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Abstract: We propose a new method for making the inventory replenishment decisions in distribution systems. In particular, we
consider distribution systems consisting of multiple retailers that face random demand and a warehouse that supplies the retailers.
The method that we propose is based on formulating the distribution problem as a dynamic program, and relaxing the constraints
that ensure the nonnegativity of the shipments to the retailers, by associating Lagrange multipliers with them. We show that our
method provides lower bounds on the value functions, and a good set of values for the Lagrange multipliers can be obtained by
maximizing a concave function in a relatively straightforward manner. Computational experiments indicate that our method can
provide significant improvements over the traditional approaches for making the inventory replenishment decisions, in terms of
both the tightness of the lower bounds on the value functions and the performance of the policies. © 2008 Wiley Periodicals, Inc.
Naval Research Logistics 55: 612–631, 2008
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1. INTRODUCTION

This work proposes a new method for making the inventory
replenishment decisions in a distribution system consisting of
multiple retailers and a warehouse. The retailers face random
demand and the demand that cannot be met is backlogged.
The warehouse supplies the retailers and replenishes itself
from an external supplier. We are interested in finding a pol-
icy to supply the retailers and to replenish the warehouse so
as to minimize the total expected cost over a finite-planning
horizon.

Two standard approaches for making the inventory replen-
ishment decisions in distribution systems are due to Clark
and Scarf [8] and Federgruen and Zipkin [14]. In particu-
lar, the seminal paper by Clark and Scarf [8] introduces the
balance assumption, which amounts to assuming that it is
never desirable to redistribute the total amount of retailer
inventory among the retailers even if it is allowed to do so.
Under the balance assumption, it is possible to show that
the optimal inventory replenishment policy can be found
by focusing on one installation at a time. Federgruen and
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Zipkin [14] propose relaxing the requirement that the ship-
ments to the retailers are non-negative. Under the assumption
that negative shipments to the retailers are allowed, it is also
possible to show that the optimal inventory replenishment
policy can be found by focusing on one installation at a time.
Because this assumption is a relaxation on the original prob-
lem, their relaxation strategy obtains lower bounds on the
value functions. There has been much computational work
showing that the inventory replenishment policies obtained
under the balance assumption of Clark and Scarf [8] and the
relaxation strategy of Federgruen and Zipkin [14] perform
quite well. Nevertheless, the comprehensive computational
work by Dogru [9], among others, indicates that there are
still many practically important settings where the balance
assumption and the relaxation strategy remain inadequate.
We shortly list some of these settings. This work proposes a
viable alternative when such inadequacies arise.

The method that we propose in this work is based on
formulating the distribution problem as a dynamic program
and relaxing the constraints that ensure the nonnegativity
of the shipments to the retailers. Although a similar idea
is used by the relaxation strategy of Federgruen and Zip-
kin [14], the novel aspect of our method is that it explicitly
associates Lagrange multipliers with the relaxed constraints,
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whereas Federgruen and Zipkin [14] simply drop the con-
straints without using any penalty terms. It turns out that the
presence of the Lagrange multipliers significantly improves
the lower bounds on the value functions and the performance
of the policies. Furthermore, we show that a good set of
values for the Lagrange multipliers can be obtained by max-
imizing a concave function in a relatively straightforward
manner. Computational experiments indicate that although
our method does not always provide better performance than
the inventory replenishment policies obtained under the bal-
ance assumption of Clark and Scarf [8], it can perform well
when the balance assumption remains inadequate. Further-
more, the relaxation strategy of Federgruen and Zipkin [14]
can be obtained simply by setting all the Lagrange multipliers
in our method to zero, whereas our method tightens the lower
bounds on the value functions by adjusting the Lagrange mul-
tipliers over a set that includes zero. As a result, our method
naturally improves the lower bounds on the value functions
that are computed under the relaxation strategy of Federgruen
and Zipkin [14].

There is extensive literature on distribution systems. The
balance assumption introduced by Clark and Scarf [8] plays a
crucial role in this area, and it recurrently appears in many set-
tings. Eppen and Schrage [11] consider a distribution system
consisting of identical retailers that face normally distrib-
uted demand and a warehouse that does not hold inventory.
They derive closed-form expressions for the inventory con-
trol parameters by using the balance assumption. Jackson
[18] extends this work to allow holding inventory at the ware-
house. Axsater et al. [3] uses the balance assumption for a
distribution system where the replenishment orders of the
warehouse have to be in multiples of a given batch quan-
tity. Dogru [9] and Dogru et al. [10] give comprehensive
computational studies that test the validity of the balance
assumption. Axsater [2] provides a recent review of the liter-
ature revolving around the balance assumption. On the other
hand, the idea of relaxing the constraints that ensure the
non-negativity of the shipments to the retailers first appears
in Federgruen and Zipkin [13, 14]. These articles consider
distribution systems with stockless warehouses, nonidentical
retailers, finite-planning horizons, and nonstationary demand
distributions. Federgruen and Zipkin [15] revisit the relax-
ation strategy when the planning horizon is infinite, and
they obtain closed-form expressions for the inventory con-
trol parameters. Federgruen [12] provides a review of the
applications of the relaxation strategy on both serial and
distribution systems. Gallego et al. [17] compare the perfor-
mance of the relaxation strategy with several heuristics. In
general, the inventory replenishment policies obtained under
the balance assumption of Clark and Scarf [8] and the relax-
ation strategy of Federgruen and Zipkin [14] perform quite
well. Nevertheless, the computational experiments in Refs.
[9, 10, 13] consistently indicate that these approaches may

not be satisfactory when the coefficient of variation for the
demand random variables is high, the backlogging costs at
the retailers are high, and there are large differences in the
cost parameters of different installations.

The idea of relaxing the constraints in a dynamic program
by associating Lagrange multipliers with them appears in the
literature, and the connection between duality theory and con-
trol theory is clearly documented in Refs. [6, 23]. Adelman
and Mersereau [1] recently revive interest in this connection
by studying dynamic programs that would decompose by
the components of the state variable if a few constraints did
not link the different components of the state variable. They
use the term “weakly coupled” to refer such dynamic pro-
grams. Karmarkar, Cheung and Powell, Topaloglu and Kun-
numkal, and Topaloglu [7, 19–22] use the weakly coupled
dynamic programming framework in multilocation inventory
control, dynamic fleet management, and network revenue
management settings.

The main research contribution of this work is to propose
a new method for making the inventory replenishment deci-
sions in a distribution system. Our method formulates the dis-
tribution problem as a dynamic program and relaxes certain
constraints by associating Lagrange multipliers with them.
We show that our method provides lower bounds on the value
functions, and a good set of values for the Lagrange mul-
tipliers can be obtained by maximizing a concave function.
Because the relaxation strategy of Federgruen and Zipkin [14]
is a special case of our method that is obtained by setting all
the Lagrange multipliers to zero, we naturally improve the
lower bounds on the value functions that are computed under
their relaxation strategy. From computational standpoint, we
demonstrate that the lower bounds on the value functions and
the performance of the policies obtained by our method can
be significantly better than those obtained under the balance
assumption of Clark and Scarf [8] and the relaxation strategy
of Federgruen and Zipkin [14]. We empirically identify the
conditions under which the policies obtained by our method
perform better than the policies obtained under the balance
assumption of Clark and Scarf [8] and the relaxation strategy
of Federgruen and Zipkin [14].

The rest of the article is organized as follows. Section
2 formulates the distribution problem as a dynamic pro-
gram. Section 3 describes our Lagrangian relaxation strategy.
Sections 4 and 5, respectively, review the balance assumption
of Clark and Scarf [8] and the relaxation strategy of Feder-
gruen and Zipkin [14]. We note that we refer to our method
as the Lagrangian relaxation strategy because our method
explicitly associates Lagrange multipliers with the relaxed
constraints, whereas we refer to the method proposed by
Federgruen and Zipkin [14] simply as the relaxation strat-
egy. Section 6 compares the balance assumption of Clark
and Scarf [8] and the relaxation strategy of Federgruen and
Zipkin [14] with our method. Section 7 shows that applying
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the inventory replenishment policies obtained by our method
requires solving simple optimization problems with separa-
ble piecewise-linear convex objective functions. Section 8
presents computational experiments.

