multinomial logit model, then our solution method requires solving linear programs

and linear mixed integer programs, which most commercial software packages are capable of. This is

likely to boost the practical appeal of our approach. Moreover, our numerical study suggests that our

approach is computationally efficient and the solution times are competitive with existing methods.

Second, our approach allows randomization. As a result, the hope is that the bid prices generated by

our approach better capture the uncertainty of the underlying network revenue management problem

and perform better than the bid prices generated by the standard linear program. Our computational

experiments indicate that this indeed seems to be the case. Third, we show that our solution method

approximates the optimal total expected revenue arbitrarily closely in an asymptotic regime where the

leg capacities and the number of time periods in the decision horizon increase linearly with the same

rate. This asymptotic result provides a theoretical underpinning for our method and may explain to a

certain degree its good performance in our computational experiments.

The randomized linear program that we propose generates bid prices that do not inherently depend

on the remaining capacities on the flight legs. There has been some recent work on capacity dependent

bid prices; see Zhang and Adelman (2009), Meissner and Strauss (2008) and Kunnumkal and Topaloglu

(2009). Capacity dependent bid prices capture the intuitive notion that the opportunity cost of a unit

of capacity should increase as the remaining capacity on the flight leg decreases and it is widely ac-

knowledged that they can provide superior performance. However, the superior performance of capacity

dependent bid price policies usually comes with substantial overhead, both in terms of computation and

implementation, and there is still undeniable interest in the type of bid prices obtained by the random-

ized linear program; see Chaneton and Vulcano (2009). Moreover, starting with a set of bid prices

that do not depend on the remaining capacities on the flight legs, we can obtain capacity dependent

bid prices by using the dynamic programming decomposition technique of Liu and van Ryzin (2008) or

the approaches described in Zhang (2009) or Meissner and Strauss (2010). Naturally, the performance

of the resulting capacity dependent bid price policy depends on the starting values and so it becomes

important to have a good set of initial bid prices. Our computational experiments indicate that the

revenue gains carry over to the capacity dependent bid price policy that uses the bid prices generated

by the randomized linear program as the starting value.

Our work is related to previous research in the network revenue management literature. The idea of

a bid price control and generating bid prices through a deterministic linear program originated with the

work of Simpson (1989) and Williamson (1992). Talluri and van Ryzin (1998) provide a theoretical basis

for the deterministic linear program. In particular, they show that the deterministic linear program

yields an upper bound on the optimal total expected revenue. They also establish an asymptotic
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optimality result for this upper bound and the performance of the control policies obtained through

the deterministic linear program. The deterministic linear program uses only the expected values of

the random variables and discards all other distributional information. Talluri and van Ryzin (1999)

propose a randomized linear program that tries to overcome this deficiency by using samples of the

random variables. Computational experiments in Talluri and van Ryzin (1999) and Topaloglu (2009)

indicate that the bid prices obtained by the randomized linear program can perform significantly better

than the bid prices obtained by the deterministic linear program. The deterministic and randomized

linear programs mentioned in this paragraph exclusively assume that customers come into the system

with the intention of purchasing a fixed itinerary.

Incorporating customer choice behavior into the network revenue management problem is an active

area of research and there is large body of work on the subject. Here, we only review the literature on

methods to generate bid prices. Liu and van Ryzin (2008) propose a deterministic linear program for

the network revenue management problem with customer choice behavior. They also show how the tra-

ditional dynamic programming decomposition method can be extended to the customer choice setting.

Zhang and Adelman (2009), Meissner and Strauss (2008) and Zhang (2009) use the linear programming

representation of the dynamic programming formulation of the revenue management problem to come

with up different approximations to the value functions that appear in the dynamic programming for-

mulation of the problem. Kunnumkal and Topaloglu (2008) and Kunnumkal and Topaloglu (2009) use

Lagrangian relaxation ideas to obtain value function approximations. In both cases, bid price policies

are obtained by using the value function approximations to estimate the opportunity costs of capacity on

the flight legs. Chaneton and Vulcano (2009) use stochastic approximation to obtain bid prices. Talluri

(2010) proposes a deterministic concave program for the network revenue management problem with

customer choice behavior and describes a way to randomize it. However, the approach is quite different

from what we propose in this paper, as his approach requires solving continuous concave optimization

problems, whereas we work with linear integer programs.

In this paper, we make the following research contributions. 1) We propose a new method to gen-

erate bid prices for the network revenue management problem with customer choice behavior. Our

method is based on a deterministic approximation to the network revenue management problem that is

non-standard and allows randomization. As a result, the bid prices that we obtain may better capture

the underlying uncertainty in the problem. 2) We show that the our solution method approximates the

optimal total expected revenue arbitrarily closely in an asymptotic regime where the leg capacities and

the number of time periods in the decision horizon increase linearly with the same rate. 3) Computa-

tional experiments indicate that the bid price policies obtained by our method can perform significantly

better than the bid price policies obtained by the standard deterministic linear program.

The rest of the paper is organized as follows. Section 1 formulates the network revenue management

problem with customer choice behavior as a dynamic program. Section 2 describes the linear program

proposed by Liu and van Ryzin (2008). Section 3 builds on this linear program and develops the

randomized method that we propose to obtain bid prices. Section 4 establishes the asymptotic optimality

result described in the previous paragraph. Section 5 presents our computational experiments.
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1 Problem Formulation

We have an airline network consisting of a set of flight legs that we can use to serve the customers that

arrive over time with the intention of purchasing itineraries. We use ℒ to denote the set of flight legs in

the airline network. The initial capacity on flight leg i is ci. We use J to denote the set of itineraries

that can be offered to the customers. An itinerary j has a revenue associated with it, which we denote

by rj . If we accept a request for itinerary j, then we consume capacity on one or more flight legs. We

use aij to denote the number of units of capacity consumed by itinerary j on flight leg i. Naturally,

we have aij = 0 if itinerary j does not include flight leg i. We discretize the planning horizon into a

finite number of time periods T = {1, . . . , ¿} and assume that the discretization is fine enough so that

there is at most one customer arrival at each time period. The probability of a customer arrival at time

period t is ¸. The fact that the arrival probability is constant over time is only for ease of exposition

and it is straightforward to allow the arrival probability to depend on the time period t.

