
A Tractable Revenue Management Model for Capacity Allocation and
Overbooking over an Airline Network

Sumit Kunnumkal
Indian School of Business, Gachibowli, Hyderabad, 500032, India

sumit kunnumkal@isb.edu

Huseyin Topaloglu
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
topaloglu@orie.cornell.edu

April 20, 2009

Abstract

In this paper, we develop a revenue management model to jointly make the capacity allocation and
overbooking decisions over an airline network. The crucial observation behind our model is that if
the penalty cost of denying boarding to the reservations were given by a separable function, then
the optimality equation for the joint capacity allocation and overbooking problem would decompose
by the itineraries. We exploit this observation by building an approximation to the penalty cost
that is separable by the numbers of reservations for different itineraries. In this case, we can obtain
an approximate solution to the optimality equation by plugging the separable approximation into
the boundary condition of the optimality equation. Our computational experiments compare our
approach with a standard deterministic linear programming formulation, as well as a recent joint
capacity allocation and overbooking model. When compared with the standard deterministic linear
programming formulation, our approach can provide significant profit improvements. On the other
hand, when compared with the recent joint capacity allocation and overbooking model, our approach
can provide similar profit performance with substantially shorter runtimes.

Capacity allocation and overbooking form two important components of network revenue management
operations. Capacity allocation deals with the question of what itinerary requests should be accepted
given that there is uncertainty about the future itinerary requests, whereas overbooking deals with the
question of how many seats in excess of the physically available seat inventory should be sold given that
not all reservations show up at the departure time. These two classes of decisions clearly interact. In
particular, what itinerary requests should be accepted depends on how much we are willing to overbook,
and how much we are willing to overbook depends on what itinerary requests we tend to accept and the
likelihood that these accepted itinerary requests show up at the departure time. Nevertheless, despite
this clear interaction, the capacity allocation and overbooking decisions are traditionally made in a
sequential manner. First, an overbooking model is solved to obtain the overbooking pads that indicate
how many seats in excess of the physically available seat inventory should be sold. Following this, a
capacity allocation model is solved under the assumption that the capacities on the flight legs are equal
to the sum of the physically available seat inventory and the overbooking pads.

In this paper, we present a network revenue management model that jointly makes the capacity
allocation and overbooking decisions. We begin by formulating the capacity allocation and overbooking
problem as a dynamic program. In this dynamic program, the decisions that we make during the
intermediate time periods of the planning horizon are related to whether we should accept or reject
the itinerary requests, whereas the decisions that we make at the end of the planning horizon are
related to which reservations we should deny boarding. As it is commonly the case for many practical
problems, the dynamic programming formulation of the capacity allocation and overbooking problem
quickly gets intractable, but this formulation allows us to observe that if the penalty cost of denying
boarding to the reservations were given by a separable function, then the problem would decompose
by the possible itineraries in the airline network. Therefore, our approach exploits this observation by
building a separable approximation to the penalty cost of denying boarding to the reservations at the
departure time. In particular, this approximation is separable by the numbers of reservations for different
itineraries. In this case, we can obtain an approximate solution to the dynamic program by plugging
the separable approximation into the boundary condition. To construct a separable approximation to
the penalty cost, we start with a “reasonable” policy to accept and reject the itinerary requests. We
simulate the behavior of this policy to get a rough estimate for the numbers of reservations that show
up at the departure time. We fix the numbers of reservations that show up at the departure time at
these estimates and vary the number of reservations for only one itinerary at a time. By observing how
the penalty cost changes as we vary the number of reservations for only one itinerary, we construct a
separable approximation to the penalty cost of denying boarding to the reservations.

Although the literature on the capacity allocation problem is quite rich, there are surprisingly few
papers that consider the interactions between the capacity allocation and overbooking decisions. Early
models consider the capacity allocation and overbooking decisions over a single flight leg rather than an
airline network. For example, the papers by Beckmann (1958), Thompson (1961) and Coughlan (1999)
develop capacity allocation and overbooking models over a single flight leg that treat the demand from
different fare classes as static random variables. These models essentially ignore the temporal dynamics
of the arrivals of the itinerary requests and assume that the total demand from different fare classes are

2

observed in a fixed order. The goal is to find the booking limits that prescribe how many seats should
be sold to different fare classes. On the other hand, Rothstein (1971, 1974), Chatwin (1992, 1999) and
Subramanian, Stidham and Lautenbacher (1999) develop models that capture the temporal dynamics
of the itinerary requests more accurately. Of particular interest to us is the paper by Subramanian
et al. (1999), which formulates the capacity allocation and overbooking problem over a single flight leg
as a dynamic program. This paper shows that if the probability of showing up at the departure time
varies by the fare classes, then the dynamic programming formulation of the capacity allocation and
overbooking problem over a single flight leg involves a high dimensional state variable and the problem
is intractable even over a single flight leg. We contrast this observation with the case where there is
no overbooking and all reservations show up at the departure time. In the latter case, the capacity
allocation problem over a single flight leg can be formulated as a dynamic program with a scalar state
variable. Similar observations can be made by comparing the overbooking models in Rothstein (1971,
1974). Rothstein (1971) considers a single fare class and gives a dynamic programming formulation
with a scalar state variable. Rothstein (1974), however, extends this formulation to two fare classes and
his extension ends up using a two dimensional state variable.

A traditional method to make the capacity allocation decisions over an airline network is based
on solving a deterministic linear program that is formulated under the assumption that the numbers
of itinerary requests take on their expected values. This deterministic linear program dates back to
Williamson (1992), though her development does not consider overbooking decisions. We refer the
reader to Talluri and van Ryzin (2004) for a detailed coverage of the capacity allocation literature that
revolves around the deterministic linear program. Bertsimas and Popescu (2003) show how to extend
the deterministic linear program to handle overbooking decisions. Karaesmen and van Ryzin (2004a)
develop a joint capacity allocation and overbooking model by using the deterministic linear program to
estimate the revenue from the accepted itinerary requests. Gallego and van Ryzin (1997) show that the
capacity allocation policy obtained from a variant of the deterministic linear program is asymptotically
optimal as the capacities on the flight legs and the numbers of itinerary requests scale linearly with the
same rate. Karaesmen and van Ryzin (2004b) describe a capacity allocation and overbooking model
that is useful when dealing with multiple flight legs that can serve as substitutes of each other, which
is the case for multiple flights in a day that connect the same origin destination pair. Kleywegt (2001)
develops a joint pricing and overbooking model over an airline network. This model assumes that the
itinerary requests are deterministic and it is solved by using decomposition and duality ideas. Erdelyi
and Topaloglu (2008) also use decomposition and duality ideas to decompose the capacity allocation and
overbooking problem over an airline network into a sequence of single flight leg problems. As mentioned
above, the capacity allocation and overbooking problem over a single flight leg is still a difficult problem
and the authors use heuristics to solve their single flight leg problems.

The basic underlying observation that motivates our approach has been used earlier by Erdelyi and
Topaloglu (2009) to develop an overbooking model. In particular, Erdelyi and Topaloglu (2009) obtain
an approximate solution to the dynamic programming formulation of the problem by using a separable
approximation to the penalty cost that is incurred at the departure time. Nevertheless, there are
crucial features of our approach that make it significantly more attractive from the viewpoint of practical

3

applications. First, the method that we use to build the separable approximation is different from the one
that is used by Erdelyi and Topaloglu (2009). Erdelyi and Topaloglu (2009) use stochastic approximation
ideas, whereas we try to estimate the numbers of reservations that show up at the departure time by
using a somewhat “reasonable” capacity allocation policy. This “reasonable” capacity allocation policy
is based on the aforementioned deterministic linear program and it is clear from our interactions with
the industry that revenue managers are more comfortable with using the familiar deterministic linear
program rather than a stochastic approximation idea. Second, the approach followed by Erdelyi and
Topaloglu (2009) is significantly more complex as it uses tuneable step size parameters whose values
need to be set through trial and error. The difficulty of finding good step size parameters for stochastic
approximation methods is indeed acknowledged in Chapter 6 of Powell (2007). Third, the runtimes
for the model proposed by Erdelyi and Topaloglu (2009) are substantially longer than those for our
model. The differences in the runtimes become particularly apparent for larger test problems. Finally,
our computational experiments indicate that the profit performances of the two approaches can be
comparable. Considering these features, our approach can be visualized as a practically appealing
extension of the work by Erdelyi and Topaloglu (2009) to handle industrial size problems.

