Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Robust Airline Scheduling Under Block-Time Uncertainty

Milind Sohoni, Yu-Ching Lee, Diego Klabjan,

To cite this article:

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support of claims made of that product, publication, or service.

Copyright © 2011, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org
Robust Airline Scheduling Under Block-Time Uncertainty

Milind Sohoni
Indian School of Business, Hyderabad 500032, India, milind_sohoni@isb.edu

Yu-Ching Lee
University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, ylee77@uiuc.edu

Diego Klabjan
Northwestern University, Evanston, Illinois 60201, d-klabjan@northwestern.edu

An airline schedule development continues to remain one of the most challenging planning activities for any airline. An airline schedule comprises a list of flights and specifies the origin, destination, scheduled departure, and arrival time of each flight in the airline’s network. A critical component of the schedule development activity is the choice of flight block-times, which depend on several factors. Many airlines decide schedule block-times based on fixed percentiles of block-time distributions built from historical data, however, such techniques have not resulted in significantly improved on-time performance (OTP) of the schedule during operations. Thus, from a passenger’s perspective, the service-level guarantee of an airline’s network continues to be low. We first define two service-level metrics for an airline schedule. The first one is similar to the OTP measure of the U.S. Department of Transportation and we define it as the flight service level. The second metric, called the network service level, is geared toward completion of passenger itineraries. We then develop a stochastic integer programming formulation that optimally perturbs a given schedule to maximize expected profit, while ensuring the two service levels. We also develop a variant of this model that maximizes service levels, while achieving desired network profitability. To solve these models, we develop an efficient algorithm that guarantees optimality. Through extensive computational experiments, using real-world data, we demonstrate that our models and algorithms are efficient and achieve the desired trade-off between service level and profitability.

Key words: robust scheduling; stochastic optimization; airline planning

History: Received: February 2009; revision received: April 2010; accepted: October 2010. Published online in Articles in Advance March 18, 2011.

1. Introduction

In a recent article, The Associated Press (2007) reported that the U.S. airline industry’s on-time performance (OTP) through the first 11 months of 2007, was the second worst on record. According to the U.S. Department of Transportation, a flight is delayed if it arrives at its destination gate 15 minutes or more after its scheduled arrival time. Even in the previous year, i.e., 2006, statistics showed that there were 823,030 arrival delays out of a total of 3,805,313 commercial flights operated by all the major U.S. carriers (Bureau of Transportation Statistics 2009). Flight delays and cancellations have been attributed to several causes, some of which include weather conditions, airport congestion, national air-space congestion, aircraft maintenance-related issues, and more recently, airline security-related services. Consequently, such delays lower service reliability and adversely affect a commuter’s travel experience.

While some of the causes of delays, such as weather conditions, are beyond the control of the airlines, previous research shows that some causes of delays are attributable to the network and schedule design decisions of an airline. For example, while an airline develops its hub-and-spoke network, it typically does not account for the congestion externality imposed on other carriers operating out of the same hub stations. In a recent paper, Mayer and Sinai (2003a) empirically demonstrate that the gains from hubbing activities offset the costs incurred by flight delays and congestions. In such cases, congestion pricing at certain capacity constrained airports, may be a solution to elevate the problem. In a companion paper, Mayer and Sinai (2003b) also hypothesize that wage cost minimization and aircraft use maximization result in airlines flying with very tight schedules. Such objectives are typical in most airline planning systems, which are designed to achieve cost-efficient resource use. Schedule planning models do not address the following two important issues. First, they do not include passenger-centric service reliability measures in the schedule development process. Second, the
Airline schedule development continues to remain one of the most challenging planning activities for any airline. An airline schedule comprises a list of flights and specifies the origin, destination, scheduled departure, and arrival time of each flight in the airline’s network. A critical component of the schedule development activity is the choice of flight block-times. A flight block-time is defined as the total elapsed time between the time an aircraft pushes back from its departure gate and arrives at its destination gate. The block-time comprises of several components, including taxi-out time, enroute time, and taxi-in time. Each of these components is subject to different causes of delay and the total block-time delay is the sum of all individual component delays. Because airline schedules must be published well in advance of the actual day of operation, block-times, for all the flights in the schedule, are typically decided using historical information of similar flights operated in the past. The OTP metric is computed against these published flight block-times. Most airline operations are compared based on their OTP rankings, and hence airlines perceive their OTP as an important operational measure of their schedule reliability. However, research indicates that airlines fail to adequately adjust block-times and typically do not incorporate uncertainty in their planned schedules. Because most planned resource costs, such as aircraft and crew use costs, depend on the cumulative hours in a schedule, airlines face a key trade-off decision between adjusting (increasing) flight block-times to improve schedule reliability and incurring additional planned costs. Using data made available by the Bureau of Transportation, Deshpande and Arikan (2009) argue that airlines systematically “underschedule” flights, i.e., the amount of block-time allocated for a flight is less than the average block-time expected for the flight. Conversations with planners at a large U.S. carrier suggested that airlines do not judiciously allocate block-times to scheduled flights to balance costs versus operational benefits. Typically, planners use ad hoc techniques to either lower or raise block-times across the entire flight network in the hope of increasing OTP. Results in Deshpande and Arikan (2009) also corroborate these findings, and indicate that airlines do not maintain consistent service levels by adjusting their schedules based on the time of the day, origin airport congestion, and destination airport congestion.

Planning for uncertainty in the schedule building process becomes necessary not just to improve OTP rankings but also to improve passenger service levels. As stated earlier, the goal of this paper is to develop a robust optimization approach to schedule planning by specifically incorporating passenger centric goals and block-time uncertainty in the planning models. The key trade-off in such a process is between higher service levels achieved through increasing (and better allocation of) flight block-times and higher planned costs (i.e., lower planned profits). In this paper, we develop a model that re-times (perturbs) a proposed flight schedule by considering block-time probability distributions. First, we explicitly define notions of passenger and network service levels. Then, we develop a model that maximizes the expected profit, while guaranteeing minimum service levels. This model allows imposition of minimum service levels. Second, we develop a variant of this model that maximizes service levels, while achieving required profitability. While the optimization models are complex, we also develop computational procedures, based on cut generation techniques, to efficiently solve these models. To this end, this paper also has a methodological contribution to the development of computationally efficient procedures. We provide extensive computational experiments, using real airline data from a large U.S. carrier, that validate our model and demonstrate potentially large operational gains for an airline. Overall network reliability is also improved.

The contributions of this paper are at several levels. First, to the best of our knowledge, this paper is an initial attempt at developing a comprehensive and holistic model that includes block-time uncertainty in developing robust schedules. Second, through chance constraints, we explicitly model block-time distributions allowing us to incorporate operational uncertainty in the schedule planning process. This makes the resultant schedule robust. We also incorporate network service levels (NSL), which probabilistically model passenger connections. Third, we propose a new cut generation algorithm to solve these stochastic binary integer programming models and establish its convergence. The analysis is nontrivial because the feasible region of the original problem is nonconvex and first a linearization is required. Upon linearization, the resulting (modified) model is infinite dimensional with infinitely many constraints. Thus our algorithmic procedure and optimal convergence result generalizes previously established convergence results for (1) semi-infinite linear programs with finitely many variables but infinitely many constraints and (2) infinite dimensional problems with finitely many constraints and infinite number of variables.