At each time period, we have to decide which itineraries to make available for sale taking into account

the state of the remaining leg capacities. That is, we are constrained by the fact that an itinerary can

be offered only if there is sufficient capacity on the flight legs that it uses. Using xit to denote the

remaining capacity on flight leg i at time period t, xt = {xit : i ∈ ℒ} captures the state of the remaining

leg capacities. We use ut = {ujt : j ∈ J } ∈ {0, 1}∣J ∣ to denote the set of itineraries that we make

available at time period t, with the interpretation that ujt takes value 1 if itinerary j is offered at time

period t and takes value 0 otherwise. The decision variables are constrained to lie in the set

U(xt) = {ut ∈ {0, 1}∣J ∣ : aijujt ≤ xit ∀ i ∈ ℒ, j ∈ J },
which ensures that if we want to offer itinerary j and itinerary j consumes capacity on flight leg i,

then we have to have capacity available on flight leg i. Given that ut is the set of itineraries that

are offered, an arriving customer purchases itinerary j with probability Pj(ut). Naturally, we have

Pj(ut) = 0 whenever ujt = 0. We allow the possibility that the customer may not purchase any of the

offered itineraries and let PÁ(ut) = 1 −∑
j∈J Pj(ut) denote this probability. As per our notation, the

probability Pj(⋅) does not depend on the time period. Again, this is only for ease of exposition and it

is straightforward to allow this probability to depend on the time period.

The decision problem is to determine the set of itineraries to offer to the customers at each time

period so as to maximize the expected total revenue over the planning horizon. Under the assumption

that the customer arrivals in the different time periods and the purchasing decisions of the different

customers are independent of each other, we can obtain the value functions {Vt(⋅) : t ∈ T } through the

optimality equation

Vt(xt) = max
ut∈U(xt)

{∑

j∈J
¸Pj(ut)

[
rj + Vt+1(xt −

∑
i∈ℒ aij ei)

]
+

[
1− ¸+ ¸PÁ(ut)

]
Vt+1(xt)

}

= max
ut∈U(xt)

{∑

j∈J
¸Pj(ut)

[
rj + Vt+1(xt −

∑
i∈ℒ aij ei)− Vt+1(xt)

]}
+ Vt+1(xt), (1)

where ei is the ∣ℒ∣-dimensional unit vector with a one in the element corresponding to i ∈ ℒ and

the second equality follows from the fact that PÁ(ut) = 1 − ∑
j∈J Pj(ut). The boundary condition
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for the optimality equation above is V¿+1(⋅) = 0. Throughout the rest of the paper, we assume that

¸ = 1 for notational brevity. We note that this is equivalent to letting P̃j(ut) = ¸Pj(ut) and P̃Á(ut) =

1− ¸+ ¸PÁ(ut) and working with the probabilities {P̃j(ut) : j ∈ J }.

If we let Ci = {0, . . . , ci}, then the state space of the above dynamic program is
∏

i∈ℒ Ci. Therefore,
the size of the state space increases exponentially with the number of flight legs in the airline network

and it becomes computationally quite difficult to solve the optimality equation for practical problem

instances. In the next two sections, we describe approximate methods that can be used to decide which

itineraries to offer to the customers at each time period in the booking horizon.

2 Choice Based Deterministic Linear Program

Liu and van Ryzin (2008) propose a deterministic linear program for the network revenue management

problem with customer choice behavior. This linear program replaces random quantities by their ex-

pected values and assumes that itineraries can be sold in fractional amounts. With a slight abuse of

notation, we let Pj(S) be the probability that a customer chooses itinerary j given that S is the set of

itineraries that are offered. The deterministic linear program is based on the assumption that if S is the

set of itineraries that are offered at a time period, then the number of sales for itinerary j at that time

period is Pj(S). In this case, the revenue generated by offering set S is
∑

j∈J rjPj(S) and the capacity

consumed on flight leg i is
∑

j∈J aijPj(S). The deterministic linear program determines the frequency

with which each set should be offered in order to maximize the total revenue subject to the flight leg

capacity constraints. Therefore, we have a decision variable ℎt(S), which denotes the frequency with

which we offer set S at time period t and the linear program that we solve is

max
∑

t∈T

∑

S⊂J

∑

j∈J
rjPj(S)ℎt(S) (2)

subject to
∑

t∈T

∑

S⊂J

∑

j∈J
aijPj(S)ℎt(S) ≤ ci for all i ∈ ℒ (3)

∑

S⊂J
ℎt(S) = 1 for all t ∈ T (4)

ℎt(S) ≥ 0 for all S ⊂ J , t ∈ T . (5)

In the above problem, the first set of constraints ensure that the total capacity consumed by the

itineraries does not exceed the capacity of each flight leg. The second set of constraints ensure that the

total frequency with which we offer the sets at each time period is equal to one. Since the empty set is a

subset of J , the second set of constraints allow not offering any itinerary with a certain frequency. We

note that the number of decision variables in problem (2)-(5) increases exponentially with the number

of itineraries. However, since the number of constraints is manageable, problem (2)-(5) can be solved

by using column generation; see Liu and van Ryzin (2008).