2. PROBLEM FORMULATION

We consider a distribution system consisting of multi-
ple retailers and a warehouse. The retailers face random
demand, and they are supplied by the warehouse. The ware-
house is supplied by an external supplier with infinite supply.
The problem takes place over the finite-planning horizon
T = {1, . . . , τ }. The set of retailers is I, and we denote the
warehouse by φ. We use the term installation when we want
to refer to a retailer or the warehouse without making a dis-
tinction. We let Dit be the demand at retailer i at time period
t . We assume that the demands at different retailers or at dif-
ferent time periods are independent. We let Dφt = ∑

i∈I Dit

so that we can also refer to the demand at the warehouse.
For notational clarity, we assume that the lead times for all

replenishments are zero. In other words, the replenishment
order shipped to a certain installation at a certain time period
reaches the installation at the same time period. Using stan-
dard arguments, one can show that all our results extend in
a tractable manner to cover the case where the lead times
are nonzero. In particular, one can use the on-hand inven-
tory, plus the total pipeline inventory, minus the backlogs as
the inventory position at an installation, and it is not neces-
sary to keep the detailed profile of the pipeline inventory by
using an extended state variable. The computational results
that we present in Section 8 indeed consider test problems
with nonzero lead times. Again, for notational clarity, we
only consider distribution systems consisting of a warehouse
serving multiple retailers, but our results extend to distrib-
ution systems with multiple distribution stages through the
same argument in Section 3.3.1 in Federgruen [12]. Under the
assumption that the lead times are zero and there is one distri-
bution stage, the following sequence of events takes place at
a particular time period. (1) The warehouse places its replen-
ishment order from the external supplier. (2) Based on its
product availability and the inventory position at the retail-
ers, the warehouse supplies the retailers. (3) The retailers and
the warehouse receive the replenishment orders that were
shipped at the current time period. (4) The demands at the
retailers are observed. The unsatisfied demands at the retail-
ers are backlogged. The holding and backlogging costs are
incurred.

We let xit be the echelon inventory position at installation
i at the beginning of time period t . For retailer i, because
the lead times are zero, xit corresponds to the on-hand inven-
tory minus the backlogs at the retailer. For the warehouse,
xφt corresponds to the on-hand inventory at the warehouse,

plus the on-hand inventory at all of the retailers, minus the
backlogs at all of the retailers. Therefore, xφt − ∑

i∈I xit

is the on-hand inventory at the warehouse at the beginning
of time period t . We refer the reader to Clark and Scarf [8]
and Federgruen [12] for a detailed discussion of the eche-
lon inventory concept. We let qit be the replenishment order
shipped to installation i at time period t . Because the replen-
ishment orders are received after the warehouse supplies the
retailers and before the demands at the retailers are observed,
the warehouse has xφt − ∑

i∈I xit units of product to supply
the retailers and retailer i has xit + qit units of product to
serve the demand at time period t .

We lethit be the per unit holding cost at installation i at time
period t and bit be the per unit backlogging cost at retailer i

at time period t . In this case, the expected one-period holding
and backlogging cost incurred at time period t by the whole
distribution system can be written as

hφt

[
xφt −

∑
i∈I

xit + qφt −
∑
i∈I

qit

]

+
∑
i∈I

hitE{[xit +qit −Dit ]+}+
∑
i∈I

bitE{[Dit −xit −qit ]+},

where we use [·]+ = max{·, 0}. The warehouse does not face
the customer demand, and there is no backlogging cost at this
installation. If we let Lφt (xφt + qφt ) = hφt [xφt + qφt ] and

Lit (xit + qit ) = −hφt [xit + qit ] + hitE{[xit + qit − Dit ]+}
+ bitE{[Dit − xit − qit ]+},

then we can write the expected one-period holding and back-
logging cost incurred at time period t by the whole distrib-
ution system as

∑
i∈I∪{φ} Lit (xit + qit ). This is a standard

way of accounting for the expected one-period holding and
backlogging costs in the literature; see Federgruen [12].

Using xt = {xit : i ∈ I ∪ {φ}} as the state variable
at time period t , and letting qt = {qit : i ∈ I ∪ {φ}}
be the vector of shipment quantities to the installations and
Dt = {Dit : i ∈ I ∪ {φ}} be the vector of demands at
time period t , the optimal policy that minimizes the total
expected cost can be found by computing the value functions
{Vt(·) : t ∈ T } through the optimality equation

Vt(xt ) = min
∑

i∈I∪{φ}
citqit +

∑
i∈I∪{φ}

Lit (xit + qit )

+ E{Vt+1(xt + qt − Dt)}
subject to

∑
i∈I

qit ≤ xφt −
∑
i∈I

xit

qit ≥ 0 for all i ∈ I ∪ {φ},
where cit is the per unit replenishment cost at installation i at
time period t . Because xφt includes the on-hand inventory
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and backlogs at the retailers, the echelon inventory posi-
tion at the warehouse at time period t + 1 is computed as
xφt + qφt − Dφt . The first constraint in the problem above
ensures that the shipments to the retailers do not violate the
inventory availability at the warehouse. Defining the deci-
sion variables yt = {yit : i ∈ I ∪ {φ}} as yit = xit + qit , the
optimality equation above becomes

Vt(xt ) = min
∑

i∈I∪{φ}
cit [yit − xit ] +

∑
i∈I∪{φ}

Lit (yit )

+ E{Vt+1(yt − Dt)} (1)

subject to
∑
i∈I

yit ≤ xφt (2)

yit ≥ xit for all i ∈ I ∪ {φ}. (3)

Because of the large number of dimensions of the state vari-
able, solving the optimality equation above through classical
dynamic programming techniques is difficult. In the next
section, we propose a Lagrangian relaxation strategy that
relaxes the constraints yit ≥ xit for all i ∈ I in prob-
lem (1)–(3) by associating positive Lagrange multipliers with
them. In this case, the optimality equation decomposes by the
installations. We make this idea precise in the next section.

3. LAGRANGIAN RELAXATION STRATEGY

Associating the positive Lagrange multipliers λ = {λit :
i ∈ I, t ∈ T } with the constraints yit ≥ xit for all i ∈ I
in problem (1)–(3), the Lagrangian relaxation strategy solves
the optimality equation

V L
t (xt |λ) = min cφt [yφt

− xφt ] + Lφt (yφt )

+
∑
i∈I

[cit − λit ][yit − xit ]

+
∑
i∈I

Lit (yit ) + E
{
V L

t+1(yt − Dt |λ)
}
(4)

subject to
∑
i∈I

yit ≤ xφt (5)

yφt ≥ xφt , (6)

where the argument λ in the value functions emphasizes that
the solution to the optimality equation above depends on the
Lagrange multipliers. Because we have qit = yit −xit , relax-
ing the constraints yit ≥ xit for all i ∈ I is equivalent to
relaxing the constraints that ensure the non-negativity of the
shipments to the retailers. We also note that the Lagrange
multipliers {λit : i ∈ I} in problem (4)–(6) do not depend on
the state variable xt .

The material in this section is divided between two sub-
sections. Section 3.1 shows that for given Lagrange multi-
pliers, the optimality equation in (4)–(6) decomposes by the
installations. This is the main computational advantage of
the Lagrangian relaxation strategy. Section 3.2, on the other
hand, shows that the value functions {V L

t (·|λ) : t ∈ T }
computed through the optimality equation in (4)–(6) provide
lower bounds on the value functions {Vt(·) : t ∈ T } com-
puted through the optimality equation in (1)–(3). In addition,
Section 3.2 resolves the question of how to choose a good
set of values for the Lagrange multipliers. Once we are able
to choose a good set of values for the Lagrange multipli-
ers, we can use {V L

t (·|λ) : t ∈ T } as approximations to
{Vt(·) : t ∈ T }. In particular, we can replace {Vt(·) : t ∈ T }
in problem (1)–(3) with {V L

t (·|λ) : t ∈ T } and solve this
problem to make the inventory replenishment decisions.