Overall, this research is in line with the growing literature on linking operational variability (and hence costs) to planning models. For example,
research in robust fleeting (Rosenberger, Johnson, and Nemhauser 2004); robust aircraft routing (Lan, Clarke, and Barnhart 2003); robust crew scheduling (Shebalov and Klabjan 2006); and the robust approach to passengers rerouting in disruption management (Karow 2003) show this emerging trend. Another growing area is the development of simulation systems of airline operations, e.g., SimAir by Rosenberger et al. (2002) and MEANS by Bly et al. (2003). These systems play a crucial role in evaluating and comparing the performance of different schedules. This paper also contributes to several techniques developed in the airline schedule planning literature. In general, airlines, though plagued with low profitability margins, airspace and airport congestion, and high capital and operating costs are heavy users of mathematical optimization techniques (Dobson and Lederer 1993; Lohatepanont and Barnhart 2004; Barnhart et al. 2003). Barnhart and Cohn (2004) and Klabjan (2005) provide an extensive review of operations research models used in airline schedule planning. There is other literature in the domain of stochastic scheduling that is also related to our work (see Portougal and Trietsch 2001). However, existing literature in stochastic scheduling ignores the need to achieve high customer service level.

The rest of the paper is organized as follows. First, in §2, we develop the two optimization models for schedule perturbation. Next, in §3, we discuss issues related to the computational tractability of these models and develop the solution methodology and optimal algorithms. We provide extensive computational experiments in §4. Finally, in §5, we conclude the paper. Additionally, we provide a complete set of results of all the other computational experiments in an online appendix (see Sohoni, Lee, and Klabjan 2008).

2. Model Description

As discussed earlier, our goal is to develop a model to perturb the incumbent flight schedule to improve the service levels provided to the end-consumers. Perturbing a flight schedule implies adjusting the scheduled departure times of flights\(^1\) in the network within an allowable time window.

Soon after determining the flight schedule, the airlines determine capacity assignments (fleeting) and assign generic aircraft to routes. The latter, in the literature, is referred to as the aircraft routing problem. It is after these processes that we consider the issue of schedule retiming (perturbation) to fine tune block-times and improve robustness of the schedule with respect to the service-level metrics defined later.

While perturbing the incumbent schedule, however, we must guarantee that the resulting schedule continues to remain feasible with respect to the aircraft turns built of the incumbent schedule. Every flight in the incumbent schedule is assigned to exactly one aircraft. An aircraft turn is essentially a pair of consecutive flights flown by the same aircraft. We assume that the set of turns associated with the incumbent schedule is known a priori.

A passenger travel plan, or itinerary, may comprise multiple flight legs. Broadly defined, a fare class is the price an airline charges to book a passenger in a particular booking class. Airline seats are divided into several booking classes. Next, we define the important modeling notation and parameters.

\[N: \] The set of all flights (legs) in the airlines flight network,
\[B: \] the total available planned budget (depends on the total block-time across all flights),
\[O: \] the set of all passenger itineraries,
\[T: \] the complete set of aircraft turns,
\[F: \] the set of all fare classes,
\[\alpha_s: \] the origin station of flight \(i\),
\[\beta_s: \] the destination station of flight \(i\),
\[m_{ij}: \] minimum passenger connection time between two flights \(i\) and \(j\),
\[t_{ij}: \] minimum turn time between flights \(i\) and \(j\) on the aircraft rotation,
\[D_{of}: \] expected demand for itinerary \(o\) and fare class \(f\),
\[l_i, u_i: \] the allowable departure time window for flight \(i\),
\[c_i: \] the per time unit cost incurred for flight \(i\), which includes unit costs corresponding to crew pay and aircraft use,
\[B_{if}: \] booking limit for fare class \(f\) on flight \(i\),
\[r_{of}: \] the average fare of itinerary \(o\) and fare class \(f\),
\[d_{ij}: \] the previously scheduled departure time of flight \(i\) in the incumbent schedule,
\[e_i: \] the penalty for deviating from the preferred departure time of flight \(i\), and
\[\delta: \] the OTP measure for flight delay (typically 15 minutes after the scheduled arrival time).

Next, we define the decision variables of the model.
\[d_i: \] The published departure time of flight \(i\),
\[a_i: \] the published arrival time of flight \(i\),
\[X_{of}: \] demand of itinerary \(o\) and fare class \(f\) satisfied, and
\[z_{ij}: \] binary variable indicating if the passenger connection between flights \(i\) and \(j\) is feasible.

We define \(d\) and \(a\) to be the set of departure and arrival times, respectively. The only random variables in the model are the block-times and are denoted by \(Y_{tr}\), where \(t\) represents the departure time of flight \(i\). We assume that these are continuous random variables. The relation between a flight’s departure

\(^1\) Throughout this paper we use the terms “flight” and “leg” interchangeably.
time, arrival time, and the corresponding block-time is as follows: \(A_i = d_i + Y_{id} \), where \(A_i \) is the actual random arrival time of flight \(i \). The probability density function of a flight’s block-time is represented by \(p_i(\cdot, t) \) since it might depend on the departure time \(t \). The cumulative density function is assumed to have finite support \([\delta_i^1, \delta_i^2]\). To reduce the complexity of our computational experiments, we assume the following.

Assumption 1. The expected demand \(D_{ij} \) for an itinerary does not vary significantly for reasonable deviations in departure time.

Given that we disallow large perturbations of the departure time by controlling the time window \([l_i, u_i]\) for every flight \(i \) in the network, it is reasonable to assume the following.

Assumption 2. For each flight \(i \), we require that, \(p_i(\cdot, t) = p_i(\cdot) \), i.e., the pdf of the block-time distribution does not depend on the departure time.

A flight \(j \) is said to follow-on flight \(i \) if passengers of flight \(i \) can connect to flight \(j \). The set of all passenger connections for flight \(i \) depends on the arrival time \(t \) and departure times of possible connecting flights. We define the connection set for flight \(i \) as follows.

Definition 1. The connection set for flight \(i \), with respect to the incumbent schedule, is defined as

\[
C_i(d, a) = \{ j \in N : d_j - a_i \geq m_{ij} \text{ and } \beta_j = \alpha_j \}. \tag{1}
\]

Building on the definition of \(C_i(d, a) \), we define a modified connection set \(\tilde{C}_i \), which denotes the largest set of possible connections for flight \(i \) under any departure and arrival time adjustment. For example, \(\tilde{C}_i \) can be the set of all flights originating at station \(\alpha_i \), or we can further refine the set as

\[
\tilde{C}_i = \{ j \in N : \beta_j = \alpha_j \text{ and can connect to } i \text{ regardless of retiming} \}
= \{ j \in N : \beta_j = \alpha_j, u_j - (l_i + \delta_i) \geq m_{ij} \}. \tag{2}
\]

The advantage of using set \(\tilde{C}_i \) instead of the original connection set \(C_i(d, a) \) is that, for any flight \(i \), the latter set is nonstationary, i.e., as the departure time of flight \(i \) changes, the flights in the set may change. Thus, it depends on the decision variables. As we show later, this poses a modeling and optimization challenge because we cannot guarantee a convex feasible region.

We now define the service level, \(SL_i \), of any flight \(i \in N \).

Definition 2. Service-level \(SL_i \) is the probability that passengers from flight \(i \) can connect to any follow-on flight included in the set \(C_i(d, a) \), i.e.,

\[
SL_i = \Pr[A_i + m_{ij} \leq d_j \text{ for every } j \in C_i(d, a)]. \tag{3}
\]

Observe that from Definition 2, it follows that \(SL_i = \Pr[Y_{id} \leq \min_{j \in C_i(d, a)}(d_j - d_i - m_{ij})] \). The network service level (NSL) is defined as follows.

Definition 3. The NSL is defined as the minimum service level across all the flights in the airline’s network, i.e.,

\[
NSL = \min_i SL_i. \tag{4}
\]

Finally, the flight service level (FSL), also referred to as the OTP, is defined as follows.