In this paper, we make the following research contributions. 1) We present a joint capacity allocation
and overbooking model over an airline network. Since our model builds on the dynamic programming
formulation of the problem, it captures the probabilistic nature of the arrivals of the itinerary requests
and the show up decisions of the reservations. 2) We develop a method to construct a separable
approximation to the penalty cost that is incurred at the departure time. This approximation, in turn,
allows us to solve the dynamic programming formulation of the capacity allocation and overbooking
problem approximately. 3) Our computational experiments indicate that the capacity allocation and
overbooking decisions made by our model can perform noticeably better than those made by several
benchmark methods. This is especially the case when the leg capacities are tight and the penalty cost
of denying boarding to a reservation is relatively high.

The rest of the paper is organized as follows. Section 1 formulates the capacity allocation and
overbooking problem as a dynamic program. Section 2 presents a deterministic linear programming
formulation of the problem and shows that this formulation provides an upper bound on the optimal
total expected profit. Section 3 develops our capacity allocation and overbooking model, which uses a
separable approximation to the penalty cost that is incurred at the departure time. We construct this
approximation by building on the deterministic linear programming formulation. Section 4 provides
computational experiments. Section 5 concludes.

1 Problem Formulation

We have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly
over time. At each time period, an itinerary request arrives into the system and we need to decide
whether this itinerary request should be accepted or rejected. An accepted itinerary request generates
a revenue and becomes a reservation, whereas a rejected itinerary request simply leaves the system. At
the departure time of the flight legs, a portion of the reservations show up and we need to decide which

4

of these reservations should be allowed boarding. The objective is to maximize the total expected profit,
which is the difference between the expected revenue obtained by accepting the itinerary requests and
the expected penalty cost incurred by denying boarding to the reservations.

We count the time periods backwards starting from time period τ to time period 0. The itinerary
requests arrive over the time periods T = {τ, . . . , 1}. Time period 0 corresponds to the departure time
of the flight legs, which is when a portion of the reservations show up and we need to decide which
of these reservations should be allowed boarding. The set of flight legs is L and the set of itineraries
is J . There is at most one itinerary request at each time period and the probability of having a
request for itinerary j at time period t is pjt. Having at most one itinerary request at a time period
is not a restrictive assumption as we can choose the time periods to correspond to small enough time
intervals so that the probability of having two or more itinerary requests in such a small time interval
is negligible. Furthermore, one may argue that having at most one itinerary request at a time period
models the problem more accurately as the decision to accept or reject each itinerary request is made
one by one, rather than batching a certain number of itinerary requests and jointly deciding which of
these itinerary requests should be accepted or rejected. If we accept a request for itinerary j, then
we generate a revenue of fj . There may be more than one itinerary that connects the same origin
destination pair with the same connecting flight legs, but these itineraries may be offered at different
price levels. This observation allows us to model multiple fare classes. A reservation for itinerary j

shows up at the departure time with probability qj . If we allow boarding to a reservation for itinerary
j, then we use aij units of capacity on flight leg i. We note that aij may take values greater than
one when we model group reservations. In the presence of group reservations, however, an itinerary
j corresponds not only to a particular origin destination pair, connecting flight legs and a price level,
but also to a particular group size. If we deny boarding to a reservation for itinerary j, then we incur
a penalty cost of γj . The total capacity available on flight leg i is ci. We assume that the arrivals of
the itinerary requests at different time periods and the show up decisions of different reservations are
independent. For notational brevity, we assume that the reservations are not canceled over the time
periods {τ, . . . , 1}, but our approach can easily be extended to the case where a reservation for itinerary
j is canceled at time period t with probability θjt, as long as the cancellation decisions at different
time periods and the cancellation decisions of different reservations are independent. In this case, the
reservations that occur at the earlier time periods naturally have smaller probabilities of showing up at
the departure time. Finally, we assume that we do not give refunds to the reservations that do not show
up at the departure time, but this assumption is also for notational brevity and it is straightforward to
incorporate refunds into our approach.

We let xjt be the number of reservations for itinerary j at the beginning of time period t. Given
that the number of reservations for itinerary j at the beginning of time period 0 is xj0, we use Sj0(xj0)
to denote the number of reservations for itinerary j that show up at the departure time. Since the
show up decisions of different reservations are independent, Sj0(xj0) has a binomial distribution with
parameters xj0 and qj . We let yj be the number of reservations for itinerary j that we deny boarding
at the departure time. Throughout the paper, we use xt and S0(x0) to respectively denote the vectors
{xjt : j ∈ J } and {Sj0(xj0) : j ∈ J }. We also use s0 = {sj0 : j ∈ J } whenever we need to refer to a

5

realization of S0(x0). If the numbers of reservations that show up at the departure time are given by
s0 = {sj0 : j ∈ J }, then we can compute the penalty cost of denying boarding to the reservations by
solving the problem

V0(s0) = min
∑

j∈J
γj yj (1)

subject to
∑

j∈J
aij [sj0 − yj] ≤ ci ∀ i ∈ L (2)

yj ≤ sj0 ∀ j ∈ J (3)

yj ∈ Z+ ∀ j ∈ J . (4)

Constraints (2) in the problem above ensure that the numbers of reservations that we allow boarding
do not exceed the leg capacities, whereas constraints (3) ensure that the numbers of reservations that
we deny boarding do not exceed the numbers of reservations that show up. In the objective function,
we incur a cost of γj for each reservation for itinerary j that we deny boarding, but we can replace
this objective function with a convex function of the form

∑
j∈J Γj(yj), where {Γj(·) : j ∈ J } are

scalar convex functions capturing the fact that denying an additional reservation gets more costly as
the number of denied reservations increases. By virtue of problem (1)-(4), our approach deals not only
with the question of how much to overbook, but also with the question of which reservations should be
denied boarding. It is also important to note that problem (1)-(4) assumes that we can jointly decide
with reservations should be denied boarding throughout the network. This is admittedly an optimistic
assumption, but problem (1)-(4) is frequently used to approximate the penalty cost; see Bertsimas and
Popescu (2003). Finally, although there is an underlying airline network, problem (1)-(4) does not
necessarily have a unimodular constraint matrix and its linear programming relaxation may not yield
integer solutions. This is clearly the case when there are group reservations and {aij : i ∈ L, j ∈ J }
take values greater than one. However, Cooper and Homem de Mello (2007) show that problem (1)-(4)
may still not have a unimodular constraint matrix even when aij ∈ {0, 1} for all i ∈ L, j ∈ J .

We use xt as the state variable at the beginning of time period t. In this case, letting ej be the
|J | dimensional unit vector with a one in the element corresponding to j ∈ J , we can find the optimal
policy to accept or reject the itinerary request at each time period by computing the value functions
{vt(·) : t ∈ T } through the optimality equation

vt(xt) =
∑

j∈J
pjt max{fj + vt−1(xt + ej), vt−1(xt)}+

{
1−

∑

j∈J
pjt

}
vt−1(xt) (5)

with the boundary condition that v0(x0) = −E{V0(S0(x0))}. We note that we negate V0(·) in the
boundary condition since v0(·) accounts for a profit figure, whereas V0(·) accounts for a cost figure. If
the state of the reservations at the beginning of time period t is given by xt and we have

fj + vt−1(xt + ej) ≥ vt−1(xt), (6)

then it is optimal to accept a request for itinerary j at time period t. In the optimality equation in
(5), the number of possible values for the state variable xt increases exponentially with the number of
itineraries. Therefore, it can be computationally difficult to solve this optimality equation. In the next
two sections, we describe approximate methods to obtain good policies.

6

2 Deterministic Linear Program

A traditional solution method for the problem described in the previous section involves solving a
deterministic linear program that is formulated under the assumption that the arrivals of the itinerary
requests and the show up decisions of the reservations take on their expected values. If we let zj be
the number of requests for itinerary j that we plan to accept over the planning horizon and yj be the
number of reservations that we plan to deny boarding, then this linear program has the form

max
∑

j∈J
fj zj −

∑

j∈J
γj yj (7)

subject to
∑

j∈J
aij [qj zj − yj] ≤ ci ∀ i ∈ L (8)

zj ≤
∑

t∈T
pjt ∀ j ∈ J (9)

yj − qj zj ≤ 0 ∀ j ∈ J (10)

zj , yj ≥ 0 ∀ j ∈ J . (11)

In the problem above, we assume that if we accept zj requests for itinerary j, then qj zj reservations for
itinerary j show up at the departure time. Constraints (8) and (10) in problem (7)-(11) are respectively
analogous to constraints (2) and (3) in problem (1)-(4). Constraints (9) in problem (7)-(11) ensure
that the numbers of itinerary requests that we accept do not exceed the expected numbers of itinerary
requests. The deterministic linear programming formulation for the network revenue management
problem is widely used in practice under the assumption that overbooking is not possible and all
reservations show up at the departure time; see Talluri and van Ryzin (1998). Problem (7)-(11) extends
this formulation to handle overbooking and no shows. Although this extension is quite intuitive, there
are not very many references to problem (7)-(11) in the literature. The earliest reference we are aware
of is Bertsimas and Popescu (2003).