Problem (2)-(5) is useful for three main reasons. First, the optimal objective value of problem

(2)-(5) provides an upper bound on the optimal total expected revenue. That is, letting ZLP denote

the optimal objective value of problem (2)-(5) and c = {ci : i ∈ ℒ}, we have V1(c) ≤ ZLP ; see Liu
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and van Ryzin (2008). The upper bound property is useful since it provides a benchmark to assess the

performance of various heuristic control policies.

Second, we can use the solution to problem (2)-(5) to come up with a bid price control policy for

the network revenue management problem. In particular, letting ¹̂ = {¹̂i : i ∈ ℒ} be the optimal values

of the dual variables associated with constraints (3), we can use ¹̂i as the bid price of flight leg i, with

the intuition that ¹̂i approximates the opportunity cost of a unit of capacity on flight leg i. Therefore,

we can approximate the value function Vt(xt) by a linear function of the form
∑

i∈ℒ ¹̂ixit, plug this

approximation into the right side of optimality equation (1) and solve the problem

max
ut∈U(xt)

{∑

j∈J
Pj(ut)

[
rj −

∑
i∈ℒ aij ¹̂i

]}
+

∑
i∈ℒ ¹̂ixit (6)

to decide which set of itineraries to offer at time period t. This idea is described in Zhang and Adelman

(2009) and it can viewed as an extension of the traditional bid pricing approach to the setting with

customer choice behavior.

Third, we can use the solution to problem (2)-(5) to decompose the network revenue management

problem into a number of single flight leg problems. This is the dynamic programming decomposition

method described in Liu and van Ryzin (2008). Given an initial estimate of the opportunity costs of

capacity, ¹̂, the portion of the revenue of itinerary j that is allocated to flight leg i is taken to be

rij(¹̂) = rj −
∑

k∈ℒ∖{i} akj¹̂k. We solve the dynamic program

#it(xit ∣ ¹̂) = max
ut∈Ui(xit)

⎧
⎨
⎩
∑

j∈J
Pj(ut)

[
rij(¹̂) + #i,t+1(xit − aij ∣ ¹̂)− #i,t+1(xit ∣ ¹̂)

]
⎫
⎬
⎭+ #i,t+1(xit ∣ ¹̂), (7)

for flight leg i, where Ui(xit) = {ut ∈ {0, 1}∣J ∣ : aijujt ≤ xit ∀j ∈ J } and #i,¿+1(⋅ ∣ ¹̂) = 0. Noting

that #it(⋅ ∣ ¹̂) approximates the value of capacity on flight leg i at time period t, we can approximate

the value function Vt(xt) by
∑

i∈ℒ #it(xit ∣ ¹̂), plug this approximation into the right side of optimality

equation (1) and solve the problem

max
ut∈U(xt)

{∑

j∈J
Pj(ut)

[
rj −

∑
i∈ℒ

{
#i,t+1(xit ∣ ¹̂)− #i,t+1(xit − aij ∣ ¹̂)

}]
}

+
∑

i∈ℒ #i,t+1(xit ∣ ¹̂) (8)

to decide which set of itineraries to offer at time period t. Note that we can interpret #i,t+1(xit ∣ ¹̂) −
#i,t+1(xit − aij ∣ ¹̂) as the bid price of flight leg i and the bid price depends on the remaining capacity

on the flight leg.

3 Randomized Linear Program

In this section, we describe our approach to generate bid prices for the network revenue management

problem with customer choice behavior. We ultimately use a randomized linear program to generate

bid prices, but our development proceeds in two stages. First, we solve a mixed integer program that

can be viewed as a deterministic approximation to the optimality equation in (1). Next, we use the
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solution to this mixed integer program to formulate and solve a randomized linear program. The mixed

integer program that we solve has decision variables {zjt : j ∈ J , t ∈ T } and {yj : j ∈ J }. In particular,

zjt is a binary decision variable that indicates whether itinerary j is offered at time period t. Note that

the total expected demand for itinerary j as a function of {zjt : j ∈ J , t ∈ T } is given by
∑

t∈T Pj(zt),

where we let zt = {zjt : j ∈ J }. In this case, letting yj denote the portion of the total demand for

itinerary j that is accepted, we solve the mixed integer program

max
∑

j∈J
rjyj (9)

subject to
∑

j∈J
aijyj ≤ ci for all i ∈ ℒ (10)

yj ≤
∑

t∈T
Pj(zt) for all j ∈ J (11)

yj ≥ 0, zjt ∈ {0, 1} for all j ∈ J , t ∈ T . (12)

Constraints (10) ensure that the total capacity consumed by the accepted itinerary requests does not

exceed the capacity of each flight leg, whereas constraints (11) ensure that we do not accept more

itinerary requests than the expected demand for the itinerary.

Intuitively, we would like to use the values of the dual variables corresponding to constraints (10)

as estimates of the opportunity costs of capacity. However, dual variables are not well defined for

problem (9)-(12) as it is a mixed integer program. This motivates the second step of our solution

method. Let ŷ = {ŷj : j ∈ J }, ẑt = {ẑjt : j ∈ J } for all t ∈ T denote an optimal solution to problem

(9)-(12). We let D(ẑ) = {Djt(ẑt) : j ∈ J , t ∈ T } be random variables such that Djt(ẑt) ∈ {0, 1} and

ℙ{Djt(ẑt) = 1} = Pj(ẑt). Note that Djt(ẑt) can be viewed as the demand for itinerary j when we offer

the set ẑt. We now solve the linear program

max
∑

j∈J
rjyj (13)

subject to
∑

j∈J
aijyj ≤ ci for all i ∈ ℒ (14)

yj ≤
∑

t∈T
Djt(ẑt) for all j ∈ J (15)

yj ≥ 0 for all j ∈ J . (16)

The decision variables in this problem are {yj : j ∈ J }, where yj is the total number of requests

for itinerary j that are accepted. Constraints (14) are analogous to constraints (10). Noting that

E{Djt(ẑt)} = Pj(ẑt), we can interpret constraints (15) as being analogous to constraints (11), but with

the expected value of the random variable replaced by its sample. Since the right side of constraints (15)

is random, the optimal solution to problem (13)-(16) is also random. Letting ¼̂(D(ẑ)) = {¼̂i(D(ẑ)) : i ∈
ℒ} be the optimal values of the dual variables corresponding to constraints (14), we use E{¼̂(D(ẑ))} =

{E{¼̂i(D(ẑ))} : i ∈ ℒ} as estimates of the opportunity costs of capacity.