Definition 4. The FSL is the probability that a particular flight is not delayed based on the OTP acceptable arrival delay measure \(\delta \), i.e.,

\[
FSL_i = \Pr[Y_{i, d_i} \leq a_i - d_i + \delta]. \tag{5}
\]

Lastly, for notational convenience, we denote the fact that flight \(j \) follows flight \(i \) in an itinerary \(o \in O \) by \(i \to j \). Next, we describe the two optimization models.

2.1. Maximizing Operational Profits

We first consider the case when an airline must maintain a minimum FSL, \(\gamma_f \), over all flights in the network, and simultaneously guarantee a minimum NSL of \(\gamma_n \). The profit-maximizing model (PMM) reads

\[
\text{(PMM) } \max \sum_{o,f} r_{of} X_{of} - \sum_{i \in N} e_i |d_i - d_i^*| - \sum_{i \in N} c_i(a_i - d_i), \tag{6}
\]

\[
\Pr[Y_{id} \leq d_j - d_i - m_{ij}] \geq \gamma_a \quad i \in N, j \in C_i(d, a), \tag{7}
\]

\[
\Pr[Y_{i,d} \leq a_i - d_i + \delta] \geq \gamma_f \quad i \in N, \tag{8}
\]

\[
\sum_{i \in N} c_i(a_i - d_i) \leq B, \tag{9}
\]

\[
X_{of} \leq D_{of} \quad o \in O, f \in F, \tag{10}
\]

\[
\sum_{o \in O, i \in o} X_{of} \leq \beta_{if} \quad i \in N, f \in F, \tag{11}
\]

\[
\sum_{o \in O, f \in o, i \to j} X_{of} \leq \tilde{K}_{ij} z_{ij} \quad i \in N, j \in \tilde{C}_i, \tag{12}
\]

\[
d_j - a_i \geq m_{ij} z_{ij} - K(1 - z_{ij}) \quad i \in N, j \in \tilde{C}_i, \tag{13}
\]

\[
d_j - a_i - t_{ij} \geq 0 \quad (i, j) \in T, \tag{14}
\]

\[
l_i \leq d_i \leq u_i \quad i \in N, \tag{15}
\]

\[
z_{ij} \in [0, 1], d, a \text{ unrestricted}. \tag{16}
\]

The first term in the objective function (6) corresponds to the net revenue because of satisfied itinerary demand, the second term is the net penalty because of deviation from preferred departure time (departure time specified in the incumbent schedule), and the third term represents the total operational cost.
Constraint (7) ensures that the minimum NSL is at least as large as the desired value of γ_n. It is not difficult to observe that NSL $\geq \gamma_n$ if and only if constraint (7) is satisfied. Constraint (8) guarantees that the minimal FSL is at least γ_f. Constraint (9) restricts the total network operating cost incurred, and constraint (10) restricts the fare class itinerary demand to the maximum allowable. Since every flight i within an itinerary o can carry at most \mathcal{B}_{of} of a particular fare class f, constraint (11) ensures that the booking limit constraint on each flight is satisfied. Constraints (12)–(13) ensure that we only account for those itineraries whose flight sequence is legal with respect to the minimum passenger connection time. Here $\bar{K}_{ij} = \sum_f \mathcal{B}_{if} + \sum_f \mathcal{B}_{jif}$. The constant K is the length of the time horizon, i.e., $K = \max_{i \in N} u_i - \min_{i \in N} l_i + \max_{i \in N} \delta^o_i$. Constraint (14) guarantees that the predetermined aircraft turns are preserved, and hence the aircraft routing solution always remains feasible. Finally, constraint (15) bounds the departure time adjustment for every flight, and constraint (16) restricts the choice of z_{ij} to be binary.

In §3, we discuss issues regarding the computational tractability of the optimization model PMM. One peculiarity of PMM is immediately observable; the constraint set in (7) depends on the decision variables.

2.2. Maximizing Service Level
An alternate goal could be to maximize the service level across the entire flight network. However, the airline may only be willing to do so provided it maintains minimum operational profitability. In this case, the optimization model differs from the PMM model described earlier, i.e., γ_f and γ_n are no longer parameters but are decision variables. Furthermore, the profit objective in PMM is now a constraint. We impose that the minimum operational profit must be at least U_c units. The service-level maximizing model (SLMM) reads

$\text{(SLMM)} \quad \max w_f \gamma_f + w_n \gamma_n,$

$$\Pr[Y_{1d} \leq d_j - d_i - m_{ij}] - \gamma_n \geq 0, \quad i \in N, \quad j \in C(d, a),$$

$$\Pr[Y_{1d} \leq a_i - d_i + \delta] - \gamma_f \geq 0 \quad i \in N,$$

$$\sum_{i \in N} c_i(a_i - d_i) \leq B,$$

$$X_{of} \leq D_{of} \quad o \in O, \ f \in F,$$

$$\sum_{o \in O, i \in o} X_{of} \leq \mathcal{B}_{if} \quad i \in N, \ f \in F,$$

$$\sum_{o, f, j \in o, i \rightarrow j} X_{of} \leq \bar{K}_{ij} z_{ij} \quad i \in N, \ j \in \bar{C}_i,$$

$$d_j - a_i \geq m_{ij} z_{ij} - K(1 - z_{ij}) \quad i \in N, \ j \in \bar{C}_i,$$

$$d_j - a_i - t_{ij} \geq 0 \quad (i, j) \in T,$$

$$\sum_{o, f} X_{of} - \sum_{i \in N} e_i |d_i - d_f| - \sum_{i \in N} c_i(a_i - d_i) \geq U_o$$

$$l_i \leq d_i \leq u_i \quad i \in N,$$

$$z_{ij} \in \{0, 1\}, \ d, a \ \text{unrestricted}. \quad (17)$$

The objective function (17) is a weighted sum of the minimal NSL and FSL quantities, where w_f and w_n are the weights corresponding to the FSL and NSL, respectively. All the other constraints are similar to those described in PMM. The only additional constraint is (26), which ensures that any solution makes an expected operational profit of at least U_c.

3. Solution Methodology
In this section, we discuss issues regarding computational complexity and tractability of the models discussed in §2. More importantly, we exhibit two algorithms for solving PMM and SLMM. In model PMM, constraints (7)–(8) are nonlinear. This makes the model difficult to solve computationally. Similarly, in model SLMM, constraints (18)–(19) are nonlinear. Additionally, objective function (6) and constraint (26) contain the absolute value function, however, it is straightforward to linearize these terms. A technical assumption regarding the block-time distribution allows us to simplify the model and reduce its computational complexity.

Assumption 3. The block-time distributions are log-concave and stationary with respect to the departure time.

Through extensive empirical studies using Bureau of Transportation Statistics data, Deshpande and Arik (2009) estimate the best distribution fit for observed truncated block-times across several U.S. airlines. Specifically, they use log-normal and log-Laplace distributions. While the log-normal distribution provides a reasonable fit, they show that the log-Laplace distribution is better. It is noteworthy that both of these cumulative distribution functions are log-concave (Bagnoli and Bergstrom 2005) and thus satisfy Assumption 3. The Laplace distribution is defined by two parameters: γ, a location parameter, and b, a scale parameter where the mean equals to γ and the variance is $2b^2$. The probability density function of the Laplace(γ, b) distribution is $f(x \mid \gamma, b) = (1/(2b)) \exp(-|x - \gamma|/b)$. Assumption 3 allows us to simplify the complicating chance constraints (8) and (19) into convex constraints. Given that we assume the block-time distribution is independent of the departure time, we drop the departure...
time subscript, i.e., \(Y_{id_j} = Y_i \). Constraints (7)-(8) are transformed as follows:

\[
\log(\Pr[Y_i \leq d_j - d_i - m_{ij}]) \geq \log \gamma_n, \quad i \in \mathbb{N}, \ j \in \mathcal{C}(d, a), \quad (29)
\]

\[
\log(\Pr[Y_i \leq a_i - d_i + \delta]) \geq \log \gamma_f \quad i \in \mathbb{N}. \quad (30)
\]

It is known that the feasible set of constraint (30) is convex because of log-concavity (see, e.g., Birge and Louveaux 1997). Unfortunately, constraints in (29) are not convex since their index depends on \(d \) and \(a \). This fact poses a significant algorithmic and computational challenge. To devise an efficient solution strategy, we first develop a linear approximation scheme to these constraints in §3.1. The resulting mixed-integer model has an infinite number of variables and constraints. We then describe a cut generation algorithm that generates these linear constraints as needed and builds an optimal solution to the models.