There are two important uses of problem (7)-(11). First, problem (7)-(11) can be used to decide
whether we should accept or reject the itinerary requests. In particular, letting {µ̂i : i ∈ L} be optimal
values of the dual variables associated with constraints (8) in problem (7)-(11), the idea is to use µ̂i

to estimate the opportunity cost of a unit of capacity on flight leg i. In this case, if the revenue from
an itinerary request exceeds the total expected opportunity cost of the capacities consumed by this
itinerary request, or if the revenue from an itinerary request exceeds the expected penalty cost, then we
accept the itinerary request. In other words, if we have

fj ≥ min
{

qj

∑

i∈L
aij µ̂i, qj γj

}
, (12)

then we accept a request for itinerary j. The decision rule in (12) captures two effects. If the total
expected opportunity cost of the capacities consumed by a request for itinerary j is small enough that
we have fj ≥ qj

∑
i∈L aij µ̂i, then we accept a request for itinerary j. Furthermore, if we have fj ≥ qj γj ,

then we can, in expectation, generate revenue simply by accepting a request for itinerary j and denying
boarding to this reservation at the departure time. We accept a request for itinerary j in this case as

7

well. The decision rule in (12) is also used by Bertsimas and Popescu (2003). In the network revenue
management vocabulary, µ̂i is referred to as the bid price associated with flight leg i and it is common
practice to accept or reject an itinerary request by comparing the revenue from the itinerary request
with the opportunity cost of the capacities consumed by the itinerary request. The decision rule in (12)
extends this approach to handle overbooking and no shows.

The second use of problem (7)-(11) is that its optimal objective value provides an upper bound on
the optimal total expected profit. In other words, letting ẑLP be the optimal objective value of problem
(7)-(11) and 0̄ be the |J | dimensional vector of zeros, we have vτ (0̄) ≤ ẑLP . This result is widely known
when overbooking is not possible and all reservations show up at the departure time. The following
proposition gives an extension of this widely known result to cover overbooking and no shows. Erdelyi
and Topaloglu (2009) present a proof for Proposition 1.

Proposition 1 We have vτ (0̄) ≤ ẑLP .

The upper bound in Proposition 1 can be useful when assessing the optimality gap of a suboptimal
decision rule such as the one in (12).

An important advantage of the deterministic linear program is its simplicity. The decision rule in
(12) has an intuitive interpretation, which makes it quite appealing to practitioners. On the other
hand, an important disadvantage of the deterministic linear program is that it assumes that all random
quantities take on their expected values. In particular, if we have fj ≥ qj γj , then it is possible to show
that problem (7)-(11) accepts all requests for itinerary j and we have zj =

∑
t∈T pjt in the optimal

solution. This is not a huge drawback noting that if we have fj ≥ qj γj , then it is indeed optimal to
accept all requests for itinerary j, since we can generate revenue in expectation simply by accepting a
request for itinerary j and denying boarding to this reservation at the departure time. However, if we
have fj < qj γj , then it is also possible to show that problem (7)-(11) does not overbook for itinerary
j at all and have yj = 0 in the optimal solution. Therefore, the deterministic linear program does not
overbook when it is not trivially optimal to do so. This is an important drawback, which arises solely
from the fact that problem (7)-(11) is a deterministic approximation to a problem that actually takes
place under uncertainty. However, the deterministic linear program is frequently used in practice due
to its simplicity and its empirical performance is generally quite reasonable.

3 Value Function Approximation Strategy

The deterministic linear program uses only the total expected numbers of itinerary requests and it
ignores the order in which the itinerary requests are likely to arrive. In this section, we develop a solution
method that captures the temporal dynamics of the itinerary requests somewhat more accurately. Our
solution method is based on two observations. First, if the penalty cost of denying boarding to the
reservations were given by a separable function, then the optimality equation in (5) would decompose
by the itineraries and it can be solved by focusing on one itinerary at a time. Second, if we want to
build a separable approximation to a function, then we can vary one argument of this function at a

8

time and investigate how the value of the function changes as we vary one argument. Carrying this
out for all of the arguments, we can build a separable approximation to the function. We make these
observations precise in the following two subsections.

3.1 Decomposing the Optimality Equation

The first observation that our solution method is based on is that if the penalty cost of denying boarding
to the reservations were given by a separable function, then the optimality equation in (5) would
decompose by the itineraries. More specifically, assume for the moment that the penalty cost of denying
boarding to the reservations is given by a separable function of the form

V0(s0) =
∑

j∈J
Vj0(sj0),

where {Vj0(·) : j ∈ J } are scalar functions. This means that if sj0 reservations for itinerary j show up
at the departure time, then the penalty cost of denying boarding to the reservations for itinerary j is
Vj0(sj0). Therefore, we can find the optimal policy to accept or reject the requests for itinerary j by
computing the value functions through the optimality equation

vjt(xjt) = pjt max{fj + vj,t−1(xjt + 1), vj,t−1(xjt)}+ [1− pjt] vj,t−1(xjt) (13)

with the boundary condition that vj0(xj0) = −E{Vj0(Sj0(xj0))}. The next proposition shows that if
the penalty cost of denying boarding to the reservations were given by a separable function of the form
V0(s0) =

∑
j∈J Vj0(sj0), then we could obtain the solution to the optimality equation in (5) by solving

the optimality equation in (13). The practical significance of this result is that the state variable in
the optimality equation in (13) is scalar and we can solve this optimality equation efficiently. A similar
result is given in Erdelyi and Topaloglu (2009).

Proposition 2 Assume that V0(·) in problem (1)-(4) is a separable function of the form V0(s0) =∑
j∈J Vj0(sj0) and let {vt(·) : t ∈ T } and {vjt(·) : t ∈ T } respectively be the solutions to the optimality

equations in (5) and (13). We have vt(xt) =
∑

j∈J vjt(xjt) for all t ∈ T .

Proof We show the result by a standard induction argument over the time periods. Since we assume
that V0(·) is a separable function of the form V0(s0) =

∑
j∈J Vj0(sj0), the boundary conditions for the

optimality equations in (5) and (13) imply that v0(x0) = −E{V0(S0(x0))} = −∑
j∈J E{Vj0(Sj0(xj0))} =∑

j∈J vj0(xj0) and the result holds for time period 0. Assuming that the result holds for time period
t− 1, we have

vt(xt) =
∑

j∈J
pjt max{fj + vt−1(xt + ej)− vt−1(xt), 0}+ vt−1(xt)

=
∑

j∈J
pjt max{fj + vj,t−1(xjt + 1)− vj,t−1(xjt), 0}+

∑

j∈J
vj,t−1(xjt)

=
∑

j∈J
pjt max{fj + vj,t−1(xjt + 1), vj,t−1(xjt)}+

∑

j∈J
[1− pjt] vj,t−1(xjt),

9

where the first equality follows from (5), the second equality follows from the induction assumption that
vt−1(·) is a separable function of the form vt−1(xt−1) =

∑
j∈J vj,t−1(xj,t−1) and the third equality follows

by adding and subtracting
∑

j∈J pjt vj,t−1(xjt). The result follows by noting that the last expression in
the chain of equalities above is equal to

∑
j∈J vjt(xjt) by (13). 2

Therefore, if the penalty cost of denying boarding to the reservations were given by a separable
function of the form V0(s0) =

∑
j∈J Vj0(sj0), then we could obtain the solution to the optimality

equation in (5) by solving the optimality equation in (13). We note that the penalty cost of denying
boarding to the reservations is not separable in general and the assumption in Proposition 2 may
hold only for very special problem instances. In any case, we are not interested in directly applying
Proposition 2 to obtain the optimal policy for a general network revenue management problem. Instead,
the important insight to derive from Proposition 2 is that if we can approximate the penalty cost of
denying boarding to the reservations with a separable function of the form V̂0(s0) =