3.1. Solving the Optimality Equation under the
Lagrangian Relaxation Strategy

Our main result in this section shows that for given
Lagrange multipliers, the value functions computed under
the Lagrangian relaxation strategy are separable functions of
the form

V L
t (xt |λ) =

∑
i∈I∪{φ}

vL
it (xit |λ). (7)

In the expression above, the value functions {vL
it (·|λ) : t ∈ T }

for retailer i are computed through the optimality equation

vL
it (xit |λ) = min

yit

{[cit − λit ][yit − xit ] + Lit (yit )

+ E
{
vL

i,t+1(yit − Dit |λ)
}}

. (8)

This optimality equation computes the optimal inventory
replenishment policy for retailer i under the assumption that
the warehouse has infinite supply, the replenishment quan-
tities of retailer i are not restricted to be positive, and the
per unit replenishment costs at retailer i are deflated by
{λit : t ∈ T }. On the other hand, noting that the optimal
solution to problem (8) does not depend on xit and letting r̂λ

it

be the optimal solution to this problem, the value functions
{vL

φt (·|λ) : t ∈ T } for the warehouse are computed through
the optimality equation

vL
φt (xφt |λ) = min

yφt≥xφt

{
cφt [yφt − xφt ] + Lφt (yφt )

+ E
{
vL

φ,t+1(yφt − Dφt |λ)
}}

+ �L
t (xφt |λ), (9)
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where the functions {�L
t (·|λ) : t ∈ T } are given by

�L
t (xφt |λ) = min

∑
i∈I

[cit − λit ]
[
yit − r̂λ

it

] +
∑
i∈I

Lit (yit )

+
∑
i∈I

E
{
vL

i,t+1(yit − Dit |λ)
}

−
∑
i∈I

Lit

(
r̂λ
it

)
−

∑
i∈I

E
{
vL

i,t+1

(
r̂λ
it − Dit

∣∣λ)}
(10)

subject to
∑
i∈I

yit ≤ xφt . (11)

We note that the optimality equation in (9) computes the
optimal inventory replenishment policy for the warehouse
under the assumption that the expected one-period costs at
the warehouse are inflated by using the functions {�L

t (·|λ) :
t ∈ T }.

The next proposition shows that the value functions com-
puted under the Lagrangian relaxation strategy are separable
functions of the form (7). The fact that the optimal solution
to problem (8) does not depend on xit plays an important role
in this result.

PROPOSITION 1: If the value functions {V L
t (·|λ) : t ∈

T }, {vL
it (·|λ) : i ∈ I, t ∈ T }, and {vL

φt (·|λ) : t ∈ T } are
respectively computed through the optimality equations in
(4)–(6), (8), and (9), then we have

V L
t (xt |λ) =

∑
i∈I∪{φ}

vL
it (xit |λ)

for all t ∈ T .

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t +1, problem
(4)–(6) imply that

V L
t (xt |λ) = min cφt [yφt

− xφt ] + Lφt (yφt )

+ E
{
vL

φ,t+1(yφt − Dφt |λ)
}

+
∑
i∈I

[cit − λit ][yit − xit ] +
∑
i∈I

Lit (yit )

+
∑
i∈I

E
{
vL

i,t+1(yit − Dit |λ)
}

(12)

subject to (5), (6). (13)

Because r̂λ
it is the optimal solution to problem (8), we have

vL
it (xit |λ)=[cit − λit ]

[
r̂λ
it − xit

] + Lit

(
r̂λ
it

)
+ E

{
vL

i,t+1

(
r̂λ
it − Dit

∣∣λ)}
.

Adding and subtracting
∑

i∈I vL
it (xit |λ) and using the expres-

sion above, we can write the objective function of problem
(12)–(13) as

cφt [yφt
− xφt ] + Lφt (yφt ) + E

{
vL

φ,t+1(yφt − Dφt |λ)
}

+
∑
i∈I

vL
it (xit |λ) +

∑
i∈I

[cit − λit ]
[
yit − r̂λ

it

]
+

∑
i∈I

Lit (yit ) +
∑
i∈I

E
{
vL

i,t+1(yit − Dit |λ)
}

−
∑
i∈I

Lit

(
r̂λ
it

) −
∑
i∈I

E
{
vL

i,t+1

(
r̂λ
it − Dit

∣∣λ)}
. (14)

The decision variables {yit : i ∈ I} appear only in constraints
(5), whereas the decision variable yφt appears only in con-
straint (6) in problem (12)–(13). Therefore, using (14) and
the definition of �L

t (xφt |λ) in problem (10)–(11), problem
(12)–(13) become

V L
t (xt |λ) = min

yφt≥xφt

{
cφt [yφt

− xφt ] + Lφt (yφt )

+ E
{
vL

φ,t+1(yφt − Dφt |λ)
}}

+
∑
i∈I

vL
it (xit |λ) + �L

t (xφt |λ),

in which case (9) implies that the result holds for time
period t . �

The practical significance of the Lagrangian relaxation
strategy is that for given Lagrange multipliers, the optimality
equation in (4)–(6) can be solved by focusing on one instal-
lation at a time. In particular, we first solve the optimality
equation in (8) to compute {vL

it (·|λ) : i ∈ I, t ∈ T }. In this
case, we can compute {�L

t (·|λ) : t ∈ T } by solving problem
(10)–(11). Finally, we can compute {vL

φt (·|λ) : t ∈ T } by
solving the optimality equation in (9).

The next lemma shows that the optimality equation in (8)
can be solved myopically for given Lagrange multipliers.
This result further enhances the computational tractability of
the Lagrangian relaxation strategy.

LEMMA 2: Using the boundary condition that ci,τ+1 =
λi,τ+1 = 0 and noting that the optimal solution to problem
(8) is r̂λ

it , the optimal solution to the problem

min
yit

{{[cit −λit ]−[ci,t+1 −λi,t+1]}[yit −xit ]+Lit (yit )} (15)
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is also r̂λ
it . Furthermore, we have

vL
it (xit |λ) = [cit − λit ]

[
r̂λ
it − xit

] + Lit

(
r̂λ
it

)
+

τ∑
t ′=t+1

[cit ′ − λit ′ ]
[
r̂λ
it ′ − r̂λ

i,t ′−1 + E{Di,t ′−1}
]

+
τ∑

t ′=t+1

Lit ′
(
r̂λ
it ′

)
. (16)

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t + 1, we have

r̂λ
it = argmin

yit

{[cit − λit ][yit − xit ] + Lit (yit )

+ E
{
vL

i,t+1(yit − Dit |λ)
}}

= argmin
yit

{[cit − λit ][yit − xit ] + Lit (yit )

+ [ci,t+1 − λi,t+1]E
{
r̂λ
i,t+1 − yit + Dit

}}
+ Li,t+1

(
r̂λ
i,t+1

) +
τ∑

t ′=t+2

[cit ′ − λit ′ ]
[
r̂λ
it ′ − r̂λ

i,t ′−1

+ E{Di,t ′−1}
] +

τ∑
t ′=t+2

Lit ′
(
r̂λ
it ′

)
= argmin

yit

{{[cit − λit ] − [ci,t+1 − λi,t+1]}[yit − xit ]
+ Lit (yit )},

which shows that the optimal solution to problem (15) is r̂λ
it .

In this case, the fact that r̂λ
it is the optimal solution to problem

(8) and the induction assumption implies that

vL
it (xit |λ) = [cit − λit ]

[
r̂λ
it − xit

] + Lit

(
r̂λ
it

)
+ E

{
vL

i,t+1

(
r̂λ
it − Dit

∣∣λ)}
= [cit − λit ]

[
r̂λ
it − xit

] + Lit

(
r̂λ
it

) + [ci,t+1 − λi,t+1]
× E

{
r̂λ
i,t+1 − r̂λ

it + Dit

}
+ Li,t+1

(
r̂λ
i,t+1

) +
τ∑

t ′=t+2

[cit ′ − λit ′ ]

× [
r̂λ
it ′ − r̂λ

i,t ′−1 + E{Di,t ′−1}
] +

τ∑
t ′=t+2

Lit ′
(
r̂λ
it ′

)
.

Collecting the terms in the expression above shows that (16)
holds. �

We emphasize that although the optimality equation in (8)
can be solved myopically for given Lagrange multipliers, the
Lagrangian relaxation strategy is not entirely myopic because
the Lagrange multipliers play the role of linking different time
periods.

3.2. Computing Lower Bounds on the Value Functions
and Choosing a Good Set of Values for the Lagrange

Multipliers

We begin this section by showing that we obtain lower
bounds on the value functions by solving the optimality equa-
tion in (4)–(6). A similar result is shown in Adelman and
Mersereau [1] for infinite-horizon problems. Our proof is for
finite-horizon problems, and it is considerably shorter.