To summarize our solution method, we first solve problem (9)-(12) to obtain ẑt = {ẑjt : j ∈ J }
for all t ∈ T . We then solve the linear program (13)-(16) and use the expected values of the optimal
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dual variables corresponding to constraints (14), E{¼̂(D(ẑ))}, as estimates of the opportunity costs of

capacity. The exact computation of the expectation E{¼̂(D(ẑ))} can be difficult in practice, but we

resolve this difficulty by estimating the expectation through Monte Carlo samples. This amounts to

solving problem (13)-(16) for N independent samples of D(ẑ), say Dn(ẑ) for n = 1, . . . , N . Letting

¼̂(Dn(ẑ)) = {¼̂i(Dn(ẑ)) : i ∈ ℒ} be the optimal values of the dual variables corresponding to constraints

(14) when we use demand sample Dn(ẑ), we can estimate E{¼̂(D(ẑ))} by ¼̄ = 1
N

∑N
n=1 ¼̂(D

n(ẑ)). We

can directly use ¼̄ to decide on the set of itineraries to offer at time period t by solving the problem

max
ut∈U(xt)

{∑

j∈J
Pj(ut)

[
rj −

∑
i∈ℒ aij ¼̄i

]}
+

∑
i∈ℒ ¼̄ixit. (17)

Note that this is equivalent to approximating Vt(xt) by the linear function
∑

i∈ℒ ¼̄ixit. Alternatively,

we can use ¼̄ as the initial estimate of the opportunity costs of capacity in the dynamic programming

decomposition method described in Section 2 and use the resulting value function approximations

{#it(⋅ ∣ ¼̄) : i ∈ ℒ, t ∈ T } to decide on the set of itineraries to offer at time period t by solving problem

(8).

In closing this section, we note that solving problem (9)-(12) for an arbitrary choice model can be

difficult as Pj(zt) can depend on zt in an arbitrary fashion. However, for the multinomial logit choice

model, Theorem 2 in Zhang and Adelman (2009) shows that we can solve problem (9)-(12) as a linear

mixed integer program.

4 Asymptotic Optimality

In this section, we show that the percent gap between the optimal objective value of problem (9)-(12)

and the optimal total expected revenue diminishes to zero in a regime where the leg capacities and

the number of time periods in the decision horizon increase linearly with the same rate. This result

implies that the optimal objective value of problem (9)-(12) approximates the optimal total expected

revenue more precisely as the scale of the problem increases, where scale is measured in terms on the

leg capacities and the length of the decision horizon. We first show that the optimal objective value of

problem (2)-(5) is an upper bound on the optimal objective value of problem (9)-(12). We then show

that the percent gap between the optimal objective values of problems (9)-(12) and (2)-(5) diminishes to

zero in the asymptotic regime. Proposition 2 in Liu and van Ryzin (2008) establishes that the percent

gap between the optimal total expected revenue and the optimal objective value of problem (2)-(5)

diminishes to zero in the same asymptotic regime. This then implies that the percent gap between the

optimal objective value of problem (9)-(12) and the optimal total expected revenue also diminishes to

zero asymptotically. Our results require the following assumption on the customer choice model.

Assumption 1 Let z, z̃ ∈ {0, 1}∣J ∣ be such that z̃l = 0 for some l ∈ J and z̃j = zj for all j ∈ J ∖{l}.
Then we have Pj(z̃) ≥ Pj(z) for all j ∈ J ∖{l}.

Assumption 1 simply states that the probability of a customer choosing an itinerary j does not

decrease if an itinerary l ∕= j is removed from the set of itineraries offered. This assumption is satisfied,
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for example, by the multinomial logit choice model, which is a commonly used choice model in the

network revenue management literature. We begin with the following lemma.

Lemma 1 Let ZMIP and ZLP , respectively, denote the optimal objective values of problems (9)-(12)

and (2)-(5). If Assumption 1 holds, then we have that ZMIP ≤ ZLP .

Proof: Let ¹̂ = {¹̂i : i ∈ ℒ} be the optimal values of the dual variables associated with constraints (3)

in problem (2)-(5). Dualizing constraints (3) and rearranging terms, we have by strong duality that

ZLP = max
∑

t∈T

∑

S⊂J

∑

j∈J

[
rj −

∑

i∈ℒ
aij¹̂i

]
Pj(S)ℎt(S) +

∑

i∈ℒ
¹̂ici

subject to (4), (5).

Letting Ŝ = argmaxS⊂J
∑

j∈J
[
rj −

∑
i∈ℒ aij¹̂i

]
Pj(S), it is easy to see that an optimal solution to the

above maximization problem has ℎt(Ŝ) = 1 and ℎt(S) = 0 for all S ∈ 2J ∖{Ŝ}, where 2J denotes the

set of all possible subsets of J . Therefore, we can restrict the variables ℎt(S) to be binary and still get

the same optimal objective value. That is, we have

ZLP = max
∑

t∈T

∑

S⊂J

∑

j∈J

[
rj −

∑

i∈ℒ
aij¹̂i

]
Pj(S)ℎt(S) +

∑

i∈ℒ
¹̂ici

subject to
∑

S⊂J
ℎt(S) = 1 for all t ∈ T

ℎt(S) ∈ {0, 1} for all S ⊂ J , t ∈ T .