∑
j∈J V̂j0(sj0), then

we can obtain the value function approximations {v̂t(·) : t ∈ T } by solving the optimality equation in (5)
with the boundary condition that v̂0(x0) = −E{V̂0(S0(x0))}. Proposition 2 shows that {v̂t(·) : t ∈ T } are
separable functions of the form v̂t(xt) =

∑
j∈J v̂jt(xjt) and the scalar functions {v̂jt(·) : j ∈ J , t ∈ T }

can be obtained by solving the optimality equation in (13). Another, perhaps a more subtle, insight to
derive from Proposition 2 is that the possibility of overbooking and no shows moves the interactions
between the accepted itinerary requests to the departure time of the flight legs. In particular, the
capacities committed to the reservations do not play a role until the departure time. If we can break the
interactions between the accepted itinerary requests at the departure time by approximating the penalty
cost with a separable function of the form V̂0(s0) =

∑
j∈J V̂j0(sj0), then the dynamic programming

formulation of the joint capacity allocation and overbooking problem decomposes by the itineraries at
every time period. As a result, the possibility of overbooking and no shows allows us to decompose the
dynamic programming formulation in a tractable manner while adding a new layer of realism that has
not been thoroughly explored in the existing literature.

The next question is how to build a separable approximation to the penalty cost of denying boarding
to the reservations. We dwell on this question in the next subsection.

3.2 Constructing a Separable Approximation to the Penalty Cost

The second observation that our solution method is based on is that if we are interested in building
a separable approximation to the penalty cost of denying boarding to the reservations, then we can
focus on one itinerary at a time and vary the number of reservations for this itinerary that show up at
the departure time. In this way, we can investigate how the penalty cost of denying boarding to the
reservations changes as we vary the number of reservations for this itinerary. Carrying this out for all of
the itineraries, we can build a separable approximation to the penalty cost. To make this idea precise,
assume that the numbers of reservations that show up at the departure time are roughly given by the
deterministic numbers ŝ0 = {ŝj0 : j ∈ J }. We shortly specify how we choose ŝ0. In this case, the scalar
function V̂j0(·; ŝ0) defined as

V̂j0(sj0; ŝ0) = V0(sj0 ej + ŝ0 − ŝj0 ej) (14)

10

captures how the penalty cost of denying boarding to the reservations changes as we vary the number
of reservations for itinerary j that show up at the departure time. The expression on the right side
of (14) can be evaluated by fixing the numbers of reservations that show up at the departure time at
ŝ0 = {ŝj0 : j ∈ J } and only varying the number of reservations for itinerary j in problem (1)-(4). This
amounts to solving problem (1)-(4) multiple times with different values for sj0. Carrying this out for
all of the itineraries, we obtain the separable approximation

V̂0(s0; ŝ0) =
∑

j∈J
V̂j0(sj0; ŝ0). (15)

It is important to note that we can still use (14) and (15) even if the penalty cost of denying boarding
to the reservations at the departure time is computed in some fashion other than solving problem
(1)-(4). As long as there exists a function V0(s0) that computes the penalty cost as a function of the
numbers of reservations that show up at the departure time, we can use (14) and (15) to construct a
separable approximation to the penalty cost.

We now address the question of how we choose ŝ0. It is not possible to know the numbers of
reservations that show up at the departure time without knowing what policy is used to accept or reject
the itinerary requests. We work around this difficulty by simulating the behavior of a “reasonable”
policy for multiple replications so that we can get an approximation to the numbers of reservations
that show up at the departure time. For this purpose, we utilize the deterministic linear program and
simulate the behavior of the decision rule in (12). Therefore, each simulation replication of the decision
rule in (12) provides an estimate of the numbers of reservations that show up at the departure time and
we denote the estimate from the kth simulation replication by ŝk

0 = {ŝk
j0 : j ∈ J }. In this case, we can

build the separable approximation V̂0(s0; ŝk
0) =

∑
j∈J V̂j0(sj0; ŝk

0) from the kth simulation replication as
in (14) and (15). Averaging the separable approximations from a total of K simulation replications, we
ultimately use V̂0(s0) =

∑K
k=1 V̂0(s0; ŝk

0)/K as a separable approximation to the penalty cost of denying
boarding to the reservations.

3.3 Complete Solution Methodology

We give a description of our complete solution methodology in Figure 1. Step 1 in this figure simulates
the behavior of the decision rule in (12) for multiple replications and builds the separable approximation
V̂0(s0; ŝk

0) =
∑

j∈J V̂j0(sj0; ŝk
0) from each one of these replications. In particular, Step 1.a initializes the

numbers of reservations to zero. Steps 1.b and 1.c solve the deterministic linear program in (7)-(11) at
each time period. An important point is that when solving the deterministic linear program at time
period t, we adjust for the current state of the reservations and the expected numbers of the future
itinerary requests by replacing the right side of constraints (8) with {ci −

∑
j∈J aij qj xk

jt : i ∈ L},
the right side of constraints (9) with {∑t

t′=1 pjt′ : j ∈ J } and the right side of constraints (10) with
{qj xk

jt : j ∈ J }. We note that
∑

j∈J aij qj xk
jt is the expected capacity consumed on flight leg i by

the reservations that have already been accepted by time period t. On the other hand,
∑t

t′=1 pjt′ is
the total expected number of requests for itinerary j starting from time period t until the end of the
planning horizon. Steps 1.d, 1.e and 1.f follow the decision rule in (12) to make the decisions at each

11

time period. Steps 1.g and 1.h sample the numbers of reservations that show up at the departure time
and construct the separable approximation V̂0(s0; ŝk

0) =
∑

j∈J V̂j0(sj0; ŝk
0). We note that computing

V̂j0(sj0; ŝk
0) = V0(sj0 ej + ŝk

0 − ŝk
j0 ej) as in (14) requires fixing the numbers of reservations that show up

at the departure time at ŝk
0 = {ŝk

j0 : j ∈ J } and only varying the number of reservations for itinerary j

in problem (1)-(4). Therefore, computing V̂j0(· ; ŝk
0) requires solving problem (1)-(4) multiple times with

different values for sj0. As mentioned above, problem (1)-(4) does not necessarily have a unimodular
constraint matrix and its linear programming relaxation may not yield integer solutions. According
to our experience, however, commercial optimization codes are quite effective for solving problem (1)-
(4). Furthermore, after solving problem (1)-(4) with a particular value for sj0, their warm start abilities
allow them to solve problem (1)-(4) with another value for sj0 quite efficiently.

After a total of K simulation replications, Step 2 computes the separable approximation V̂0(s0) =∑K
k=1 V̂0(s0; ŝk

0)/K. In this case, we can obtain the value function approximations {v̂t(·) : t ∈ T } by
solving the optimality equation in (5) with the boundary condition that v̂0(x0) = −E{V̂0(S0(x0))}. By
Proposition 2, the value function approximations {v̂t(·) : t ∈ T } are separable functions of the form
v̂t(xt) =

∑
j∈J v̂jt(xjt) and the scalar functions {v̂jt(·) : j ∈ J , t ∈ T } can be obtained by solving the

optimality equation in (13). We emphasize that our goal in Figure 1 is to obtain a set of value function
approximations. Once we have the value function approximations {v̂t(·) : t ∈ T }, we decide whether we
should accept or reject an itinerary request by replacing {vt(·) : t ∈ T } in the decision rule in (6) with
{v̂t(·) : t ∈ T }. That is, if the state of the reservations at the beginning of time period t is given by xt

and we have fj + v̂t−1(xt + ej) ≥ v̂t−1(xt), then we accept a request for itinerary j at time period t.

4 Computational Experiments

In this section, we compare the performance of our value function approximation method with the
performances of several benchmark strategies. We begin by describing our benchmark strategies and
the experimental setup. Following this, we describe our computational results.

4.1 Benchmark Strategies

We test the performances of the following four benchmark strategies.

Value function approximations (VFA) VFA is the solution method that we describe in Section
3, but our practical implementation divides the planning horizon into κ equal segments and refines
the value function approximations at the beginning of each segment. In particular, if the state of the
reservations at the beginning of segment l is given by xτ(κ−l+1)/κ, then we carry out the algorithm in
Figure 1 by simulating the trajectory of the system over the time periods {τ(κ − l + 1)/κ, . . . , 1} and
starting with the state of the reservations xτ(κ−l+1)/κ. This provides the value function approximations
{v̂t(·) : t = τ(κ− l + 1)/κ, . . . , 1}. We make the decisions by using these value function approximations
on the right side of the decision rule in (6) until we reach the beginning of the next segment and
refine the value function approximations again. The goal of our practical implementation is to mimic
the traditional airline practice, where the capacity allocation and overbooking policy is periodically
refreshed on certain reading days before the departure time.