PROPOSITION 3: If the Lagrange multipliers are positive,
then we have V L

t (xt |λ) ≤ Vt(xt ) for all t ∈ T .

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t + 1, we let
ŷt = {ŷit : i ∈ I ∪ {φ}} be the optimal solution to problem
(1)–(3), in which case we have

V L
t (xt |λ) ≤ cφt [ŷφt

− xφt ] + Lφt (ŷφt ) +
∑
i∈I

[cit − λit ]

× [ŷit − xit ]+
∑
i∈I

Lit (ŷit )+E
{
V L

t+1(ŷt −Dt |λ)
}

≤
∑

i∈I∪{φ}
cit [ŷit − xit ] +

∑
i∈I∪{φ}

Lit (ŷit )

−
∑
i∈I

λit [ŷit − xit ] + E{Vt+1(ŷt − Dt)}

≤
∑

i∈I∪{φ}
cit [ŷit − xit ] +

∑
i∈I∪{φ}

Lit (ŷit )

+ E{Vt+1(ŷt − Dt)},

where the first inequality follows from the fact that the solu-
tion ŷt = {ŷit : i ∈ I ∪ {φ}} satisfies constraints (5) and (6),
the second inequality follows from the induction assumption,
and the third inequality follows from the fact that λit ≥ 0 and
ŷit ≥ xit for all i ∈ I. The result follows by noting that the
last expression above is equal to Vt(xt ). �

Given that the initial state variable is x1, the minimum
expected cost over the whole planning horizon is V1(x1).
Proposition 3 implies that V1(x1) is bounded from below
by V L

1 (x1|λ) as long as the Lagrange multipliers are posi-
tive. Therefore, to obtain the tightest possible lower bound
on V1(x1), we can solve the problem

max
λ≥0

{
V L

1 (x1|λ)
}
. (17)

Proposition 4 below shows that V L
1 (x1|·) has a subgradient

so that by Theorem 3.2.6 in Bazaraa, Sherali and Shetty [4],
V L

1 (x1|λ) is a concave function of the Lagrange multipli-
ers. This implies that we can solve problem (17) by using

Naval Research Logistics DOI 10.1002/nav



618 Naval Research Logistics, Vol. 55 (2008)

standard subgradient optimization; see Section 6.3 in Bert-
sekas [5] and Section 10.3 in Wolsey [24]. The concavity of
V L

1 (x1|·) is shown in Adelman and Mersereau [1] for infinite-
horizon problems, but Proposition 4 explicitly shows how to
compute subgradients of V L

1 (x1|·). We also emphasize that
problem (17) provides a method for choosing a set of values
for the Lagrange multipliers. Finally, we note that the optimal
solution to problem (17) depends on the initial value of the
state variable x1, which is a fixed problem parameter.

We use some new notation to show that V L
1 (x1|·) has a

subgradient. Because {xit : i ∈ I} do not appear in the con-
straints in problem (4)–(6), the optimal solution to problem
(4)–(6) does not depend on {xit : i ∈ I}. As a function of the
echelon inventory position at the warehouse and the Lagrange
multipliers, we let ŷλ

t (xφt ) = {ŷλ
it (xφt ) : i ∈ I ∪ {φ}} be the

optimal solution to problem (4)–(6). We consider a policy
that makes the inventory replenishment decisions by solving
problem (4)–(6) at every time period. In this case, the sto-
chastic process Xλ

φ = {Xλ
φt : t ∈ T } defined by Xλ

φ1 = xφ1

and

Xλ
φ,t+1 = ŷλ

φt

(
Xλ

φt

) − Dφt (18)

characterizes the echelon inventory position at the warehouse
over the whole planning horizon. Similarly, the stochastic
process Xλ

i = {Xλ
it : t ∈ T } defined by Xλ

i1 = xi1 and

Xλ
i,t+1 = ŷλ

it

(
Xλ

φt

) − Dit (19)

characterizes the echelon inventory position at retailer i over
the whole planning horizon. We note that the stochastic
processes {Xλ

i : i ∈ I} depend on the stochastic process Xλ
φ .

We are now ready to prove that V L
1 (x1|·) has a subgradient.

PROPOSITION 4: For two sets of Lagrange multipliers λ

and λ̂, we have

V L
1 (x1|λ̂) ≤ V L

1 (x1|λ)−
∑
t∈T

∑
i∈I

[λ̂it −λit ]E
{
ŷλ

it

(
Xλ

φt

)−Xλ
it

}
.

(20)

PROOF: We use induction over the time periods to show
that

V L
t (xt |λ̂) ≤ V L

t (xt |λ) −
∑
i∈I

[λ̂it − λit ]
[
ŷλ

it (xφt ) − xit

]

−
τ∑

t ′=t+1

∑
i∈I

[λ̂it ′ − λit ′ ]

× E
{
ŷλ

it ′
(
Xλ

φt ′
) − Xλ

it ′
∣∣Xλ

φt = xφt

}
.

Using the expression above with t = 1 completes the proof.
It is easy to show the result for the last time period. If we

assume that the result holds for time period t + 1, use it with

xt+1 = ŷλ
t (xφt ) − Dt and take the conditional expectations,

then we have

E
{
V L

t+1

(
ŷλ

t (xφt ) − Dt

∣∣λ̂)∣∣Xλ
φt = xφt

}
≤ E

{
V L

t+1

(
ŷλ

t (xφt ) − Dt

∣∣λ)∣∣Xλ
φt = xφt

}
−

∑
i∈I

[λ̂i,t+1 − λi,t+1]E
{
ŷλ

i,t+1

(
ŷλ

φt (xφt ) − Dφt)

− [
ŷλ

it (xφt ) − Dit

]∣∣Xλ
φt = xφt

}
−

τ∑
t ′=t+2

∑
i∈I

[λ̂it ′ − λit ′ ]E
{
E

{
ŷλ

it ′
(
Xλ

φt ′
) − Xλ

it ′
∣∣Xλ

φ,t+1

= ŷλ
φt (xφt ) − Dφt

}∣∣Xλ
φt = xφt

}
. (21)

Because Xλ
φt and Dt are independent, the condition Xλ

φt =
xφt in the first two conditional expectations above can be
dropped. Furthermore, since having Xλ

φt = xφt implies that
Xλ

φ,t+1 = ŷλ
φt (xφt )−Dφt , the last double expectation is equal

to E{ŷλ
it ′(X

λ
φt ′)−Xλ

it ′ |Xλ
φt = xφt }. Because ŷλ

t (xφt ) is a feasi-
ble but not necessarily the optimal solution to problem (4)–(6)
when we use the Lagrange multipliers λ̂, we have

V L
t (xt |λ̂) ≤ cφt

[
ŷλ

φt
(xφt ) − xφt

] + Lφt

(
ŷλ

φt (xφt )
)

+
∑
i∈I

[cit − λ̂it ]
[
ŷλ

it (xφt ) − xit

]
+

∑
i∈I

Lit

(
ŷλ

it (xφt )
) + E

{
V L

t+1

(
ŷλ

t (xφt ) − Dt

∣∣λ̂)}
≤ cφt

[
ŷλ

φt
(xφt ) − xφt

] + Lφt

(
ŷλ

φt (xφt )
)

+
∑
i∈I

[cit − λit ]
[
ŷλ

it (xφt ) − xit

] +
∑
i∈I

Lit

(
ŷλ

it (xφt )
)

−
∑
i∈I

[λ̂it − λit ]
[
ŷλ

it (xφt ) − xit

] + E
{
V L

t+1

(
ŷλ

t (xφt ) − Dt

∣∣λ)
}

−
∑
i∈I

[λ̂i,t+1 − λi,t+1]E
{
ŷλ

i,t+1

(
ŷλ

φt (xφt ) − Dφt

)
− [

ŷλ
it (xφt ) − Dit

]∣∣Xλ
φt = xφt

}
−

τ∑
t ′=t+2

∑
i∈I

[λ̂it ′ − λit ′ ]E
{
ŷλ

it ′
(
Xλ

φt ′
) − Xλ

it ′
∣∣Xλ

φt = xφt

}
= V L

t (xt |λ) −
∑
i∈I

[λ̂it − λit ]
[
ŷλ

it (xφt ) − xit

]

−
τ∑

t ′=t+1

∑
i∈I

[λ̂it ′ − λit ′ ]E
{
ŷλ

it ′
(
Xλ

φt ′
) − Xλ

it ′
∣∣Xλ

φt = xφt

}
,

where the second inequality follows from (21) and the equal-
ity follows from the fact that ŷλ

t (xφt ) is the optimal solution to
problem (4)–(6) and the definitions of {Xλ

i,t+1 : i ∈ I ∪ {φ}}
in (18) and (19). �

In our computational experiments, we use discrete demand
distributions with finite supports. In this case, the probability
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laws governing the stochastic processes {Xλ
i : i ∈ I ∪ {φ}}

are characterized by finite-dimensional transition matrices
and the expectation in (20) can easily be computed.