3.1. Model Reformulation

Our goal in this section is to develop a linear formulation to the two models, PMM and SLMM. Recollect that the NSL constraints given by Equation (29) are nonconvex. To circumvent this issue, we construct a linear approximation for the NSL constraint over a stationary set of linear functions as follows. The added advantage of doing so is that the reformulation allows us to develop an algorithm, similar to the Bender’s cut generation algorithm (Birge and Louveaux 1997), to solve the model.

Recollect that the distributions have a finite support \(\mathcal{H}_i = [\delta_i^l, \delta_i^u] \). Now, for every flight \(i \), we define a function \(g_i(x) \) as

\[
g_i(x) = \log \Pr[Y_i \leq x], \quad x \in \mathcal{H}_i. \quad (31)
\]

Because \(Y_i \) is log-concave, \(g_i(x) \) is concave, see, e.g., Birge and Louveaux (1997). To build an outer linear approximation to Equation (31), we consider a set of linear functions, \(U_{ik} \), defined over interval \(\mathcal{H}_i \). We show the form of these linear functions later. For now, using these linear functions, we rewrite \(g_i(x) \) as follows (this is a known fact in convex analysis):

\[
g_i(x) = \min_{k \in \mathcal{H}_i} U_{ik}(x). \quad (32)
\]

Using Equation (32), we now reformulate the NSL constraint as

\[
g_i(d_j - d_i - m_{ij}) \geq \log \gamma_n \quad i \in \mathbb{N}, \ j \in \mathcal{C}(d, a). \quad (33)
\]

The above equation can be rewritten as

\[
z_{ij}g_i(d_j - d_i - m_{ij}) \geq \log \gamma_n \quad i \in \mathbb{N}, \ j \in \bar{\mathcal{C}}_i, \quad (34)
\]

where \(\bar{\mathcal{C}}_i \) is defined by Equation (2). Observe that \(\log \gamma_n \leq 0 \), and thus inequality (34) holds if \(z_{ij} = 0 \).

\[\text{Figure 1: Linearization of Constraints (35)}\]

If \(z_{ij} = 1 \), then \(j \in \mathcal{C}(d, a) \), and thus \(g_i(d_j - d_i - m_{ij}) \geq \log \gamma_n \) must hold, which is guaranteed by constraint (34). Thus, constraint (29) is equivalent to

\[
z_{ij} \min_{k \in \bar{\mathcal{C}}_i} U_{ik}(d_j - d_i - m_{ij}) \geq \log \gamma_n \quad i \in \mathbb{N}, \ j \in \bar{\mathcal{C}}_i. \quad (35)
\]

It is noteworthy that in (35) if \(d_j - d_i - m_{ij} \leq 0 \), then \(z_{ij} = 0 \), and hence we need not worry about negative arguments, i.e., we restrict our attention to positive values only.

We now characterize the functions \(U_{ik}(x) \). Given the probability density function \(p_i(\cdot) \) for block-time \(Y_i \), we can write these functions as

\[
U_{ik}(x) = \frac{p_i(k)}{\int_0^k p_i(t) \, dt} (x - k) + \log \int_0^k p_i(t) \, dt. \quad (36)
\]

To this end, notice that \(U_{ik}(\delta_i^l - m_{ij}) < 0 \) and \(U_{ik}(\delta_i^u - m_{ij}) \leq U_{ik}(x) \) for all \(x \geq \delta_i^l - m_{ij} \) (see Figure 1). This is the tangent of \(g_i(x) \) at the point \(k \in \mathcal{H}_i \). It is known that a concave function is the minimum of its tangents, and thus Equation (32) holds. We still need to linearize constraints (35).

We now define additional continuous decision variables, \(s_{ijk} \), for all \(i \in \mathbb{N}, j \in \bar{\mathcal{C}}_i, \) and \(k \in \mathcal{H}_i \). Constraint (35) can then be replaced by the following set of linear constraints:

\[
s_{ijk} \geq \log \gamma_n \quad i \in \mathbb{N}, \ j \in \bar{\mathcal{C}}_i, \ k \in \mathcal{H}_i, \quad (37)
\]

\[
z_{ij}U_{ik}(\delta_i^l - m_{ij}) \leq s_{ijk} \leq 0 \quad i \in \mathbb{N}, \ j \in \bar{\mathcal{C}}_i, \ k \in \mathcal{H}_i, \quad (38)
\]

\[
(1 - z_{ij})U_{ik}(\delta_i^u - m_{ij}) + s_{ijk} \leq U_{ik}(d_j - d_i - m_{ij}) \quad i \in \mathbb{N}, \ j \in \bar{\mathcal{C}}_i, \ k \in \mathcal{H}_i. \quad (39)
\]

If \(z_{ij} = 0 \), then (38) implies that \(s_{ijk} = 0 \), and thus (37) holds. In this case, (39) also holds since \(U_{ik}(\delta_i^l - m_{ij}) \leq U_{ik}(d_j - d_i - m_{ij}) \). On the other hand, if \(z_{ij} = 1 \), then we can assume that \(s_{ijk} = \min(0, U_{ik}(d_j - d_i - m_{ij})) \), and thus (37) holds if and only if \(U_{ik}(d_j - d_i - m_{ij}) \geq \log \gamma_n \).

Similarly, the FSL constraint given by Equation (30) is equivalent to

\[
\min \ U_{ik}(a_i - d_i + \delta) \geq \log \gamma_f \quad i \in \mathbb{N}. \quad (40)
\]
It is clear that (40) is equivalent to

\[U_{ik}(a_i - d_i + \delta) \geq \log \gamma_i \quad i \in N, k \in \mathcal{K}_i. \] (41)

It is evident that the number of constraints in (37)–(39) and (41) is extremely large. Incorporating these constraints and variables a priori into the model is impossible. Hence we must develop an iterative cut generation algorithm that generates relevant inequalities at each iteration as the solution progresses. A further complicating factor is the fact that we have an infinite number of variables (uncountably many).

As discussed earlier, in addition to the above service-level constraints, the term \(\sum_{i \in N} e_i [d_i - d_i^*] \) is also a nonlinear term in the objective function (6). However, this term can be linearized using standard techniques, and hence we do not discuss this linearization technique in detail. Next, in §3.2, we describe the cut generation algorithm for PMM.

3.2. The Cut Generation Algorithm for PMM

Based on the constraint linearization procedure described earlier, in this section, we develop a constraint generation algorithm to solve our optimization model PMM.