12

Step 1 Set the iteration counter k to 1.

Step 1.a Initialize the state of the reservations xk
τ = {xk

jτ : j ∈ J } by letting xk
jτ = 0 for all j ∈ J .

Set the time counter t to τ .

Step 1.b Solve the deterministic linear program in (7)-(11) after adjusting for the current state of the
reservations and the expected numbers of the future itinerary requests. In particular, replace
the right side of constraints (8) with {ci−

∑
j∈J aij qj xk

jt : i ∈ L}, the right side of constraints
(9) with {∑t

t′=1 pjt′ : j ∈ J } and the right side of constraints (10) with {qj xk
jt : j ∈ J }.

Solve problem (7)-(11).

Step 1.c Let {µ̂k
it : i ∈ L} be the optimal values of the dual variables associated with constraints (8)

in the deterministic linear program. In this case, if we follow the decision rule in (12), then
we accept the requests for the itineraries in the set

J k
t =

{
j ∈ J : fj ≥ min

{
qj

∑

i∈L
aij µ̂k

it, qj γj

}}
.

Step 1.d Sample the itinerary request jk
t at time period t by using the probabilities {pjt : j ∈ J }. We

note that there may not be any itinerary requests at a particular time period.

Step 1.e Letting 1(·) be the indicator function, if there is an itinerary request at time period t, then
compute the state of the reservations xk

t−1 = {xk
j,t−1 : j ∈ J } at the next time period by

xk
t−1 = xk

t + 1(jk
t ∈ J k

t) ejk
t
. Otherwise, let xk

t−1 = xk
t .

Step 1.f Decrease t by 1. If we have t ≥ 1, then go to Step 1.b.

Step 1.g Sample ŝk
j0 from the binomial distribution with parameters xk

j0 and qj for all j ∈ J so that the
numbers of reservations that show up at the departure time are given by ŝk

0 = {ŝk
j0 : j ∈ J }.

Step 1.h Compute the scalar functions {V̂j0(·; ŝk
0) : j ∈ J } as V̂j0(sj0; ŝk

0) = V0(sj0 ej + ŝk
0− ŝk

j0 ej) and
let V̂0(s0; ŝk

0) =
∑

j∈J V̂j0(sj0; ŝk
0).

Step 1.i Increase k by 1. Letting K be a fixed iteration counter limit, if we have k ≤ K, then go to
Step 1.a.

Step 2 Let V̂0(s0) =
∑K

k=1 V̂0(s0; ŝk
0)/K. Compute the value function approximations {v̂t(·) : t ∈ T } by

solving the optimality equation in (5) with the boundary condition that v̂0(x0) = −E{V̂0(S0(x0))}.

Figure 1: Building value function approximations.

13

Deterministic linear program (DLP) DLP is the solution method that we describe in Section 2,
and similar to VFA, our practical implementation divides the planning horizon into κ equal segments
and resolves problem (7)-(11) at the beginning of each segment to refine the decision rule. If the state
of the reservations at the beginning of segment l is given by xτ(κ−l+1)/κ, then we replace the right side
of constraints (8) with {ci −

∑
j∈J aij qj xj,τ(κ−l+1)/κ : i ∈ L}, the right side of constraints (9) with

{∑τ(κ−l+1)/κ
t=1 pjt : j ∈ J } and the right side of constraints (10) with {qj xj,τ(κ−l+1)/κ : j ∈ J }. We solve

problem (7)-(11) to obtain the optimal values of the dual variables associated with constraints (8). We
use these optimal values in the decision rule in (12) until we resolve problem (7)-(11) at the beginning
of the next segment to refine the decision rule again.

Finite differences in the deterministic linear program (FDD) This solution method is due to
Bertsimas and Popescu (2003), and similar to DLP, it is based on problem (7)-(11). If the state of the
reservations at the beginning of time period t is given by xt, then FDD uses the optimal objective value
of the problem

max
∑

j∈J
fj zj −

∑

j∈J
γj yj

subject to
∑

j∈J
aij [qj zj − yj] ≤ ci −

∑

j∈J
aij qj xjt ∀ i ∈ L

zj ≤
t∑

t′=1

pjt′ ∀ j ∈ J

yj − qj zj ≤ qj xjt ∀ j ∈ J
zj , yj ≥ 0 ∀ j ∈ J .

to approximate the total expected profit in the remaining portion of the planning horizon. In this
case, letting Lt(xt) be the optimal objective value of the problem above, we can use {Lt(·) : t ∈ T }
as approximations to the value functions {vt(·) : t ∈ T } in the decision rule in (6). Similar to VFA
and DLP, our practical implementation of FDD divides the planning horizon into κ equal segments and
refines the decision rule at the beginning of each segment. In particular, if the state of the reservations
at the beginning of segment l is given by xτ(κ−l+1)/κ, then we compute Lτ(κ−l+1)/κ(xτ(κ−l+1)/κ) and
Lτ(κ−l+1)/κ(xτ(κ−l+1)/κ + ej) for all j ∈ J . Following the decision rule in (6), if we have

fj + Lτ(κ−l+1)/κ(xτ(κ−l+1)/κ + ej) ≥ Lτ(κ−l+1)/κ(xτ(κ−l+1)/κ),

then we always accept a request for itinerary j until we reach the beginning of the next segment and
refine the decision rule again.

Separable approximations using stochastic approximation (SAS) This is the solution method
developed by Erdelyi and Topaloglu (2009). SAS is similar to VFA in the sense that it builds a separable
approximation to the penalty cost of denying boarding to the reservations and it obtains an approximate
solution to the dynamic programming formulation of the problem by using the separable approximation
in the boundary condition. SAS utilizes a stochastic approximation method to build the separable
approximation, where an initial approximation is iteratively updated by using the sampled trajectories
of the system. Being a stochastic approximation method, SAS requires careful tuning for the step size

14

parameters and this method, overall, is more computationally intensive than VFA. We refer the reader
to Erdelyi and Topaloglu (2009) for the details of SAS.

4.2 Experimental Setup

In our computational experiments, we consider an airline network that serves N spokes out of a single
hub. There are two flight legs associated with each spoke. One of these flight legs is from the hub to
the spoke and the other one is from the spoke to the hub. There is a low-fare and a high-fare itinerary
that connect each origin destination pair. Therefore, we have 2N flight legs and 2N(N + 1) itineraries,
4N of which include one flight leg and 2N(N − 1) of which include two flight legs. In Figure 2, we show
the structure of the airline network for the case where N = 8. The fare associated with a high-fare
itinerary is ρ times the fare associated with the corresponding low-fare itinerary. The probabilities that
a reservation for a low-fare and a high-fare itinerary shows up at the departure are respectively ql and
qh. These probabilities do not depend on the origin and destination locations of the itinerary. Letting
f̄ l and f̄h respectively be the average fare associated with the low-fare and high-fare itineraries, if
j corresponds to a low-fare itinerary, then the penalty cost of denying boarding to a reservation for
itinerary j is σ max{f̄ l, fj}, whereas if j corresponds to a high-fare itinerary, then the penalty cost of
denying boarding to a reservation for itinerary j is σ max{f̄h, fj}. The terms f̄ l and f̄h ensure that the
penalty costs associated with the itineraries within the same fare class are comparable to each other,
whereas the term fj ensures that the penalty cost associated with itinerary j is comparable to the fare
associated with itinerary j. It is desirable to have the penalty cost and the fare comparable to each
other since the penalty cost may include the refund. Noting that the total expected demand for the
capacity on flight leg i is

∑
t∈T

∑
j∈J aij qj pjt, we measure the tightness of the leg capacities by

α =

∑
i∈L

∑
t∈T

∑
j∈J aij qj pjt∑

i∈L ci
.