We close this section by emphasizing that the Lagrangian
relaxation strategy is approximate because our Lagrange mul-
tipliers do not depend on the state variable. If we use a
state-dependent Lagrange multiplier of the form λit (xt ), then
it is possible to show that the Lagrangian relaxation strat-
egy is exact and the optimal objective value of problem (17)
is equal to V1(x1). This observation suggests that we expect
the error brought by the fact that our Lagrange multipliers
do not depend on the state variable to be small whenever
the trajectory of the state variable {xt : t ∈ T } under the
optimal inventory replenishment policy does not change too
much from one sample path to another. From computational
standpoint, we note that if we use a state-dependent Lagrange
multiplier, then the number of Lagrange multipliers is as
large as the number of possible states for the system and the
Lagrangian relaxation strategy becomes intractable. There-
fore, it is not practical to try to improve the lower bounds
obtained by the Lagrangian relaxation strategy by switch-
ing from a state-independent to a state-dependent Lagrange
multiplier.

4. CLARK AND SCARF’S BALANCE
ASSUMPTION

In this section, we review the balance assumption of Clark
and Scarf [8] and describe its practical significance. In their
seminal work, Clark and Scarf [8] show that if their well-
known balance assumption is satisfied, then the value func-
tions {Vt(·) : t ∈ T } computed through the optimality
equation in (1)–(3) are separable functions of the form

V B
t (xt ) =

∑
i∈I∪{φ}

vB
it (xit ). (22)

We shortly give a precise definition of the balance assump-
tion. In the expression above, the value functions {vB

it (·) :
t ∈ T } for retailer i are computed through the optimality
equation

vB
it (xit ) = min

yit≥xit

{
cit [yit − xit ] + Lit (yit )

+ E
{
vB

i,t+1(yit − Dit )
}}

. (23)

This optimality equation computes the optimal inventory
replenishment policy for retailer i under the assumption that
the warehouse has infinite supply. On the other hand, noting
that the optimal solution to the problem

min
yit

{
cit [yit − xit ] + Lit (yit ) + E

{
vB

i,t+1(yit − Dit )
}}

(24)

does not depend on xit and letting r̂it be the optimal solution
to this problem, the value functions {vB

φt (·) : t ∈ T } for the
warehouse are computed through the optimality equation

vB
φt (xφt ) = min

yφt≥xφt

{
cφt [yφt − xφt ] + Lφt (yφt )

+ E
{
vB

φ,t+1(yφt − Dφt)
}} + �B

t (xφt ), (25)

where the functions {�B
t (·) : t ∈ T } are given by

�B
t (xφt ) = min

∑
i∈I

cit [yit − r̂it ]

+
∑
i∈I

Lit (yit ) +
∑
i∈I

E
{
vB

i,t+1(yit − Dit )
}

−
∑
i∈I

Lit (r̂it ) −
∑
i∈I

E
{
vB

i,t+1(r̂it − Dit )
}

(26)

subject to
∑
i∈I

yit ≤ xφt . (27)

We encourage the reader to compare the optimality equation
in (23) with the one in (8), the optimality equation in (25) with
the one in (9) and the definition of �B

t (·) in problem (26)–(27)
with the definition of �L

t (·|λ) in problem (10)–(11). The cru-
cial difference between the Lagrangian relaxation strategy
and the balance assumption is in the optimality equations in
(8)–(23). The optimality equation in (8) implicitly tries to
ensure that the shipment to retailer i is nonnegative by deflat-
ing the per unit replenishment costs by {λit : t ∈ T }. On
the other hand, the optimality equation in (23) ensures that
the shipment to retailer i is non-negative by imposing the
constraint yit ≥ xit .

We are now ready to give a precise definition of the bal-
ance assumption. The balance assumption amounts to the
following two assumptions.

(A.1) When the echelon inventory position at the ware-
house satisfies xφt ≥ ∑

i∈I r̂it , the constraint
∑

i∈I yit ≤ xφt

in problem (1)–(3) is redundant.
(A.2) When the echelon inventory position at the ware-

house satisfies xφt <
∑

i∈I r̂it , the constraints yit ≥ xit for
all i ∈ I in problem (1)–(3) are redundant.

Under the balance assumption, (A.2) implies that we do
not have to impose the constraints yit ≥ xit for all i ∈ I in
problem (1)–(3) when we have xφt <

∑
i∈I r̂it . We note that

the constraints yit ≥ xit for all i ∈ I ensure the nonnega-
tivity of the shipments to the retailers and sending a negative
shipment from the warehouse to a retailer is equivalent to
withdrawing the inventory from the retailer back to the ware-
house, at which point the inventory withdrawn back to the
warehouse can be distributed to another retailer. Therefore,
(A.2) essentially states that when we have xφt <

∑
i∈I r̂it ,

it is not desirable to redistribute the total amount of retailer
inventory among the retailers even if it is allowed to do so.
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The next proposition shows that the value functions com-
puted through the optimality equation in (1)–(3) are separable
functions of the form (22) as long as the balance assumption
holds. This result is briefly sketched in Clark and Scarf [8],
but we provide a rigorous proof here.

PROPOSITION 5: Assume that the value functions
{Vt(·) : t ∈ T }, {vB

it (·) : i ∈ I, t ∈ T }, and {vB
φt (·) : t ∈ T }

are respectively computed through the optimality equations
in (1)–(3), (23), and (25). If (A.1)–(A.2) hold and {V B

t (·) :
t ∈ T } are as defined in (22), then we have Vt(xt ) = V B

t (xt )

for all t ∈ T .

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t + 1, we
consider two cases.

CASE 1: Assume that xφt ≥ ∑
i∈I r̂it . Using the induction

assumption and noting that the constraint
∑

i∈I yit ≤ xφt in
problem (1)–(3) is redundant, we have

Vt(xt ) = min
∑

i∈I∪{φ}
cit [yit − xit ] +

∑
i∈I∪{φ}

Lit (yit )

+
∑

i∈I∪{φ}
E

{
vB

i,t+1(yit − Dit )
}

subject to yit ≥ xit for all i ∈ I ∪ {φ}.
The problem above decomposes by the installations, and
noting (23) and (25), we have

Vt(xt ) = vφt (xφt ) − �B
t (xφt ) +

∑
i∈I

vB
it (xit ).

We conclude this part by showing that �B
t (xφt ) = 0 when

we have xφt ≥ ∑
i∈I r̂it . Because r̂it is the optimal solution to

problem (24), the unconstrained minimizer of the objective
function of problem (26)–(27) is {r̂it : i ∈ I}. The solution
{r̂it : i ∈ I} is also feasible to problem (26)–(27). Therefore,
the optimal solution to problem (26)–(27) is {r̂it : i ∈ I} and
we have �B

t (xφt ) = 0.