We begin by ignoring the NSL and FSL constraints, i.e., constraints (35) and (40). Recollect that we replace the original constraints (7)–(8) with these new constraints. In addition, the term \(\sum_{i \in N} e_i [d_i - d_i^*] \) is linearized in the objective function. We refer to the resulting model, without these constraints, as the restricted profit-maximizing model R-PMM. We initialize our algorithm with R-PMM. Let \(h \geq 0 \) denote an iteration step of the proposed algorithm. Furthermore, let \(Z^h = (z_{ij}^h), d^h = (d_i^h), \) and \(a^h = (a_i^h) \) denote an optimal solution at the beginning of iteration \(h, \) i.e., after solving R-PMM. At every iteration, let \(\tilde{F}(h) \) denote the set of new NSL constraints generated and let \(\tilde{F}(f) \) denote the set of additional FSL constraints generated. Let \(F \) denote the set of combined NSL and FSL constraints added to the restricted problem R-PMM. Each time an NSL constraint is generated, the corresponding \(s \) variable is also introduced into R-PMM.

We list the steps of our constraint and variable generation algorithm in Algorithm 1. In step 3 of the algorithm, we gather all the current passenger connections. Because \(k_{ij} \) is the function argument in the right-hand side of (39), we need to consider tangents at this particular point (see Figure 1). Flight \(j_i \) is the index with the maximum violation in (37). Step 4(b), in Algorithm 1, introduces the new \(s \) variable and adds the corresponding constraints (37)–(39).

Algorithm 1 (Algorithm for solving PMM)

Step 1. Initialize \(h = 1, S = \emptyset, \) and let R-PMM consist of objective function (6) and constraints (9)–(16).

Step 2. Optimize R-PMM with constraints in \(F. \) Let \(Z^h, d^h, a^h \) be the corresponding optimal solution.

Step 3. Build updated connection sets, i.e., for each flight \(i \in N \) collect

\[S_i = \{ j \in N: z_{ij}^h = 1 \}. \]

Step 4. Check for the set of most violated NSL constraints. Set \(\tilde{F}(0) \leftarrow \emptyset \) and \(k_{ij} = d_i^h - d_i^* - m_{ij}. \) For each flight \(i \in N, \)

(a) Find

\[j_i = \arg \max_{j \in S_i} \{ \log \gamma_i - U_{ik}(k_{ij}) \}. \]

(b) If \(\log \gamma_i - U_{ik}(k_{ij}) > 0, \) then define a variable \(s_{i,k,k_i} \) and generate constraints using (37)–(39) with \(j = j_i, k = k_{ij}. \) Add these constraints to \(\tilde{F}(h). \)

Step 5. Check for the set of violated FSL constraints. Set \(\tilde{F}(f) \leftarrow \emptyset \) and \(\bar{k}_i = a_i^h - d_i^* + \delta. \) For each flight \(i \in N, \)

(a) If \(\log \gamma_i - U_{ik}(\bar{k}_i) > 0, \) generate a constraint using (41) with \(k = \bar{k}_i, \) and add it to \(\tilde{F}(f). \)

Step 6. If \(\tilde{F}(f) \cup \tilde{F}(0) = \emptyset, \) terminate;

Step 7. Set \(F \leftarrow F \cup \tilde{F}(f) \cup \tilde{F}(0), h \leftarrow h + 1, \) go to step 2.

Next, in Theorem 1, we show that Algorithm 1 is guaranteed to converge to an optimal solution.

Theorem 1. There is a subsequence \(\{ h_q \} \) such that \(d_i^* = \lim_{q \to \infty} a_i^h = \lim_{q \to \infty} a_i^{h_q} \) for every flight \(i \in N \) is an optimal solution to PMM.

Proof. See the appendix for the proof. \(\square \)

It is noteworthy that the proof of Theorem 1 also exhibits an optimal \(Z^*, s^*, \) and \(X^*. \) As a result, Algorithm 1 converges to an optimal solution for model PMM. Furthermore, it is worth emphasizing that the analysis is not trivial. As stated earlier, the feasible region of the original problem is nonconvex, but, the linearization procedure allows us to circumvent this issue. However, upon linearization, the modified model is infinite dimensional with infinitely many constraints. Algorithm 1 and Theorem 1 generalize the convergence results achieved with (1) semi-infinite linear programs with finitely many variables but infinitely many constraints and (2) infinite dimensional problems with finitely many constraints and infinite number of variables.

The computational time to convergence could still be an issue. While we cannot guarantee a bound on the computational time, in §4, we demonstrate that the algorithm converges within reasonable CPU time through extensive computational experiments using real airline data. Next, in §3.3, we develop an approximate algorithm to solve SLMM.
3.3. Cut Generation Algorithm for SLMM

The algorithm to solve PMM can be modified to approximately solve the alternate model SLMM. Notice that constraints (37)–(39) and constraint (41) are also valid for SLMM; they replace constraints (18)–(19). To enable a complete linear transformation, we define variables $\xi_i = \log\gamma_i$ and $\zeta_j = \log\gamma_j$. Thus, constraints (37)–(39) and (41) transform as follows:

\begin{align*}
 s_{ik} &\geq \xi_i & i &\in N, j &\in \bar{C}_i, k &\in \mathcal{I}_i, \\
 z_{ij}U_k(\delta_i - m_{ij}) &\leq s_{ik} & i &\in N, j &\in \bar{C}_i, k &\in \mathcal{I}_i, \\
 (1 - z_{ij})U_k(\delta_i - m_{ij}) + s_{ik} &\leq U_k(d_j - d_i - m_{ij}) & i &\in N, j &\in \bar{C}_i, k &\in \mathcal{I}_i, \\
 U_k(d_j - d_i + \delta) &\geq \zeta_j & i &\in N, k &\in \mathcal{I}_i.
\end{align*}

We change the objective function of model SLMM using ξ_i and ζ_j, however, the objective function is now a nonlinear function, i.e., $w_i \exp(\zeta_j) + w_n \exp(\xi_i)$. Unfortunately, this is a maximization problem of a convex function and thus is not easily amendable to computational tractability. To simplify the computational procedure, we use the first-order linear approximation of $\exp(x) = 1 + x$, which transforms the objective function to

\begin{equation}
 \max w_i \zeta_j + w_n \xi_i.
\end{equation}

The new objective is an approximation of the original problem. Thus, any optimal solution to the transformed objective function may not result in an optimal solution to the original problem. However, the linear approximation allows us to solve for the service levels efficiently. We demonstrate this using several computational experiments in §4.

In addition to the above service-level constraints, the term $\sum_{n \in N} e_i |d_j - d_i^n|$, in constraint (26), is also nonlinear. Just as in the case of PMM, this term can be linearized using standard techniques, and hence we do not discuss it in detail here.

As with the solution methodology for PMM, to begin, we ignore the NSL and FSL constraints, i.e., constraints (42)–(45). We refer to the resulting model, without these constraints, as the restricted service-level maximizing model R-SLMM. In addition, the objective function is replaced by (46). We initialize our algorithm with R-SLMM. Let $h \geq 0$ denote an iteration step of the proposed algorithm. Furthermore, let $Z^{bs} = \langle z_n^{bs}\rangle$, $d^{bs} = \langle d_i^{bs}\rangle$, and $a^{bs} = \langle a_j^{bs}\rangle$, ζ_j^{bs}, and ξ_i^{bs} denote the optimal solution at the beginning of iteration h. At every iteration let $\mathcal{F}^{(0)}$ denote the set of new NSL constraints generated and $\mathcal{F}^{(h)}$ denote the set of additional FSL constraints generated. Let \mathcal{F} denote the set of combined NSL and FSL constraints added to the restricted problem R-SLMM. We list the steps used to solve SLMM in Algorithm 2. The steps are similar to those in Algorithm 1.

Algorithm 2 (Algorithm for solving SLMM).

Step 1. Initialize $h = 1$, $S = \emptyset$, and let R-SLMM consist of objective function (46) and constraints (20)–(28).

Step 2. Optimize R-SLMM with constraints in \mathcal{F}. Let Z^{bs}, d^{bs}, a^{bs}, ζ_j^{bs}, and ξ_i^{bs} be the corresponding optimal solution.