We label our test problems by (ρ, σ, ql, qh, α) and use ρ ∈ {1.5, 3.0}, σ ∈ {1.5, 3.0, 4.5}, ql ∈ {0.7, 0.9},
qh ∈ {0.7, 0.9} and α ∈ {1.2, 1.6}. This provides 48 test problems in our experimental setup. In all
of our test problems, we have 8 spokes in the airline network and 360 time periods in the planning
horizon. We use K = 100 in the algorithm in Figure 1. We use κ = 10 for VFA, DLP and FDD. A
number of preliminary runs showed that refining the value function approximations and the decision
rules more frequently does not provide any significant improvement in the performance. Due to the high
computational burden for SAS, we refine the value function approximations for SAS five times over the
planning horizon. We provide a comparison of runtimes in our computational results. To make sure
that we do not put SAS at a disadvantage, we tried refining the value function approximations for SAS
more frequently in a few test problems and the performance of SAS did not improve noticeably.

4.3 Computational Results

Our primary computational results are summarized in Tables 1 and 2. In particular, Table 1 shows
the computational results for the test problems where the revenue difference between the high-fare and
low-fare itineraries is 1.5, whereas Table 2 shows the computational results for the test problems where

15

the same revenue difference is 3.0. The first column in these tables shows the problem characteristics.
The second column shows the upper bound on the optimal total expected profit provided by the optimal
objective value of problem (7)-(11). The next four columns show the total expected profits obtained
by VFA, DLP, FDD and SAS. We estimate these total expected profits by simulating the performances
of the different benchmark strategies under multiple demand trajectories. We use common random
numbers when simulating the performances of the different benchmark strategies; see Law and Kelton
(2000). The seventh column shows the percent gap between the total expected profits obtained by VFA
and DLP. This column also includes a “X” if VFA performs better than DLP, a “×” if DLP performs
better than VFA and a “¯” if there does not exist a statistically significant difference between VFA
and DLP at 95% significance level. The last two columns do the same thing as the seventh column, but
they compare VFA with FDD and SAS.

The results indicate that VFA performs noticeably better than DLP and FDD. The performance
gap between VFA and DLP can be as large as 5.2%, whereas the performance gap between VFA and
FDD can be as large as 2.7%. In all of the test problems, VFA performs at least as well as DLP and
FDD. We also note that the performance gap between VFA and DLP is statistically significant in all
of our test problems, whereas the performance gap between VFA and FDD is statistically significant
in 41 out of 48 test problems. On the other hand, the performances of VFA and SAS are generally
comparable, but there are a few test problems where SAS improves on VFA by about 1.0%. In 41 out
of 48 test problems, VFA performs at least as well as SAS.

To give a feel for the problem characteristics that affect the performance gap between the different
benchmark strategies, Figure 3 plots the performance gaps between VFA and the other three benchmark
strategies for the test problems with ρ = 3.0. In particular, the solid, dashed and dotted data series
in this figure respectively plot the performance gaps of VFA with DLP, FDD and SAS. We show the
problem characteristics in the horizontal axis. The test problems are arranged in such a fashion that
two consecutive test problems in the horizontal axis only differ in the tightness of the leg capacities,
whereas blocks of eight consecutive test problems share the same penalty costs. As we move from left
to right, the penalty costs tend to get larger. Comparing the performance gaps for blocks of eight
consecutive test problems indicates that the performance gaps of VFA with DLP and FDD get larger as
the penalty costs get larger. For problems with small penalty costs, the regret associated with accepting
an “incorrect” itinerary request is small. In this case, all benchmark strategies tend to perform quite
well. However, the advantage of using a more sophisticated solution method becomes apparent as the
penalty costs get larger and it becomes costly to deny boarding to an “incorrectly” accepted itinerary
request. The performance gaps between VFA and SAS are relatively stable, though the three largest
performance gaps occur when the penalty costs are large.

Letting ẑLP be the optimal objective value of problem (7)-(11), we note that ẑLP provides an
upper bound on the optimal total expected profit. Therefore, we can estimate the optimality gap of a
benchmark strategy by comparing the total expected profit obtained by the benchmark strategy with
the upper bound on the optimal total expected profit provided by ẑLP . However, it is important to
emphasize that the optimality gap that we estimate in this fashion is pessimistic since the upper bound

16

on the optimal total expected profit provided by ẑLP can be loose and the actual optimal total expected
profit can be significantly smaller than ẑLP . In Figure 4, we plot the percent gaps between ẑLP and the
total expected profits obtained by the four benchmark strategies for the test problems with ρ = 3.0. In
particular, the thin solid, thick solid, dashed and dotted data series in this figure respectively plot the
percent gaps between ẑLP and the total expected profits obtained by VFA, DLP, FDD and SAS. We
show the problem characteristics in the horizontal axis and the arrangement of the test problems in the
horizontal axis is the same as the one in Figure 3. Comparing the percent gaps for two consecutive test
problems indicates that the estimates of the optimality gaps get larger as the leg capacities get tighter,
whereas comparing the percent gaps for blocks of eight consecutive test problems indicates that the
estimates of the optimality gaps get larger as the penalty costs get larger. For the test problems with
small penalty costs, the estimates of the optimality gaps are on the order of 6.0%. Since our estimates
of the optimality gaps are pessimistic, this indicates that it is impossible to improve the performance
by more than about 6.0% for these test problems. On the other hand, for the test problems with large
penalty costs, the estimates of the optimality gaps can be as large as 18.1%. However, for these test
problems, it is impossible to tell which portion of the 18.1% figure is due to the fact that the upper
bound on the optimal total expected profit is loose and which portion of the 18.1% figure is due to the
fact that the benchmark strategies simply do not perform well.

Figure 5 shows the performance of VFA on test problem (1.5, 4.5, 0.7, 0.9, 1.2) with different values
for K in the algorithm in Figure 1. We vary K over {1, 2, 5, 10, 25, 50, 100} in this figure. The solid
data series plot the total expected profits obtained by VFA with different values for K. The dashed
and dotted data series respectively plot the total expected profits obtained by DLP and FDD. It turns
out that VFA can provide good performance with a modest number of simulation replications. The
performance of VFA gets better as we increase K from 1 to 25 and increasing K beyond 25 does
not provide any significant improvement in the performance. It is also interesting to note that the
performance of VFA even with K = 5 can be better than the performances of DLP and FDD.

Table 3 shows the CPU seconds required by VFA and SAS to construct one set of value function
approximations. The portions of the table on the left and right side respectively show the CPU seconds
for different numbers of spokes in the airline network and different numbers of time periods in the
planning horizon. All of the computational experiments are carried out on a desktop PC running
Windows XP with Intel Core 2 Duo 2.8 GHz CPU and 4 GB RAM. Table 3 indicates that the CPU
seconds for VFA are substantially shorter than the CPU seconds for SAS. For some test problems, the
ratios of the CPU seconds for the two benchmark strategies can be as high as 13 to one and the gaps in
the CPU seconds become particularly apparent for the test problems with large numbers of spokes. We
note that the sizes of our test problems are quite large when compared with those in the earlier network
revenue management literature. Nevertheless, we believe that the difference in the CPU seconds for the
two benchmark strategies will get even more significant when one works with industrial size problems
involving hundred or so spokes. The CPU seconds required to refine the decision rules used by DLP and
FDD are on the order of a fraction of a second. As a result, we do not provide detailed CPU seconds
for DLP and FDD.

17

5 Conclusions

In this paper, we developed a network revenue management model that jointly makes the capacity
allocation and overbooking decisions. The crucial observation behind our model is that if the penalty
cost of denying boarding to the reservations were given by a separable function, then the optimality
equation would decompose by the itineraries. Our approach exploits this observation by building a
separable approximation to the penalty cost. In this case, we obtain an approximate solution to the
optimality equation by using this separable approximation in the boundary condition. Computational
experiments indicate that our model improves on deterministic linear programming methods, and it
yields total expected profits that are comparable to those from a recent overbooking model, but with
significantly shorter runtimes.

There are several features of our approach that are worth emphasizing. First, unlike the deterministic
linear program, our approach is based on a dynamic programming formulation and it addresses the
stochastic and dynamic aspects of the capacity allocation and overbooking problem. Second, by virtue
of problem (1)-(4), our approach deals not only with the question of how much to overbook, but also
with the question of which reservations should be denied boarding. This is in contrast with some of
the overbooking literature where the focus is on how much to overbook, but not on which reservations
should be denied boarding. Third, although we use problem (1)-(4) to compute the penalty cost of
denying boarding to the reservations at the departure time, our approach is not dependent on the form
of the penalty cost. As long as there exists a function V0(s0) that computes the penalty cost as a
function of the numbers of reservations that show up at the departure time, we can use the idea in
Section 3.2 to construct a separable approximation to the penalty cost as in (14) and (15).