Noting that the above maximization problem can be equivalently written in terms of the binary decision

variables {zjt : j ∈ J , t ∈ T }, we have

ZLP = max
∑

t∈T

∑

j∈J

[
rj −

∑

i∈ℒ
aij¹̂i

]
Pj(zt) +

∑

i∈ℒ
¹̂ici

subject to zjt ∈ {0, 1} for all j ∈ J , t ∈ T .

By Assumption 1, it follows that an optimal solution to the above maximization problem has zjt = 0

for any itinerary j with rj −
∑

i∈ℒ aij¹̂j < 0. Therefore, we have

ZLP = max
∑

j∈J

[
rj −

∑

i∈ℒ
aij¹̂i

]
yj +

∑

i∈ℒ
¹̂ici (18)

subject to 0 ≤ yj ≤
∑

t∈T
Pj(zt) for all j ∈ J (19)

zjt ∈ {0, 1} for all j ∈ J , t ∈ T . (20)

Finally, letting {ŷj : j ∈ J }, {ẑjt : j ∈ J , t ∈ T } be an optimal solution to problem (9)-(12), we have

ZLP ≥
∑

j∈J

[
rj −

∑

i∈ℒ
aij¹̂i

]
ŷj +

∑

i∈ℒ
¹̂ici =

∑

j∈J
rj ŷj +

∑

i∈ℒ
¹̂i

[
ci −

∑

j∈J
aij ŷj

] ≥ ZMIP ,
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where the first inequality holds since {ŷj : j ∈ J }, {ẑjt : j ∈ J , t ∈ T } is a feasible but not necessarily

optimal solution to problem (18)-(20) and the last inequality holds since ¹̂i ≥ 0 for all i ∈ ℒ and

{ŷj : j ∈ J } satisfies constraints (10). □

Liu and van Ryzin (2008) show that ZLP provides an upper bound on the optimal total expected

revenue. An analogous result does not hold for problem (9)-(12) and it is possible to come up with

examples where we have ZMIP < V1(c). However, we show below that the percent gap between the

optimal objective value of problem (9)-(12) and the optimal total expected revenue diminishes to zero

in a regime where the leg capacities and the number of time periods in the decision horizon increase

linearly with the same rate. For this purpose, we consider a family of network revenue management

problems {Pµ : µ ∈ ℤ+} parameterized by the scaling parameter µ. Problem Pµ takes place over the

decision horizon T µ = {1, . . . , µ¿} and the initial leg capacity on flight leg i in this problem is µci. All

other parameters of problem Pµ are the same as those described in Section 1. This is a standard way

of scaling the problem in the revenue management literature to obtain asymptotic results; see Talluri

and van Ryzin (1998).

Let Zµ
MIP and Zµ

LP respectively denote the optimal objective values of problems (9)-(12) and (2)-(5)

when these problems are solved with decision horizon T µ and leg capacities {µci : i ∈ ℒ}. Note that we

have Z1
MIP = ZMIP and Z1

LP = ZLP . We show below that limµ→∞ Zµ
MIP /Z

µ
LP = 1. Lemma 1 implies

that lim supµ→∞ Zµ
MIP /Z

µ
LP ≤ 1. We next establish that lim infµ→∞ Zµ

MIP /Z
µ
LP ≥ 1.

Lemma 2 We have lim infµ→∞ Zµ
MIP /Z

µ
LP ≥ 1.

Proof: Let {ℎ̂t(S) : t ∈ T ,S ⊂ J } be an optimal solution to problem (2)-(5). We construct a

feasible solution to problem (9)-(12) with decision horizon T µ and leg capacities {µci : i ∈ ℒ} in

the following manner. We offer a nonempty set S a total of ⌊µℎ̂t(S)⌋ times over the time periods

{t, ¿ + t, . . . , (µ − 1)¿ + t} for t ∈ T , where the ⌊⋅⌋ operator rounds a number down to its nearest

integer. That is, letting Sµ
(n−1)¿+t denote the set of itineraries offered at time period (n − 1)¿ + t for

n ∈ {1, 2, . . . , µ}, t ∈ T , we have
∑µ

n=1 1(Sµ
(n−1)¿+t = S) = ⌊µℎ̂t(S)⌋ for all t ∈ T for a nonempty set

S ⊂ J . In this solution, we offer the empty set in the remaining µ −∑
S⊂J ,S∕=∅⌊µℎ̂t(S)⌋ periods. That

is, we have
∑µ

n=1 1(Sµ
(n−1)¿+t = ∅) = µ − ∑

S⊂J ,S∕=∅⌊µℎ̂t(S)⌋. Letting zµj,(n−1)¿+t = 1(j ∈ Sµ
(n−1)¿+t)

and zµt = {zµjt : j ∈ J }, we obtain

∑

t∈T µ

Pj(z
µ
t ) =

∑

t∈T

µ∑

n=1

Pj(z
µ
(n−1)¿+t) =

∑

t∈T

µ∑

n=1

∑

S⊂J
Pj(S)1(Sµ

(n−1)¿+t = S) =
∑

t∈T

∑

S⊂J
⌊µℎ̂t(S)⌋Pj(S)

for all j ∈ J , where the last equality uses the fact that Pj(∅) = 0. If we let yµj =
∑

t∈T µ Pj(z
µ
t ), then we

immediately have that constraint (11) is satisfied. We also have the chain of inequalities
∑

j∈J aijy
µ
j =∑

j∈J
∑

t∈T
∑

S⊂J aijPj(S) ⌊µℎ̂t(S)⌋ ≤ µ
(∑

j∈J
∑

t∈T
∑

S⊂J aijPj(S)ℎ̂t(S)
) ≤ µci, where the last

inequality follows from (3). Therefore (yµ, zµ) is feasible to problem (9)-(12) with decision horizon T µ
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and leg capacities {µci : i ∈ ℒ}. We have