Step 3. Build updated connection sets, i.e., for each flight $i \in N$ collect

$$S_i = \{j \in N: z^{bs}_{ij} = 1\}.$$

Step 4. Check for the set of most violated NSL constraints. Set $\mathcal{F}^{(0)} = \emptyset$ and $k_{ij} = d^{bs}_{ij} - d^{bs}_i - m_{ij}$. For each flight $i \in N$,

(a) Find

$$j_i = \arg \max_{j \in S_i} \{z^{bs}_{ij} - U_k(k_{ij})\}.$$

(b) If $z^{bs}_{ij} - U_k(k_{ij}) > 0$, then define a variable $s_{i,j,k}$ and generate constraints using (42)–(44) with $j = j_i$, $k = k_{ij}$. Add them to $\mathcal{F}^{(0)}$.

Step 5. Check for the set of violated FSL constraints. Set $\mathcal{F}^{(t)} = \emptyset$ and $\tilde{k}_t = a^{bs}_t - d^{bs}_i + \delta$. For each flight $i \in N$,

(a) If $\zeta_j^{bs} - U_k(k_{ij}) > 0$, generate a constraint using (45) with $k = \tilde{k}_i$, and add it to $\mathcal{F}^{(t)}$.

Step 6. If $\mathcal{F}^{(t)} \cup \mathcal{F}^{(0)} = \emptyset$, terminate;

Step 7. Set $\mathcal{F} = \mathcal{F} \cup \mathcal{F}^{(t)} \cup \mathcal{F}^{(0)}$, $h \leftarrow h + 1$, go to step 2.

Similar to Theorem 1, it is easy to verify that Algorithm 2 is guaranteed to converge to an optimal solution for the approximate model of SLMM with the objective function (46). We state this result as a corollary to Theorem 1 without proof.

Corollary 1. Algorithm 2 converges to an optimal solution of the approximate model SLMM with the objective function (46).

Next, we describe the computational experiments.

4. Computational Experiments

In this section, we describe a series of computational experiments using real airline data. The goal of these experiments is twofold. The primary goal is to study the efficiency of the optimization models PMM and SLMM to solve the robust scheduling problem. A secondary goal is to study the trade-off an airline faces between higher passenger service levels (as defined by the NSL and FSL) and the possible degradation in profit using the models described earlier. To this end, we implemented the algorithms described in §§3.2 and 3.3 to solve five airline network instances.

We first describe the characteristics of these network instances in Table 1. Because of confidentiality issues, we report only the underlying ranges. Instance 1 is the...
In this paper, however, we aim to demonstrate the efficiency of our models and algorithm, we only summarize some of the performance metrics of PMM, for all five instances, in Table 2. A priori, after adjusting for a few outliers, the NSL of the incumbent schedule is 0.4 and the FSL is 0.6. Essentially, we ignored 10 flights with very low service levels to compute the NSL and five flights to compute the FSL.

For the first set of experiments, the FSL was held constant at 0.8 and the NSL level was allowed to vary from 0.8 to 0.95 in increments of 0.1. We denote this set of experiments as Fixed-FSL. In the next set of experiments, the NSL was held constant and the FSL was allowed to vary from 0.8 to 0.95 in increments of 0.1. We denote this set of experiments as Fixed-NSL. All these instances were solved to optimality. We report the maximum CPU time, maximum number of iterations, and maximum number of cuts generated using Algorithms 1–2 in Table 2. The results show that PMM performs reasonably well on all networks, especially, considering the fact that schedule development is performed several months prior to the day of operations and airlines do not mind spending additional computation time. Furthermore, the results also indicate that both algorithms converge within a few iterations.

For the remainder of the computational experiments, we restrict our attention to instance 1 because it is the largest network. We discuss these experiments in §§4.1 and 4.2. As mentioned earlier, results for all other instances can be found in Sohoni, Lee, and Klabjan (2008).

4.1. The PMM Model

The first set of experiments are for model PMM. Through several experiments, we demonstrate the trade-off between higher service levels and planned profit. For all these experiments, we restrict the flight departure times to be adjusted within 60 minutes of those specified in the incumbent schedule. Furthermore, the penalty for adjusting the departure time is held at 1, i.e., \(c_i = c_j = 1 \) for all \(i, j \in N \).

Effect on Profit

First, in Figure 2, we show how the profit (objective function) varies as the NSL is varied for different FSL levels. The profit is computed...
as a percentage of the planned profit of the incumbent schedule. In general, the profits decrease as NSL increases. Because the NSL and FSL of the incumbent schedule are lower than those considered, these profits are also lower. We vary the NSL from 0.8 to 0.95. With lower FSL, the decrease in profit is less pronounced as the NSL increases. To achieve extremely high NSL and FSL, substantial profit decrease must be tolerated. Next, in Figure 3, we show how the profit varies as the FSL is varied for different NSL levels. In this case too, the profit levels decrease. Again, the profit is computed as a percentage of the planned profit of the incumbent schedule. Similar to the NSL experiments, we vary the FSL from 0.8 to 0.95. Finally, Figure 4 summarizes the reduction in profit, as a percentage of the planned profit of the incumbent schedule, as both the NSL and FSL vary from 0.8 to 0.95. It is noteworthy that at very high service levels, the reduction in profit is 13%. However, the airline may be willing to consider a lesser degradation in profit to still achieve substantial improvement in FSL and NSL. We observe that the profit decreases almost linearly with respect to the FSL and NSL. This is confirmed also in Figures 2–3.

Number of Departures Changed and Passenger Connections for the PMM Model. In this set of experiments, we vary the NSL and FSL between 0.8 and 0.95 and study the number of departure times and passenger connections affected. Figure 5 shows the effect of varying the NSL, and Figure 6 shows the effect of varying FSL. In the former, the FSL is fixed at 0.8, and in the latter set of experiments, the NSL is fixed at 0.8. In both these figures, the solid line with block markers represents the number of passenger connections achievable, and the dotted line with diamond markers represents the number of flight departures affected. In Figure 5, the connections steadily decrease from 4,186 to 3,725, while the number of departures increases (as shown by the thin dark trend line) from 171 to 273 as the NSL changes. Similarly, in Figure 6, the connections vary between 4,197 to 4,055 and the total departures adjusted fluctuate between 164 and 200. There is not a clear trend in how the FSL affects the number of departures adjusted, however, as indicated by the thin dark trend line, the connections show a decreasing trend. Intuitively, to achieve high service levels, flexibility is required, and thus more departure time changes are expected. Figure 5 confirms this, while it is not evident from Figure 6. The NSL captures passenger connections. If an airline

![Figure 2 Effect of NSL on the Profit Level](image2)

Note. Percent of incumbent schedule profit.

![Figure 3 Effect of FSL on the Profit Level](image3)

Note. Percent of incumbent schedule profit.

![Figure 4 Effect of FSL and NSL on the Profit Level](image4)

Note. Percent of incumbent schedule profit.
operates a single flight, the NSL is 100%. We expect that as the NSL is increased, the number of passenger connections should decrease (clearly at the expense of diminishing profit). This intuition is confirmed by both figures.

Effect of Deviation Penalty for the PMM Model. Here, we vary the penalty from the departure time in the incumbent schedule \((e_i, i \in N)\). In these experiments, however, we do not discriminate between flights, i.e., we assume \(e_i = e_j\) for every \(i, j \in N\). First, in Figure 7, we plot the profit (as a percentage of the profit of the incumbent schedule), and the number of passenger connections changed as the deviation penalty is varied from 0 to 200. The thick line represents the profit level and the dashed line represents the connections affected. The NSL and FSL are held at 0.8 for all these experiments. The profit, as well as the connections, show a decreasing trend with respect to the deviation penalty. This is expected because higher deviation penalties imply more costly perturbations, and thus the trade-off between schedule changes and profit sways toward schedule changes.