CASE 2: Assume that xφt <
∑

i∈I r̂it . Using the induction
assumption and noting that the constraints yit ≥ xit for all
i ∈ I in problem (1)–(3) are redundant, we have

Vt(xt ) = min
∑

i∈I∪{φ}
cit [yit − xit ] +

∑
i∈I∪{φ}

Lit (yit )

+
∑

i∈I∪{φ}
E

{
vB

i,t+1(yit − Dit )
}

(28)

subject to
∑
i∈I

yit ≤ xφt (29)

yφt ≥ xφt . (30)

If we write the objective function of problem (28)–(30) as

cφt [yφt − xφt ] + Lφt (yφt ) + E
{
vB

φ,t+1(yφt − Dφt)
}

+
∑
i∈I

cit [yit − r̂it ]

+
∑
i∈I

Lit (yit ) +
∑
i∈I

E
{
vB

i,t+1(yit − Dit )
}

−
∑
i∈I

Lit (r̂it ) −
∑
i∈I

E
{
vB

i,t+1(r̂it − Dit )
}

+
∑
i∈I

cit [r̂it − xit ] +
∑
i∈I

Lit (r̂it )

+
∑
i∈I

E
{
vB

i,t+1(r̂it − Dit )
}
,

then problems (26)–(27) and (28)–(30) imply that

Vt(xt ) = min
yφt≥xφt

{
cφt [yφt − xφt ] + Lφt (yφt )

+ E
{
vB

φ,t+1(yφt − Dφt)
}} + �B

t (xφt )

+
∑
i∈I

cit [r̂it − xit ] +
∑
i∈I

Lit (r̂it ) +
∑
i∈I

E
{
vB

i,t+1(r̂it − Dit )
}

= vB
φt (xφt ) +

∑
i∈I

cit [r̂it − xit ] +
∑
i∈I

Lit (r̂it )

+
∑
i∈I

E
{
vB

i,t+1(r̂it − Dit )
}
.

By Lemma 7 in Appendix 9, if xφt <
∑

i∈I r̂it and (A2)
holds, then we have vB

it (xit ) = cit [r̂it − xit ] + Lit (r̂it ) +
E{vB

i,t+1(r̂it − Dit )} for all i ∈ I and the result follows.
�

Proposition 5 shows that under the balance assumption, we
can compute the value functions by focusing on one instal-
lation at a time. In particular, we first solve the optimality
equation in (23) to compute {vB

it (·) : i ∈ I, t ∈ T }. In this
case, we can compute {�B

t (·) : t ∈ T } by solving prob-
lem (26)–(27). Finally, we can compute {vB

φt (·) : t ∈ T }
by solving the optimality equation in (25). As long as the
balance assumption holds, {V B

t (·) : t ∈ T } coincides with
{Vt(·) : t ∈ T }.

Clearly, it is not realistic to expect that the balance assump-
tion always holds. Furthermore, it is not easy to check the
balance assumption for a particular problem instance. Nev-
ertheless, even if the balance assumption does not hold, we
can still solve the optimality equations in (23) and (25) to
compute {V B

t (·) : t ∈ T }. The next proposition shows
that irrespective of whether the balance assumption holds
or not, {V B

t (·) : t ∈ T } always provide lower bounds on
{Vt(·) : t ∈ T }. Clark and Scarf [8] mention this result
without a proof, and we provide a rigorous proof here.
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PROPOSITION 6: We haveV B
t (xt ) ≤ Vt(xt ) for all t ∈ T .

PROOF: We show the result by induction over the time
periods. It is easy to show the result for the last time period.
Assuming that the result holds for time period t + 1, and
using the optimality equation in (1)–(3) and the induction
assumption, we have

Vt(xt ) ≥ min
∑

i∈I∪{φ}
cit [yit − xit ] +

∑
i∈I∪{φ}

Lit (yit )

+
∑

i∈I∪{φ}
E

{
vB

i,t+1(yit − Dit )
}

subject to (2), (3).

The problem on the right side above decomposes into two
problems. The first problem has the form

min
yφt≥xφt

{
cφt [yφt − xφt ] + Lφt (yφt ) + E

{
vB

φ,t+1(yφt − Dφt)
}}

and the second problem has the same form

min
∑
i∈I

cit [yit − xit ] +
∑
i∈I

Lit (yit )

+
∑
i∈I

E
{
vB

i,t+1(yit − Dit )
}

(31)

subject to
∑
i∈I

yit ≤ xφt (32)

yit ≥ xit for all i ∈ I. (33)

Lemma 8 in Appendix 9 shows that

�B
t (xφt ) +

∑
i∈I

min
yit≥xit

{
cit [yit − xit ] + Lit (yit )

+ E
{
vB

i,t+1(yit − Dit )
}}

provides a lower bound on the optimal objective value of
problem (31)–(33). Therefore, we obtain

Vt(xt ) ≥ min
yφt≥xφt

{
cφt [yφt − xφt ] + Lφt (yφt )

+ E
{
vB

φ,t+1(yφt − Dφt)
}}

+ �B
t (xφt ) +

∑
i∈I

min
yit≥xit

{
cit [yit − xit ] + Lit (yit )

+ E
{
vB

i,t+1(yit − Dit )
}}

.

By (23) and (25), the expression on the right side above is
equal to

∑
i∈I∪{φ} vB

it (xit ) and the result follows. �

5. FEDERGRUEN AND ZIPKIN’S RELAXATION
STRATEGY

Similar to the Lagrangian relaxation strategy that we pro-
pose in this work, the relaxation strategy of Federgruen and
Zipkin [14] relaxes the constraints yit ≥ xit for all i ∈ I
in problem (1)–(3), but it does not associate Lagrange mul-
tipliers with them. Therefore, the relaxation strategy of Fed-
ergruen and Zipkin [14] can be obtained by following the
material in Section 3 under the assumption that all of the
Lagrange multipliers are equal to zero. In other words, if we
use the notation in Section 3, then the relaxation strategy of
Federgruen and Zipkin [14] uses {V L

t (·|0) : t ∈ T } as lower
bounds on {Vt(·) : t ∈ T }. Because Proposition 3 continues
to hold when all of the Lagrange multipliers are equal to zero,
the relaxation strategy of Federgruen and Zipkin [14] indeed
comes up with lower bounds on the value functions.

6. COMPARISON OF THE LOWER BOUNDS ON
THE VALUE FUNCTIONS

In this section, we compare the lower bounds on the value
functions computed under our Lagrangian relaxation strat-
egy, the balance assumption of Clark and Scarf [8] and the
relaxation strategy of Federgruen and Zipkin [14].

Because λ = 0 is a feasible solution to problem (17),
the lower bounds computed under the Lagrangian relax-
ation strategy are at least as tight as those computed under
the relaxation strategy of Federgruen and Zipkin [14]. Our
computational experiments indicate that there can be quite
substantial gaps between the lower bounds computed under
the Lagrangian relaxation strategy and the relaxation strategy
of Federgruen and Zipkin [14].

It turns out that there does not exist a consistent ordering
between the lower bounds computed under the Lagrangian
relaxation strategy and the balance assumption. Under the
balance assumption, we assume that the constraints yit ≥ xit

for all i ∈ I are redundant only when xφt <
∑

i∈I r̂it holds,
but no penalty is associated with assuming that these con-
straints are redundant. On the other hand, the Lagrangian
relaxation strategy always relaxes the constraints yit ≥ xit

for all i ∈ I, but it associates Lagrange multipliers with
them. In Appendix B, we give two examples that clearly
show that neither of the lower bounds computed under the
Lagrangian relaxation strategy and the balance assumption is
consistently superior. It is, in fact, not too difficult to generate
such examples. In particular, if the demands at the retail-
ers are deterministic, then the Lagrangian relaxation strategy
reduces to standard Lagrangian relaxation for determinis-
tic optimization problems and the lower bounds computed
under the Lagrangian relaxation strategy become tight. Also,
by choosing the initial echelon inventory position xφ1 at
the warehouse carefully, it is possible to generate problem
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instances with deterministic demands at the retailers where
the balance assumption fails. Therefore, one can generate
problem instances where the lower bounds computed under
the Lagrangian relaxation strategy are strictly tighter than
the lower bounds computed under the balance assumption.
On the other hand, Clark and Scarf [8] show that for prob-
lem instances with one retailer, the lower bounds computed
under the balance assumption are tight, but there is no such
guarantee for the Lagrangian relaxation strategy. Therefore,
one can generate problem instances with one retailer where
the lower bounds computed under the balance assumption
are strictly tighter than the lower bounds computed under the
Lagrangian relaxation strategy.