Zµ
MIP ≥

∑

j∈J
rjy

µ
j =

∑

t∈T

∑

S⊂J

∑

j∈J
rjPj(S)⌊µℎ̂t(S)⌋ ≥

∑

t∈T

∑

S⊂J

∑

j∈J
rjPj(S)(µℎ̂t(S)− 1)

= µ

(∑

t∈T

∑

S⊂J

∑

j∈J
rjPj(S)ℎ̂t(S)

)
−
∑

t∈T

∑

S⊂J

∑

j∈J
rjPj(S) = Zµ

LP −
∑

t∈T

∑

S⊂J

∑

j∈J
rjPj(S),

where the last equality uses the fact that Zµ
LP = µZLP ; see Liu and van Ryzin (2008). Dividing both

sides of the above expression by Zµ
LP , we have lim infµ→∞ Zµ

MIP /Z
µ
LP ≥ 1. □

Lemmas 1 and 2 together yield the main result of this section.

Proposition 1 If Assumption 1 holds, then we have limµ→∞ Zµ
MIP /Z

µ
LP = 1.

Letting {V µ
t (⋅) : t ∈ T µ} be the value functions obtained by solving the optimality equation in

(1) with decision horizon T µ and leg capacities {µci : i ∈ ℒ}, Liu and van Ryzin (2008) show that

limµ→∞ Zµ
LP /V

µ
1 (µc) = 1. An immediate corollary to Proposition 1 is that the same holds for the

objective value of problem (9)-(12).

Corollary 1 If Assumption 1 holds, then we have limµ→∞ Zµ
MIP /V

µ
1 (µc) = 1.

5 Computational Experiments

In this section, we numerically test the performance of the bid price policy obtained by the randomized

linear program.

5.1 Computational Setup

In all of our test problems, we assume that the customers choose among the offered itineraries according

to the multinomial logit model with disjoint consideration sets. For brevity, we refer to this choice model

simply as the logit model. The logit model assumes that there are multiple customer segments and each

customer segment is interested only in a subset of all the available itineraries. Letting Jl be the set of

itineraries that are of interest to customer segment l, we further assume that each itinerary is of interest

to one and exactly one customer segment. That is, we have Jl1 ∩Jl2 = ∅ whenever l1 ∕= l2. At each time

period, a customer from segment l arrives with probability ¸l. If the set of itineraries that we offer at

time period t is given by ut = {ujt : j ∈ J } and a customer from segment l arrives, then this customer

purchases itinerary j with probability

1(j ∈ Jl)
vj ujt∑

k∈Jl
vk ukt + v0l

,

where vj is a positive preference weight associated with itinerary j ∈ J and v0l is the preference weight

for customer segment l associated with purchasing nothing. Roughly speaking, the preference weight vj

characterizes the appeal of itinerary j to a customer that belongs to the segment l that satisfies j ∈ Jl,

12



whereas the preference weight v0l characterizes the appeal of purchasing nothing to a customer that

belongs to the segment l.

The logit model is crucial for the computational tractability of the optimization problems that we

solve. As mentioned earlier, Zhang and Adelman (2009) show that we can solve problem (9)-(12) as

a linear mixed integer program when the customer choices are governed by the logit model. The logit

model also turns out to be crucial for the computational tractability of the choice based deterministic

linear program. In particular, Liu and van Ryzin (2008) show that the column generation subproblem

for problem (2)-(5) is tractable under the logit model.

We present computational experiments on two groups of test problems, both of which are based

on the setup in Zhang and Adelman (2009). The first group involves parallel flight legs that operate

between the same origin destination pair. The second group involves hub-and-spoke networks.

5.2 Benchmark Solution Methods

We compare the performance of the bid price policy obtained by the randomized linear program with

that obtained by the choice-based deterministic linear program. We also compare the performance of

the dynamic programming decomposition method that uses the dual solution of the randomized linear

program with that which uses the dual solution of the choice-based deterministic linear program.

Bid price policy obtained by the randomized linear program (RLP) This is the solution method described

in Section 3 with the exception that in our implementation, we divide the decision horizon into five

equal segments and resolve problem (9)-(12) at the beginning of each segment. In particular, we resolve

problem (9)-(12) at the beginning of a segment by replacing the right hand side of constraints (10) with

the current remaining leg capacities and the set of time periods T with the current set of remaining

time periods . We use the new optimal solution ẑ and solve problem (13)-(16) for N demand samples

to obtain a fresh set of optimal dual values {¼̂(D̂n(ẑ)) : n = 1, . . . , N}. Finally, we solve problem

(17) to decide which itineraries to offer at time period t. We use N = 100 for RLP in all of our

computational experiments. Increasing the number of samples further did not seem to produce any

significant performance improvements.

Bid price policy obtained by the choice based deterministic linear program (CDLP) This is the solution

method described in Section 2. As with RLP, CDLP divides the decision horizon into five equal segments

and resolves problem (2)-(5) at the beginning of each segment by replacing the right hand side of

constraints (3) with the current remaining leg capacities and the set of time periods T with the current

set of remaining time periods. This yields a fresh set of optimal dual values ¹̂. After this, CDLP solves

problem (6) to decide on the set of itineraries to be offered at time period t.