Figure 6 Effect of FSL on the Departures Changed and Passenger Connections

4.2. The SLMM Model
Here, we report the experimental results for the SLMM model. For these sets of experiments, we define the relative weight between the NSL and FSL as \(\omega = w_n/w_f\). The first set of experiments for the SLMM model study the effect of \(\omega\) on the NSL and FSL achieved. The minimum profit level (for constraint (26)) is restricted to 100% of the profit achieved with the incumbent schedule. Thus we do not allow any decrease in profitability. Figure 8 shows the results of these experiments. The dotted line represents the FSL, and the solid line represents the NSL. Because the objective function in Algorithm 2 is an approximation to the two service levels, given a solution, we have to compute the service levels from the schedule obtained. The experimental results, with the departure time window fixed at 30 minutes, show that FSL drops initially while the NSL increases as \(\omega\) increases. Interestingly, though, both these service levels stabilize beyond a weight level and remain almost constant even for very large values of \(\omega\). Such a behavior is expected since \(\omega\) captures the trade-off between the two service levels. From Figure 8, we can also observe the maximum possible service levels with the same profits.

The next set of experiments vary the departure time window between which the flight departure times are varied. Again, we study the effect on the service levels achievable, while still assuring 100% of the original schedule’s profit. Figure 9 plots both these curves. The dotted line represents the FSL, and the solid line represents the NSL. As the departure time window is expanded, the NSL improves while the FSL marginally drops. This affirms that it is harder to increase the NSL than the FSL. To increase the NSL, further flexibility has to be provided such as increased time windows. Figure 9 provides a clear trade-off with respect to the permissible schedule change and the two service levels without reducing profitability. For example, if the departure time windows are 10 minutes (which may not be always acceptable, e.g.,
Figure 9 Effect of Departure Time Window on NSL and FSL ($\omega = 0.7$)

because of competition and implications on demand),
then a NSL of about 58% and a FSL of about 79%
is achievable at the same profit level. This is a sub-
stantial improvement over the original values of 40%
and 60% for the NSL and FSL, respectively. For these
experiments $\omega = 0.7$, which is a value of ω, where
the service levels are stable.

The final set of experiments study the trade-off
between the service levels and the profit level. The
profit is computed as a percentage of the profit for the
incumbent schedule when $\omega = 0.7$, and the departure
time window is set to 30 minutes. Figure 10 shows the
variation in NSL, FSL, and the value $\omega \text{NSL} + \text{FSL}$
as the profit is reduced. At 100% profit, NSL = 0.68
and FSL = 0.68. However, as the profit percentage is
reduced, NSL increases only slightly, i.e., up to 0.71 at
90% profit level, while FSL increases substantially to
0.91. Note that a different trade-off would be assessed
if ω is changed. Thus the airline may gain on service
levels by slightly adjusting the profit.

5. Discussion

In this paper, we developed two models that incorpo-
rate uncertainty associated with block-times into the
schedule development process. It is an initial attempt
in developing a comprehensive and holistic model
for incorporating block-time uncertainty in sched-
ule planning. We explicitly model time distributions
through chance constraints, and hence the resulting
schedule is robust with respect to the operational
OTP measure. We also incorporate NSL, which prob-
abilistically model passenger connections. The new
cut generation algorithm and linearization technique
proposed are novel in the sense that the convergence
result generalizes previously established results with
(1) semi-infinite linear programs with finitely many
variables but infinitely many constraints and (2) in-
finit dimension problems with finitely many con-
straints and infinite number of variables.

The benefits of our approach are twofold: (1) air-
lines could adjust the schedule to increase operational
reliability and (2) passengers could be guaranteed
higher service levels. There are potentially other indi-
rect benefits of adjusting the schedule by incorpor-
ating block-time uncertainty. For example, the schedule
recovery cost because of a disruption during actual
operations could be reduced because the planned
block-times allow additional flexibility. However, we
have not specifically included such additional benefits
in the models presented. Through extensive computa-
tional experiments, we demonstrate the efficiency
of our algorithms and models in trading off between
profitability and service-level guarantees. The algo-
rithms perform well in achieving this trade-off and
provide airline schedule planners the ability to decide
on acceptable reduction in profitability to achieve
desired passenger service levels.

There are several possible modifications and en-
hancements to the models described in this paper.
First, the dependency of block-time distributions on
the departure time can be included, if such informa-
tion is readily available. This also allows for wider
time windows to vary the departure times of sched-
uled flights and capture time-of-the-day effects related
to block-time distributions. However, the resulting
model is more complicated than those described by
the PMM and SLMM, because it requires the intro-
duction of additional binary variables and several
additional constraints to model the choice of the
appropriate departure time-dependent block-time dis-
tribution. The key concept is to discretize each time
window and assign a specific block-time distribu-
tion to each subinterval. Standard modeling tech-
niques using piecewise linear functions capture these
assignments.

Second, in the current model, we assume that the
block-times follow continuous log-concave distribu-
tions. It is possible that there may be a discrete jump
in the actual block-time, i.e., the block-time distribu-
tions follow a discrete log-concave distribution. While
our model can be considered as an approximation to the discrete case, incorporating discrete distributions may not guarantee convergence, unlike the case discussed in this paper with continuous distributions.

Third, to keep our analysis tractable and focus on the issue of schedule reliability, our model does not incorporate the trade-off between the local and through passengers. While constraints (14) in the PMM model and (25) in the SLMM model enforce the fact that the original passenger connections (itineraries) are feasible with any schedule perturbation, any solution to our model provides a lower bound to the potential revenue (and profit) achievable, if such a profitable trade-off (substitution of demand) were to be specifically included in these optimization models. Additionally, such data would also have to be captured. These constraints also enforce that the aircraft routing solution to the incumbent solution continues to remain feasible under any schedule perturbations. In a more general setting, it is possible to relax these constraints and allow larger perturbations of the schedule by embedding fleet assignment and aircraft routing constraints. In this case, several additional passenger connections may also become feasible as the departure times are perturbed. Such a model would be an extension of our model and significantly harder to solve.

To address the issue of time-dependent demand distributions for local and through passengers, one possible way is to construct multiple copies of the same flight, each with its own specific demand. This would necessitate the inclusion of additional constraints enforcing that exactly one of these copies is chosen, as well as the connections of aircraft rotations and passenger flows remain feasible.

Fourth, in this paper, we focus on perturbing the schedule by including block-time uncertainty. However, as the block-times are varied, and the departure times are perturbed, the ground-times are automatically adjusted. It is possible, that airlines would want to trade off between the allocation of ground-times and block-times to perturb the schedule. Currently, we do not explicitly model ground-time constraints, because the form of the distributions for the ground-time variables is not known. Our solution methodology could be extended if these distributions are log-concave. It is possible that, in the current model, we could capture the change in the objective function because of increase or decrease in ground-times. This could be done by including some cost/profit associated with perturbing ground-times in the objective function. For example, if G_{ij} denotes the cost/profit associated with increasing the ground-time between flights i and j in an aircraft’s rotation, we could include the terms $\sum_{(i,j)\in T} G_{ij}(d_{ij} - a_{ij})$ in the objective function. This, of course, would not qualitatively change our main insights.

Finally, in the current setting, we do not distinguish between various markets an airline serves (i.e., different portions of the network). It is possible to incorporate different service levels for different markets and use similar models, as described in this paper, to perturb the schedule and set suitable block-times. In the current setting, we only guarantee a minimum service level for the entire network.