An important insight to derive from this paper is that if we can build a separable approximation to
the penalty cost of denying boarding to the reservations, then the dynamic programming formulation of
the capacity allocation and overbooking problem decomposes by the itineraries. The method described
in Section 3 represents only one way of building a separable approximation to the penalty cost. An
immediate research direction to purse is to devise other methods to build separable approximations.

References

Beckmann, M. J. (1958), ‘Decision and team problems in airline reservations’, Econometrica 26(1), 134–
145.

Bertsimas, D. and Popescu, I. (2003), ‘Revenue management in a dynamic network environment’, Trans-
portation Science 37, 257–277.

Chatwin, R. E. (1992), ‘Multiperiod airline overbooking with a single fare class’, Operations Research
46(6), 805–819.

Chatwin, R. E. (1999), ‘Continuous-time airline overbooking with time-dependent fares and refunds’,
Transportation Science 33(2), 182–191.

Cooper, W. L. and Homem de Mello, T. (2007), ‘Some decomposition methods for revenue management’,
Transportation Science 41(3), 332–353.

Coughlan, J. (1999), ‘Airline overbooking in the multi-class case’, The Journal of the Operational
Research Society 50(11), 1098–1103.

18

Erdelyi, A. and Topaloglu, H. (2008), A dynamic programming decomposition method for making over-
booking decisions over an airline network, Technical report, Cornell University, School of Operations
Research and Information Engineering.
Available at http://legacy.orie.cornell.edu/∼huseyin/publications/publications.html.

Erdelyi, A. and Topaloglu, H. (2009), ‘Separable approximations for joint capacity control and over-
booking decisions in network revenue management’, Journal of Revenue and Pricing Management
8(1), 3–20.

Gallego, G. and van Ryzin, G. (1997), ‘A multiproduct dynamic pricing problem and its applications
to yield management’, Operations Research 45(1), 24–41.

Karaesmen, I. and van Ryzin, G. (2004a), Coordinating overbooking and capacity control decisions on
a network, Technical report, Columbia Business School.

Karaesmen, I. and van Ryzin, G. (2004b), ‘Overbooking with substitutable inventory classes’, Operations
Research 52(1), 83–104.

Kleywegt, A. J. (2001), An optimal control problem of dynamic pricing, Technical report, School of
Industrial and Systems Engineering, Georgia Institute of Technology.

Law, A. L. and Kelton, W. D. (2000), Simulation Modeling and Analysis, McGraw-Hill, Boston, MA.

Powell, W. B. (2007), Approximate Dynamic Programming: Solving the Curses of Dimensionality, John
Wiley & Sons, Hoboken, NJ.

Rothstein, M. (1971), ‘An airline overbooking model’, Transportation Science 5(2), 180–192.

Rothstein, M. (1974), ‘Hotel overbooking as a Markovian sequential decision process’, Decision Sciences
5(3), 389–404.

Subramanian, J., Stidham, S. and Lautenbacher, C. J. (1999), ‘Airline yield management with over-
booking, cancellations and no-shows’, Transportation Science 33(2), 147–167.

Talluri, K. T. and van Ryzin, G. J. (2004), The Theory and Practice of Revenue Management, Kluwer
Academic Publishers.

Talluri, K. and van Ryzin, G. (1998), ‘An analysis of bid-price controls for network revenue management’,
Management Science 44(11), 1577–1593.

Thompson, H. R. (1961), ‘Statistical problems in airline reservation control’, Journal of the Operational
Research Society 12(3), 167–185.

Williamson, E. L. (1992), Airline Network Seat Control, PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA.

19

Figure 2: Structure of the airline network for the case where N = 8.

Problem Profit Total expected profit Perc. perf. gap with VFA

(ρ, σ, ql, qh, α) bound VFA DLP FDD SAS DLP FDD SAS

(1.5, 1.5, 0.7, 0.7, 1.2) 61,767 58,775 58,352 58,397 58,561 0.72 X 0.64 X 0.36 X
(1.5, 1.5, 0.7, 0.7, 1.6) 51,129 47,690 47,153 46,994 47,754 1.13 X 1.46 X -0.13 ¯
(1.5, 1.5, 0.7, 0.9, 1.2) 59,853 56,107 55,470 55,712 55,998 1.13 X 0.70 X 0.20 ¯
(1.5, 1.5, 0.7, 0.9, 1.6) 50,989 47,568 46,761 46,783 47,404 1.70 X 1.65 X 0.35 X
(1.5, 1.5, 0.9, 0.7, 1.2) 53,197 50,291 49,969 49,981 50,157 0.64 X 0.62 X 0.27 X
(1.5, 1.5, 0.9, 0.7, 1.6) 52,009 48,510 48,135 48,139 48,489 0.77 X 0.77 X 0.04 ¯
(1.5, 1.5, 0.9, 0.9, 1.2) 52,594 49,791 49,498 49,607 49,498 0.59 X 0.37 X 0.59 X
(1.5, 1.5, 0.9, 0.9, 1.6) 51,634 47,665 47,349 47,511 47,404 0.66 X 0.32 X 0.55 X
(1.5, 3.0, 0.7, 0.7, 1.2) 60,911 55,661 54,087 54,501 55,488 2.83 X 2.08 X 0.31 ¯
(1.5, 3.0, 0.7, 0.7, 1.6) 49,076 43,258 42,466 42,816 43,030 1.83 X 1.02 X 0.53 ¯
(1.5, 3.0, 0.7, 0.9, 1.2) 56,330 51,327 49,515 50,076 51,214 3.53 X 2.44 X 0.22 ¯
(1.5, 3.0, 0.7, 0.9, 1.6) 50,651 44,753 43,392 43,913 44,444 3.04 X 1.88 X 0.69 ¯
(1.5, 3.0, 0.9, 0.7, 1.2) 53,374 48,719 47,447 48,041 48,674 2.61 X 1.39 X 0.09 ¯
(1.5, 3.0, 0.9, 0.7, 1.6) 46,531 40,869 40,326 40,681 41,033 1.33 X 0.46 ¯ -0.40 ¯
(1.5, 3.0, 0.9, 0.9, 1.2) 56,484 51,764 50,724 51,091 51,629 2.01 X 1.30 X 0.26 ¯
(1.5, 3.0, 0.9, 0.9, 1.6) 45,666 40,212 38,781 39,549 40,134 3.56 X 1.65 X 0.19 ¯
(1.5, 4.5, 0.7, 0.7, 1.2) 58,398 51,211 50,039 50,734 51,740 2.29 X 0.93 ¯ -1.03 ×
(1.5, 4.5, 0.7, 0.7, 1.6) 50,020 40,936 39,170 40,326 41,059 4.31 X 1.49 ¯ -0.30 ¯
(1.5, 4.5, 0.7, 0.9, 1.2) 58,432 51,736 49,263 50,355 51,939 4.78 X 2.67 X -0.39 ¯
(1.5, 4.5, 0.7, 0.9, 1.6) 47,633 40,244 38,773 40,131 40,744 3.66 X 0.28 ¯ -1.24 ×
(1.5, 4.5, 0.9, 0.7, 1.2) 55,252 48,972 47,576 48,384 49,612 2.85 X 1.20 X -1.31 ×
(1.5, 4.5, 0.9, 0.7, 1.6) 54,161 45,805 43,677 44,974 46,390 4.65 X 1.81 X -1.28 ×
(1.5, 4.5, 0.9, 0.9, 1.2) 57,396 51,616 49,665 50,768 51,515 3.78 X 1.64 X 0.20 ¯
(1.5, 4.5, 0.9, 0.9, 1.6) 47,751 40,862 38,731 40,366 40,963 5.21 X 1.21 ¯ -0.25 ¯

Table 1: Computational results for the test problems with ρ = 1.5.