Dynamic programming decomposition based on the randomized linear program (DPD-RLP) This is the

dynamic programming decomposition method that uses the dual solution obtained from the randomized

linear program as the initial estimate of the opportunity costs of capacity. As with RLP, we divide the

decision horizon into five equal segments and resolve problem (9)-(12) at the beginning of each segment.

We use the new optimal solution ẑ and solve problem (13)-(16) for N demand samples to obtain a fresh
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set of optimal dual values {¼̂(D̂n(ẑ)) : n = 1, . . . , N}. We solve the optimality equation in (7) with

¼̂ = 1
N

∑N
n=1 ¼̂(D

n(ẑ)) as the initial estimate of the opportunity costs of capacity and obtain the value

function approximations {#it(⋅ ∣ ¼̂) : i ∈ ℒ, t ∈ T }. After this, we solve problem (8) to decide which

itineraries to offer at time period t.

Dynamic programming decomposition based on the choice based deterministic linear program (DPD-

CDLP) This is the dynamic programming decomposition method that uses the dual solution obtained

from the choice based deterministic linear program as the initial estimate of the opportunity cost of

capacity. As with CDLP, we divide the decision horizon into five equal segments and resolve problem

(2)-(5) at the beginning of each segment. We solve the optimality equation in (7) with the fresh set of

optimal dual values ¹̂ as the initial estimate of the opportunity costs of capacity and obtain the value

function approximations {#it(⋅ ∣ ¹̂) : i ∈ ℒ, t ∈ T }. After this, we solve problem (8) to decide which

itineraries to offer at time period t.

5.3 Computational Results on Parallel Flight Legs

We consider n flight legs that operate between the same origin destination pair. There is one itinerary

associated with each flight leg so that the number of itineraries is also n. There is one customer segment

and an arriving customer purchases at most one of the offered itineraries according to the logit model.

The preference weights associated with the itineraries are generated from the Poisson distribution with

mean 100. The preference weight associated with purchasing nothing is set to
∑

j∈J vj/2. The revenue

associated with an itinerary is generated from the uniform distribution over [10, 100]. We obtain different

test problems by using different seeds to initialize the random number generator. We label our test

problems by (n, ¿, k) ∈ {6, 8} × {200, 400} × {1, 2, 3}, where n is the number of flight legs, ¿ is the

number of time periods in the decision horizon and k is the seed used for generating the preference

weights and the revenues. This experimental setup parallels the one in Zhang and Adelman (2009).

Table 1 shows the computational results. The first column in this table gives the characteristics of

the problem by using (n, ¿, k). The second column gives the optimal objective value of problem (2)-(5),

which is an upper bound on the optimal total expected revenue. Columns three to six respectively

give the total expected revenues obtained by RLP, CDLP, DPD-RLP and DPD-CDLP. We estimate

these total revenues by simulating the decisions made by the four solution methods under multiple

customer arrival trajectories. The seventh column gives the percent gap between the total expected

revenues obtained by RLP and CDLP, while the last column gives the percent gap between the total

expected revenues obtained by DPD-RLP and DPD-CDLP. The results indicate that RLP performs

significantly better than CDLP and the average performance gap is about 9%. DPD-RLP and DPD-

CDLP perform significantly better than RLP and CDLP, respectively. This is not surprising since

the dynamic programming decomposition method produces bid prices that are capacity dependent

and it is widely acknowledged that capacity dependent bid prices can provide superior performance.

Interestingly, DPD-RLP performs significantly better than DPD-CDLP and the average performance

gap is around 6%. Comparing the revenues with the upper bound in the second column, we see that RLP

and DPD-RLP generate essentially the optimal total expected revenues for the smaller test problems.
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Problem Upper Bound Total Exp. Rev % Gap between
(n, ¿, k) RLP CDLP DPD-RLP DPD-CDLP RLP DPD-RLP

and CDLP and DPD-CDLP

(6, 200, 1) 6,093 6,085 5,291 6,093 5,763 13.05 5.41
(6, 200, 2) 4,309 4,105 3,751 4,308 4,308 12.93 0.02
(6, 200, 3) 4,030 4,015 3,523 4,030 3,864 12.25 4.11
(6, 400, 1) 9,010 8,997 8,078 9,010 8,733 10.21 3.07
(6, 400, 2) 7,600 7,582 6,730 7,600 7,312 11.24 3.78
(6, 400, 3) 8,450 8,435 7,679 8,450 8,190 8.96 3.08
(8, 200, 1) 6,916 6,649 5,983 6,784 6,053 10.02 10.78
(8, 200, 2) 7,215 7,005 6,237 7,067 6,386 10.96 9.64
(8, 200, 3) 7,535 7,366 6,647 7,399 6,680 9.76 9.72
(8, 400, 1) 9,670 9,275 8,907 9,639 8,999 3.97 6.64
(8, 400, 2) 11,350 11,032 10,276 11,316 10,474 6.85 7.44
(8, 400, 3) 7,719 7,420 6,919 7,693 7,026 6.75 8.67

Table 1: Comparison of the total expected revenues for the test problems with parallel flight legs.