Appendix

Proof of Theorem 1. Recollect that h denotes the iteration index in Algorithm 1. Given that Z^{h_\star} only has a finite number of different values, there exists a subsequence such that $Z^{h_{n}} = Z^{h_{n+1}} = \cdots = Z^{h_{n}}$. Furthermore, since for every flight $i \in N$, $d_{ij}^{h_{\star}} \in [l_{ij}, u_{ij}]$, there exists a convergent subsequence in $[a_{ij}^{h_{\star}}]_{k}$. From constraint (8), it follows that $d_{ij}^{h_{\star}} \leq d_{ij}^{h_{\star}}$ for every $i \in N$. Additionally, constraint (9) ensures that the subsequence $[a_{ij}^{h_{\star}}]_{k}$ is upper bounded. Thus we conclude that there exists a convergent subsequence in $[a_{ij}^{h_{\star}}]_{k}$.

Let us denote the values of s_{jk} in the optimal solution to R-PMM by s_{jk}^{\star}. We now assume that if $z_{ij}^{\star} = 1$, then $s_{jk}^{\star} = \min([0, U_{jk}(d_{ij}^{h_{\star}} - d_{ij}^{h_{\star}} - m_{ij})])$ for every $k \in K_{j}$, $i \in N$, and $j \in C_{i}$. If this is not the case, we can easily increase s_{jk}^{\star} to satisfy this property without affecting feasibility. Furthermore, observe that for every itinerary o and fare class f combination, we have $0 \leq X_{of}^{h_{\star}} \leq D_{of}^{h_{\star}}$. Therefore, there must be a convergent subsequence in $[X_{of}^{h_{\star}}]_{k}$. Here, $X^{h_{\star}}$ denotes the optimal itinerary fare class demand values.

From the above set of arguments and because of a finite number of flight legs, there is a subsequence where all the departure and arrival times converge in addition to the itinerary fare class demand values. For ease of notation, we denote this subsequence by $[h_{\star}]_{k}$. Let d^{\star} and a^{\star} be the sets of departure and arrival times of flights, respectively, as defined in the statement of the theorem. Furthermore, we also define for every $k \in K_{i}$ and $i \in N$, $j \in C_{i}$,

$$s_{jk} = \begin{cases} 0 & z_{jk}^{\star} = 0 \\ \min([0, U_{jk}(d_{ij}^{h_{\star}} - d_{ij}^{h_{\star}} - m_{ij})]) & z_{jk}^{\star} = 1. \end{cases} \quad (47)$$

It remains to be shown that d^{\star}, a^{\star}, Z^{\star}, and s^{\star} is an optimal solution to PMM, i.e., these values satisfy constraints (9)–(16), constraints (37)–(39), and (41). It is easy to verify that constraints (9)–(16) are satisfied because only a finite number of them exist. Hence we first discuss constraints (37)–(39). On closer observation, it is easy to note that constraints (38)–(39) hold by definition. Thus we focus our attention on constraints (37).

To this end, let us fix a $i \in N$ and $j \in C_{i}$. We first show that

$$s_{jk}^{\star} \geq \log \gamma_{n} \quad (48)$$

for every q and $k_{ji}^{h_{\star}} = k_{ij}$. First, let $z_{ij}^{\star} = 1$ and $q \geq q + 1$. We have $z_{ij}^{h_{\star}} = 1$ for every q, and thus

$$s_{jk}^{h_{\star}} \leq U_{jk}(d_{ij}^{h_{\star}} - d_{ij}^{h_{\star}} - m_{ij}) \quad \text{and} \quad \log \gamma_{n} \leq s_{jk}^{h_{\star}}.$$
We conclude \(\gamma_n \leq U_{i_k} h_k (d_j^{y*} - d_i^{y*} - m_i) \). Since these constraints are not removed from R-PMM in later iterations, we have \(\log \gamma_n \leq U_{i_k} h_k (d_j^{y*} - d_i^{y*} - m_i) \). Since \(U \)'s are continuous, by taking the limit as \(q \to \infty \), we obtain
\[
\log \gamma_n = U_{i_k} s_{i_k} (d_j^i - d_i^i - m_i).
\]
Since \(\gamma_n \leq 0 \), we obtain
\[
\log \gamma_n = \min_{i_k} \left(0, U_{i_k} h_k (d_j^i - d_i^i - m_i) \right) = s_{i_k}^* h_{i_k}. \tag{49}
\]
Thus we have proved (48). We now consider
\[
\min_{i_k} s_{i_k} = \min_{i_k} \left(0, U_{i_k} (d_j^i - d_i^i - m_i) \right) = g_i (d_j^i - d_i^i - m_i).
\]
Observe that we have
\[
g_i (d_j^i - d_i^i - m_i) = g_i (d_j^{y*} - d_i^{y*} - m_i) + g_i (d_j^i - d_i^i - m_i) - g_i (d_j^{y*} - d_i^{y*} - m_i) \tag{50}
\]
\[
\geq U_{i_k} h_k (d_j^{y*} - d_i^{y*} - m_i) - U_{i_k} h_k (d_j^i - d_i^i - m_i) + \log \gamma_n \geq g_i (d_j^i - d_i^i - m_i) - g_i (d_j^{y*} - d_i^{y*} - m_i) \tag{51}
\]
\[
= \frac{p_i (k_{i_k})}{\int_0^{p_i} p_i (t) \, dt} \left[d_j^{y*} - d_i^{y*} - d_j^i + d_i^i \right] + \log \gamma_n + g_i (d_j^i - d_i^i - m_i) - g_i (d_j^{y*} - d_i^{y*} - m_i). \tag{52}
\]
In the above, Equation (50) follows from the fact that \(k_{i_k} \) maximizes the violation of constraint (37) (see step 4(a) in Algorithm 1). Furthermore, (51) follows from (48)–(49). The last equality, i.e., Equation (52), follows from the definition of \(U_{i_k} \).

Observe that the first term in Equation (52) converges to 0 since \(p_i (k_i) / \int_0^1 p_i (t) \, dt \) is bounded for \(i, k \), for all \(i \in N \). Similarly, the last two terms also converge to 0 since \(g_i \) is a continuous function. Thus we conclude that
\[
s_{i_k}^* \geq \log \gamma_n \quad \text{for every} \quad k \in K, i \in N. \tag{53}
\]
It is easy to verify that when \(z_{i_k}^* = 0 \) constraint (37) holds. We conclude that (47) holds in general.

Using similar arguments, it can be shown that constraint (41) also holds. Hence \(Z^*, d^*, a^*, \) and \(s^* \) is a feasible solution to PMM.

It remains to show optimality. Let \(V (Z^*, d^*, a^*, s^*) \) denote the objective value of the corresponding solution. Furthermore, notice in each iteration \(h \), the optimal value \(V_{h_k} \) of R-PMM is an upper bound on the global optimal value \(V^* \), i.e., \(V^* \leq V_{h_k} \). Thus we must have
\[
V (Z^*, d^*, a^*, s^*) \leq V^* \leq V_{h_k} = V (Z_{h_k}^*, d_{h_k}^*, a_{h_k}^*, s_{h_k}^*). \tag{54}
\]

Since the objective function is continuous, by taking the limit, we obtain \(\lim_{q \to \infty} V (Z_{h_k}^*, d_{h_k}^*, a_{h_k}^*, s_{h_k}^*) = V (Z^*, d^*, a^*, s^*) \). From (54), we obtain \(V^* = V (Z^*, d^*, a^*, s^*) \). To arrive at this, we must also have \(X_{h_k}^* \) be a convergent subsequence, which was assumed earlier.

Hence we have completed the proof. \(\square \)

References