20

Problem Profit Total expected profit Perc. perf. gap with VFA

(ρ, σ, ql, qh, α) bound VFA DLP FDD SAS DLP FDD SAS

(3.0, 1.5, 0.7, 0.7, 1.2) 90,990 86,664 86,140 86,139 86,553 0.60 X 0.61 X 0.13 X
(3.0, 1.5, 0.7, 0.7, 1.6) 86,607 82,135 81,199 81,025 82,121 1.14 X 1.35 X 0.02 ¯
(3.0, 1.5, 0.7, 0.9, 1.2) 85,877 81,094 80,533 80,672 80,867 0.69 X 0.52 X 0.28 X
(3.0, 1.5, 0.7, 0.9, 1.6) 78,696 74,075 73,041 73,201 73,729 1.40 X 1.18 X 0.47 X
(3.0, 1.5, 0.9, 0.7, 1.2) 93,106 88,762 88,175 88,311 88,553 0.66 X 0.51 X 0.23 X
(3.0, 1.5, 0.9, 0.7, 1.6) 91,712 86,466 85,959 86,036 86,408 0.59 X 0.50 X 0.07 ¯
(3.0, 1.5, 0.9, 0.9, 1.2) 92,189 88,175 87,788 87,960 87,931 0.44 X 0.24 X 0.28 X
(3.0, 1.5, 0.9, 0.9, 1.6) 85,868 81,163 80,601 80,701 80,958 0.69 X 0.57 X 0.25 X
(3.0, 3.0, 0.7, 0.7, 1.2) 92,330 84,606 83,153 83,728 84,392 1.72 X 1.04 X 0.25 ¯
(3.0, 3.0, 0.7, 0.7, 1.6) 77,471 69,220 67,701 68,535 69,171 2.19 X 0.99 X 0.07 ¯
(3.0, 3.0, 0.7, 0.9, 1.2) 90,913 83,906 82,907 83,404 83,666 1.19 X 0.60 X 0.29 ¯
(3.0, 3.0, 0.7, 0.9, 1.6) 85,067 76,821 74,902 75,777 76,928 2.50 X 1.36 X -0.14 ¯
(3.0, 3.0, 0.9, 0.7, 1.2) 94,630 88,214 86,548 87,219 88,133 1.89 X 1.13 X 0.09 ¯
(3.0, 3.0, 0.9, 0.7, 1.6) 90,467 81,626 80,371 81,261 81,934 1.54 X 0.45 ¯ -0.38 ¯
(3.0, 3.0, 0.9, 0.9, 1.2) 86,274 80,846 79,477 80,181 80,549 1.69 X 0.82 X 0.37 X
(3.0, 3.0, 0.9, 0.9, 1.6) 88,528 80,226 78,553 79,916 80,113 2.09 X 0.39 ¯ 0.14 ¯
(3.0, 4.5, 0.7, 0.7, 1.2) 93,748 85,254 82,596 83,691 85,683 3.12 X 1.83 X -0.50 ¯
(3.0, 4.5, 0.7, 0.7, 1.6) 89,359 77,076 73,841 75,313 77,430 4.20 X 2.29 X -0.46 ¯
(3.0, 4.5, 0.7, 0.9, 1.2) 91,364 82,417 79,828 81,010 82,659 3.14 X 1.71 X -0.29 ¯
(3.0, 4.5, 0.7, 0.9, 1.6) 77,621 66,842 63,576 65,543 67,206 4.89 X 1.94 X -0.54 ¯
(3.0, 4.5, 0.9, 0.7, 1.2) 94,648 87,208 84,737 85,749 87,835 2.83 X 1.67 X -0.72 ×
(3.0, 4.5, 0.9, 0.7, 1.6) 91,041 80,707 77,998 79,409 81,432 3.36 X 1.61 X -0.90 ×
(3.0, 4.5, 0.9, 0.9, 1.2) 91,299 84,138 80,982 82,343 84,521 3.75 X 2.13 X -0.45 ×
(3.0, 4.5, 0.9, 0.9, 1.6) 87,610 77,503 74,812 76,093 77,749 3.47 X 1.82 X -0.32 ¯

Table 2: Computational results for the test problems with ρ = 3.0.

-2

0

2

4

6

(3
.0

,1
.5

,0
.7

,0
.7

,1
.2

)

(3
.0

,1
.5

,0
.7

,0
.7

,1
.6

)

(3
.0

,1
.5

,0
.7

,0
.9

,1
.2

)

(3
.0

,1
.5

,0
.7

,0
.9

,1
.6

)

(3
.0

,1
.5

,0
.9

,0
.7

,1
.2

)

(3
.0

,1
.5

,0
.9

,0
.7

,1
.6

)

(3
.0

,1
.5

,0
.9

,0
.9

,1
.2

)

(3
.0

,1
.5

,0
.9

,0
.9

,1
.6

)

(3
.0

,3
.0

,0
.7

,0
.7

,1
.2

)

(3
.0

,3
.0

,0
.7

,0
.7

,1
.6

)

(3
.0

,3
.0

,0
.7

,0
.9

,1
.2

)

(3
.0

,3
.0

,0
.7

,0
.9

,1
.6

)

(3
.0

,3
.0

,0
.9

,0
.7

,1
.2

)

(3
.0

,3
.0

,0
.9

,0
.7

,1
.6

)

(3
.0

,3
.0

,0
.9

,0
.9

,1
.2

)

(3
.0

,3
.0

,0
.9

,0
.9

,1
.6

)

(3
.0

,4
.5

,0
.7

,0
.7

,1
.2

)

(3
.0

,4
.5

,0
.7

,0
.7

,1
.6

)

(3
.0

,4
.5

,0
.7

,0
.9

,1
.2

)

(3
.0

,4
.5

,0
.7

,0
.9

,1
.6

)

(3
.0

,4
.5

,0
.9

,0
.7

,1
.2

)

(3
.0

,4
.5

,0
.9

,0
.7

,1
.6

)

(3
.0

,4
.5

,0
.9

,0
.9

,1
.2

)

(3
.0

,4
.5

,0
.9

,0
.9

,1
.6

)

Test problem

P
er

c.
 p

er
f.

ga
p

w
ith

 V
F

A

VFA - DLP

VFA - FDD

VFA - SAS

Figure 3: Performance gaps between VFA and the other three benchmark strategies.

21

0

5

10

15

20

(3
.0

,1
.5

,0
.7

,0
.7

,1
.2

)

(3
.0

,1
.5

,0
.7

,0
.7

,1
.6

)

(3
.0

,1
.5

,0
.7

,0
.9

,1
.2

)

(3
.0

,1
.5

,0
.7

,0
.9

,1
.6

)

(3
.0

,1
.5

,0
.9

,0
.7

,1
.2

)

(3
.0

,1
.5

,0
.9

,0
.7

,1
.6

)

(3
.0

,1
.5

,0
.9

,0
.9

,1
.2

)

(3
.0

,1
.5

,0
.9

,0
.9

,1
.6

)

(3
.0

,3
.0

,0
.7

,0
.7

,1
.2

)

(3
.0

,3
.0

,0
.7

,0
.7

,1
.6

)

(3
.0

,3
.0

,0
.7

,0
.9

,1
.2

)

(3
.0

,3
.0

,0
.7

,0
.9

,1
.6

)

(3
.0

,3
.0

,0
.9

,0
.7

,1
.2

)

(3
.0

,3
.0

,0
.9

,0
.7

,1
.6

)

(3
.0

,3
.0

,0
.9

,0
.9

,1
.2

)

(3
.0

,3
.0

,0
.9

,0
.9

,1
.6

)

(3
.0

,4
.5

,0
.7

,0
.7

,1
.2

)

(3
.0

,4
.5

,0
.7

,0
.7

,1
.6

)

(3
.0

,4
.5

,0
.7

,0
.9

,1
.2

)

(3
.0

,4
.5

,0
.7

,0
.9

,1
.6

)

(3
.0

,4
.5

,0
.9

,0
.7

,1
.2

)

(3
.0

,4
.5

,0
.9

,0
.7

,1
.6

)

(3
.0

,4
.5

,0
.9

,0
.9

,1
.2

)

(3
.0

,4
.5

,0
.9

,0
.9

,1
.6

)

Test problem

P
er

c.
 g

ap
 w

ith
 z

_L
P

Figure 4: Percent gaps between ẑLP and the total expected profits obtained by the four benchmark
strategies.

45000

47000

49000

51000

53000

1 2 5 10 25 50 100

K

T
ot

al
 e

xp
ec

te
d

pr
of

it

VFA

FDD

DLP

Figure 5: Performance of VFA with different values for K in the algorithm in Figure 1.

No. of CPU secs. No. of CPU secs.
spokes VFA SAS time periods VFA SAS

2 6 52 180 20 98
4 10 71 360 28 211
8 28 211 540 39 306
16 121 1,185 720 47 456
32 934 12,608 1,440 77 923

Table 3: CPU seconds for VFA and SAS as a function of the number of spokes in the airline network
and the number of time periods in the planning horizon.

22