The remark that immediately precedes Proposition 5 sug-
gests that the balance assumption may not be satisfied when it
is desirable to redistribute the total amount of retailer inven-
tory among the retailers if it were allowed to do so. One
may conjecture numerous situations where it would indeed
be desirable to redistribute the total amount of retailer inven-
tory among the retailers. For example, if the holding cost
at the warehouse or the backlogging cost at the retailers is
high, then it is reasonable to expect that a major portion of
the inventory would be held at the retailers rather than at the
warehouse. In this case, a high demand at one retailer and a
low demand at another retailer at a particular time period may
leave the first retailer in short supply, and it may be desirable
to redistribute the excess inventory at the second retailer to
the first retailer if it were allowed to do so. It may also be
desirable to redistribute the total amount of retailer inventory
among the retailers when the demands at the retailers are
highly nonstationary. In particular, if the expected demand at
one retailer is unusually high at one time period, then it is
conceivable that this retailer receives a large replenishment
quantity at the current time period. If, by chance, the demand
at this retailer at the current time period turns out to be low and
the expected demand at another retailer at the next time period
is unusually high, then it may be desirable to redistribute the
excess inventory at the first retailer to the second retailer. It
is, in fact, such imbalance of inventories among the retailers
that gives the balance assumption its name. That is, the bal-
ance assumption amounts to assuming that such imbalance of
inventories among the retailers does not occur. The computa-
tional experiments in Section 8 confirm our expectations and
indicate that the relative performance of the balance assump-
tion becomes less satisfactory when the holding cost at the
warehouse or the backlogging cost at the retailers is high and
when the demands at the retailers are highly nonstationary.

We also note that using the Lagrangian relaxation strat-
egy by setting all the Lagrange multipliers to zero is not
equivalent to computing the lower bounds under the bal-
ance assumption. In other words, we do not necessarily have
V L

1 (x1|0) = V B
1 (x1). This can easily be seen by noting that

the constraint yit ≥ xit appears in problem (23), but not in

problem (8). Therefore, the relaxation ideas used by Feder-
gruen and Zipkin [14], which are equivalent to setting all the
Lagrange multipliers to zero, are different from the balance
assumption of Clark and Scarf [8]. We emphasize this dis-
tinction because the ideas used by Clark and Scarf [8] and
Federgruen and Zipkin [14] are sometimes both referred to
as the balance assumption; see, for example, Jackson [18].
Although these ideas share similarities, they are not equiva-
lent to each other. In Appendix B, we give an example where
we have V L

1 (x1|0) < V B
1 (x1).

7. APPLYING THE INVENTORY
REPLENISHMENT POLICIES

In this section, we examine the structure of the inven-
tory replenishment policies obtained under the Lagrangian
relaxation strategy and the balance assumption. Letting λ̂

be the optimal solution to problem (17), the value func-
tions {V L

t (·|λ̂) : t ∈ T } computed under the Lagrangian
relaxation strategy and the value functions {V B

t (·) : t ∈ T }
computed under the balance assumption are separable func-
tions of the form {∑i∈I∪{φ} ϑit (·) : t ∈ T }; see (7) and (22).
Furthermore, it can be shown that the functions {ϑit (·) : i ∈
I ∪ {φ}, t ∈ T } are convex.

We make the inventory replenishment decisions by replac-
ing the value functions {Vt(·) : t ∈ T } in problem (1)–(3)
with {∑i∈I∪{φ} ϑit (·) : t ∈ T }. In this case, problem (1)–(3)
decompose into two problems, one for the retailers and one
for the warehouse. The problem for the retailers has the form

min
∑
i∈I

cit [yit − xit ] +
∑
i∈I

Lit (yit )

+
∑
i∈I

E{ϑi,t+1(yit − Dit )} (34)

subject to
∑
i∈I

yit ≤ xφt (35)

yit ≥ xit for all i ∈ I, (36)

whereas the problem for the warehouse has the form

min
yφt≥xφt

{cφt [yφt − xφt ] + Lφt (yφt )

+ E{ϑφ,t+1(yφt − Dφt)}}. (37)

In our computational experiments, we use test problems that
involve discrete demand distributions. In this case, one can
show that the functions {ϑit (·) : i ∈ I ∪ {φ}, t ∈ T } are
piecewise-linear convex, and we can easily solve the two
problems above by using simple marginal analysis; see Fox
[16]. For example, in problem (34)–(36), we can start with
the feasible solution ỹt = {ỹit : i ∈ I} with ỹit = xit for all
i ∈ I and iteratively increase one component of this solu-
tion that yields the largest decrease in the objective function
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Figure 1. Expected demands at different installations over the planning horizon for particular instances of demand profiles D1, D2, and D3.

value. We repeat this until constraint (35) becomes tight or
increasing one component of the solution does not yield a
decrease in the objective function value.

8. COMPUTATIONAL EXPERIMENTS

In this section, we numerically compare the performance
of the inventory replenishment policies obtained under the
Lagrangian relaxation strategy with those obtained under the
balance assumption of Clark and Scarf [8] and the relaxation
strategy of Federgruen and Zipkin [14].

8.1. Experimental Setup and Benchmarks

In our experimental setup, we consider 21 test problems in
a base case and systematically vary the attributes of these test
problems to investigate the effects of different problem para-
meters. In the base case, we consider a distribution system
with three retailers. The planning horizon includes 50 time
periods. The holding and backlogging costs are hφt = 0.6,
hit = 1, and bit = 19 for all i ∈ I and t ∈ T . The replenish-
ment order shipped to a certain installation at a certain time
period reaches the installation at the next time period. We
note that this is in contrast with our earlier assumption that
the lead times for all replenishments are zero. We assume
that the demand at retailer i at time period t has a Poisson
distribution with mean αit . We generate three demand pro-
files by generating {αit : i ∈ I, t ∈ T } in three different
ways. For demand profile D1, we generate αit from the uni-
form distribution over [5, 15]. For demand profile D2, we set
αit = 0 with probability 1/4, but otherwise, generate αit from
the uniform distribution over [5, 15]. For demand profile D3,
we generate it from the uniform distribution over I and set
αit = 10 1(it = i)(1 + sin(2πt/τ)), where 1(·) is the indi-
cator function. Demand profile D1 characterizes a situation
where the demand distributions at the retailers and the ware-
house are relatively stationary. Demand profile D2 allows
time periods where a retailer does not face any demand, and

it introduces additional nonstationarity when compared with
demand profile D1. Such nonstationarity may occur when
the retailers do not face demand at known time periods. The
expected demand at the warehouse under demand profile D3

is 10(1 + sin(2πt/τ)), and it has a seasonal component that
changes smoothly, but each retailer faces demand at time peri-
ods that are different from the others. The role of demand
profile D3 is to test the different solution methods under
highly nonstationary demands. In particular, this demand pro-
file involves nonstationarity in both the expected demand at
the warehouse and the expected demand at the retailers. Fur-
thermore, because this demand profile has exactly one retailer
facing demand at each time period, it becomes more crucial to
make the “correct” inventory allocation decisions. We obtain
seven instances of demand profiles D1, D2, and D3 by using
seven different random seeds to generate {αit : i ∈ I, t ∈ T }
and this gives the 21 test problems in the base case. We note
that once we generate {αit : i ∈ I, t ∈ T }, these values
are known to the decision maker. The area charts in Fig. 1
plot {αit : i ∈ I, t ∈ T } for particular instances of demand
profiles D1, D2, and D3. The horizontal axis in each chart
corresponds to the time periods in the planning horizon and
the areas correspond to the retailers. We stack the areas so
that the outline of the top area shows the expected demand at
the warehouse.

For each instance of the demand profiles, we vary one
problem parameter at a time to investigate how that prob-
lem parameter affects the performance of the benchmarks.
In particular, we vary the holding cost at the warehouse, the
backlogging cost at the retailers, the number of retailers, the
length of the planning horizon, and the length of the lead
time.

For the Lagrangian relaxation strategy, we use subgradient
optimization to solve problem (17). We take the step size at
iteration k as 20/

√
k and terminate the subgradient search

after 1000 iterations. These settings provide stable perfor-
mance and good solutions, although the step size that we use
does not guarantee convergence. After obtaining the opti-
mal solution λ̂ to problem (17), we let ϑit (·) = vL

it (·|λ̂) for
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Table 1. Detailed performance of LR, BA and RS for the 21 test problems in the base case.

Lower bnd. LR vs. Exp. cost LR vs.