5.4 Computational Results on Hub-and-Spoke Networks

We consider an airline network that serves n spokes through a single hub. Half of the spokes have two

parallel flights to the hub and the other half have two parallel flights from the hub. Figure 1 shows

the structure of the airline network. Therefore, there are n/2 spoke-to-hub origin destination pairs,

n2/4 spoke-to-spoke origin destination pairs and n/2 hub-to-spoke origin destination pairs. There are

two itineraries associated with a spoke-to-hub or hub-to-spoke origin destination pair, corresponding to

the flight legs that connect the origin destination pair. On the other hand, there are four itineraries

associated with a spoke-to-spoke origin destination pair, corresponding to the four possible combinations

of flight legs connecting that pair. There is a customer type associated with each origin destination pair

in the airline network and an arriving customer purchases at most one of the itineraries that connect

the origin destination pair that it is interested in. The preference weights are generated in the same

fashion as in the test problems with parallel flight legs. The revenues associated with spoke-to-hub

and hub-to-spoke itineraries are respectively generated from the uniform distributions over [1, 10] and

[10, 100]. The revenue associated with a spoke-to-spoke itinerary is 95% of the sum of the revenues

associated with the corresponding spoke-to-hub and hub-to-spoke itineraries. We obtain different test

problems by using different seeds to initialize the random number generator. We label our test problems

by (n, ¿, k) ∈ {4, 6} × {200, 400} × {1, 2, 3}, where n is the number of spokes and the interpretations of

¿ and k are the same as those for the test problems with parallel flight legs.

Table 2 shows the computational results for the test problems with hub-and-spoke networks. The

columns have the same interpretation as that for Table 1. The results display essentially the same

trend that we observed for the test problems with parallel flight legs. RLP continues to perform better

than CDLP and the average performance gap is about 2%. The performance gap between RLP and

CDLP appears to decrease as the number of time periods in the planning horizon increases. However,

even for the problems with the longest planning horizon, we observe performance gaps as large as 3%.

Such performance gaps are considered quite significant in the network revenue management setting. On

average, DPD-RLP performs about 2% better than DPD-CDLP. It is encouraging that the boost in
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Figure 1: Structure of the hub-and-spoke network for the case where n = 6.

Problem Upper Bound Total Exp. Rev % Gap between
(n, ¿, k) RLP CDLP DPD-RLP DPD-CDLP RLP DPD-RLP

and CDLP and DPD-CDLP

(4, 200, 1) 1,772 1,629 1,525 1,682 1,586 6.38 5.71
(4, 200, 2) 2,392 2,212 2,167 2,264 2,231 2.03 1.43
(4, 200, 3) 3,647 3,385 3,287 3,504 3,392 2.9 3.18
(4, 400, 1) 4,340 4,068 4,012 4,235 4,209 1.38 0.61
(4, 400, 2) 7,057 6,694 6,319 6,891 6,525 5.6 5.31
(4, 400, 3) 5,206 5,000 4,946 5,112 5,114 1.08 -0.04
(6, 200, 1) 3,773 3,376 3,352 3,518 3,464 0.71 1.53
(6, 200, 2) 3,032 2,752 2,685 2,847 2,800 2.43 1.65
(6, 200, 3) 3,311 3,020 2,294 3,111 3,013 3.18 3.16
(6, 400, 1) 7,152 6,589 6,550 6,960 6,824 0.59 1.96
(6, 400, 2) 5,454 5,079 4,986 5,281 5,161 1.83 2.26
(6, 400, 3) 5,382 5,084 4,913 5,270 5,154 3.86 2.20

Table 2: Comparison of the total expected revenues for the test problems with hub-and-spoke networks.

performance from RLP remains intact when we apply the dynamic programming decomposition method

to it. This further illustrates the need for methods that provide good initial estimates of the opportunity

cost of capacity.

Table 3 shows the CPU seconds for RLP and CDLP on a Pentium Core 2 Duo PC with 3 GHz

CPU and 4 GB RAM. The CPU seconds for DPD-RLP and DPD-CDLP differ by the same amount

and we do not report them separately. This is because once the randomized linear program and the

choice based deterministic linear program have been solved, the additional work required is the same

for both DPD-RLP and DPD-CDLP. We use CPLEX 11.2 to solve all the mixed integer programs and

QSopt to solve all the linear programs. The CPU seconds is primarily affected by the parameters n and

¿ . Hence, we only provide the average CPU seconds over the test problems. The first column in Table

3 gives the problem characteristics. The second and third columns respectively show the CPU seconds

required by RLP and CDLP. The CPU seconds for RLP correspond to the total time taken to solve

problem (9)-(12) once and problem (13)-(16) for 100 samples. The CPU seconds for CDLP correspond

to the time taken to solve problem (2)-(5). The CPU times are generally of the order of seconds and

RLP takes at most a minute and a half to solve the largest test problem. Especially for the larger test

problems, the CPU times for RLP and CDLP are of the same order of magnitude, signaling that RLP
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Problem RLP CDLP
(n, ¿) CPU secs. CPU secs.

Par. Fli. (6, 200) 1.2 0.1
Par. Fli. (6, 400) 3.2 0.4
Par. Fli. (8, 200) 3.8 0.3
Par. Fli. (8, 400) 7.6 1.1
Hub. Spk. (4, 200) 9.7 2.5
Hub. Spk. (4, 400) 24.7 12.1
Hub. Spk. (6, 200) 31.1 5.7
Hub. Spk. (6, 400) 84.8 20.6

Table 3: CPU seconds required for the different test problems.

is expected to be as attractive as CDLP for practical applications. However, we still caution the reader

that a more extensive numerical study would be required in order to understand the applicability of

RLP to real-world problem instances.

6 Conclusions

In this paper, we presented a new method to compute bid prices for the network revenue management

problem with customer choice behavior. We first formulated and solved a mixed integer program that

assumed that the demands for the itineraries took on their expected values. We used the optimal

solution to this mixed integer program to formulate a linear program. The novel aspect of our linear

programming formulation is that it naturally allows randomization and thus may better capture the

probabilistic nature of the customer choices. We showed that our method approximates the optimal

total expected revenue arbitrarily closely in a scaling of the network revenue management problem

where the leg capacities and the number of time periods in the decision horizon increase linearly with

the same rate. From a practical standpoint, our approach is appealing as it can be easily implemented

by using commercially available software and it can provide substantial improvements over the standard

choice based deterministic linear program.
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