Prob. LR BA RS BA RS LR BA RS BA RS

(D1, 1) 2651 2651 2651 0.00 0.00 2660 2651 2660 −0.34 0.00
(D1, 2) 2551 2560 2551 −0.35 0.00 2562 2562 2562 0.01 0.00
(D1, 3) 2680 2680 2680 0.00 0.00 2680 2681 2680 0.02 0.00
(D1, 4) 2651 2651 2651 0.00 0.00 2656 2656 2656 −0.01 0.00
(D1, 5) 2714 2713 2714 0.03 0.00 2714 2714 2714 0.00 0.00
(D1, 6) 2675 2675 2675 0.00 0.00 2675 2676 2675 0.01 0.00
(D1, 7) 2614 2613 2614 0.03 0.00 2615 2615 2615 0.00 0.00

avg. −0.04 0.00 −0.04 0.00
(D2, 1) 1906 1892 1822 0.72 4.57 2006 2091 2160 4.05 7.12
(D2, 2) 1947 1934 1886 0.63 3.23 2019 2099 2152 3.81 6.18
(D2, 3) 1809 1797 1736 0.68 4.21 1870 1961 2006 4.61 6.76
(D2, 4) 2111 2094 2022 0.80 4.42 2228 2363 2493 5.71 10.61
(D2, 5) 2235 2223 2153 0.54 3.76 2314 2404 2463 3.75 6.06
(D2, 6) 1746 1729 1648 0.99 5.99 1871 2005 2133 6.71 12.30
(D2, 7) 1602 1593 1533 0.54 4.48 1692 1752 1816 3.44 6.81

avg. 0.70 4.38 4.58 7.98
(D3, 1) 923 896 765 3.06 20.66 1420 1572 1803 9.69 21.26
(D3, 2) 922 895 765 2.95 20.48 1415 1563 1788 9.48 20.84
(D3, 3) 928 896 765 3.63 21.33 1466 1618 1818 9.38 19.38
(D3, 4) 918 899 765 2.12 19.95 1378 1511 1732 8.83 20.44
(D3, 5) 932 895 765 4.11 21.85 1433 1566 1754 8.48 18.27
(D3, 6) 930 901 765 3.17 21.52 1424 1649 1903 13.61 25.15
(D3, 7) 935 905 765 3.27 22.17 1497 1620 1850 7.61 19.10
Avg. 3.19 21.13 9.58 20.64

all i ∈ I ∪ {φ} and t ∈ T and solve problems (34)–(36)
and (37) to make the inventory replenishment decisions. We
refer to this solution method as LR, standing for Lagrangian
relaxation.

We use the balance assumption of Clark and Scarf [8]
and the relaxation strategy of Federgruen and Zipkin [14]
as benchmarks. Under the balance assumption, we solve the
optimality equations in (23) and (25) to compute {vB

it (·) :
i ∈ I ∪ {φ}, t ∈ T }. After this, we let ϑit (·) = vB

it (·) for all
i ∈ I∪{φ} and t ∈ T , and solve problems (34)–(36) and (37)
to make the inventory replenishment decisions. We refer to
this solution method as BA, standing for balance assumption.
Under the relaxation strategy, we solve the optimality equa-
tions in (8) and (9) by setting all of the Lagrange multipliers to
zero to compute {vL

it (·|0) : i ∈ I ∪{φ}, t ∈ T }. Similar to LR
and BA, we let ϑit (·) = vL

it (·|0) for all i ∈ I ∪{φ} and t ∈ T
and make the inventory replenishment decisions by solving
problems (34)–(36) and (37). We refer to this solution method
as RS, standing for relaxation strategy.

8.2. Computational Results

Table 1 shows the computational results for the 21 test
problems in the base case. Each row in this table corresponds
to a particular instance of a demand profile. The first col-
umn shows the demand profile and the instance number. The
second, third, and fourth columns show the lower bounds on

the value function obtained by LR, BA, and RS. The fifth
column shows the percent gap between the lower bounds
obtained by LR and BA. The sixth column does the same
thing as the fifth column, but it focuses on the percent gap
between LR and RS. The seventh, eighth, and ninth columns
show the expected costs incurred by LR, BA, and RS. We
estimate these expected costs by simulating the performance
of the inventory replenishment policies obtained by LR, BA,
and RS under multiple demand realizations. The 10th column
shows the percent gap between the expected costs incurred by
LR and BA. We simulate the performance for enough demand
realizations, so that any performance gap that exceeds 1% is
statistically significant. We cannot guarantee that smaller per-
formance gaps are statistically significant, because there are
some test problems where the benchmarks perform very simi-
larly and making a statistically significant distinction between
them requires an exorbitant number of demand realizations.
The 11th column does the same thing as the 10th column, but
it focuses on the percent gap between LR and RS.

The results indicate that the three benchmarks obtain very
similar lower bounds and incur very similar expected costs
under demand profile D1. Furthermore, the expected costs
are very close to the lower bounds, which indicates that the
three benchmarks are essentially optimal under demand pro-
file D1. When we move to demand profiles D2 and D3, the
lower bounds and expected costs associated with LR become
noticeably better than those associated with BA and RS. For
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Table 2. Effect of the holding cost at the warehouse on the
performance of LR, BA, and RS.

Lower bnd. Exp. cost
LR vs. LR vs.

Hld. cst. BA RS BA RS

D1
0.1 −0.02 0.00 0.00 0.00
0.3 −0.01 0.00 0.00 0.00
0.6 −0.04 0.00 −0.04 0.00
0.9 0.00 0.00 0.00 0.00

D2
0.1 −0.57 11.26 0.69 5.30
0.3 −0.14 7.49 1.60 5.86
0.6 0.70 4.38 4.58 7.98
0.9 2.02 2.87 7.36 8.53

D3
0.1 −5.89 45.60 −1.13 21.94
0.3 −2.57 32.10 4.43 20.60
0.6 3.19 21.13 9.58 20.64
0.9 10.53 15.13 16.67 23.12

example, the average gap between the lower bounds obtained
by LR and BA increases to 3.19% under demand profile D3.
Under the same demand profile, the average gap between the
expected costs incurred by LR and BA increases to 9.58%.
The performance of RS is quite satisfactory under demand
profile D1, but the performance gap between LR and RS
can be as large as 25.15% under demand profile D3. There-
fore, the nonstationarity of the demand distributions seems

Table 3. Effect of the backlogging cost at the retailers on the
performance of LR, BA, and RS.

Lower bnd. Exp. cost
LR vs. LR vs.

Bck. cst. BA RS BA RS

D1
1 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00
19 −0.04 0.00 −0.04 0.00
29 0.00 0.00 0.00 0.00
39 0.00 0.00 0.00 0.00

D2
1 −1.27 0.00 −1.10 0.05
9 0.18 3.49 2.07 4.84
19 0.70 4.38 4.58 7.98
29 0.88 4.62 6.51 9.43
39 0.95 4.65 7.92 11.69

D3
1 −6.20 0.03 −8.27 0.32
9 −0.92 15.67 3.02 14.80
19 3.19 21.13 9.58 20.64
29 4.68 22.07 12.85 23.77
39 5.19 21.75 13.26 24.38

Table 4. Effect of the number of retailers on the performance of
LR, BA, and RS.

Lower bnd. Exp. cost
LR vs. LR vs.

No. ret. BA RS BA RS

D1
1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 −0.04 0.00 −0.04 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00

D2
1 −0.16 3.61 −0.02 0.24
2 0.37 3.96 2.54 6.71
3 0.70 4.38 4.58 7.98
4 1.10 4.99 5.60 8.38
5 1.46 5.48 6.18 8.93

D3
1 −0.17 0.03 −0.07 0.00
2 0.63 9.93 3.75 12.50
3 3.19 21.13 9.58 20.64
4 2.55 27.46 9.91 25.53
5 2.25 33.09 9.09 24.53

to have a large impact on the performance of the bench-
marks, and LR tends to perform better than BA and RS when
the demand distributions involve significant nonstationarity.
Another important observation is that there are test problems
where BA performs better, but the performance gap is rel-
atively small when this is the case. Furthermore, the large
performance gap between LR and RS shows the importance
of finding a good set of values for the Lagrange multipliers

Table 5. Effect of the length of the planning horizon on the
performance of LR, BA, and RS.

Lower bnd. Exp. cost
LR vs. LR vs.

Pl. hor. BA RS BA RS

D1
25 0.00 0.00 0.00 −0.34
50 −0.04 0.00 −0.04 0.00
75 0.00 0.00 0.00 0.00

100 0.00 0.00 0.00 0.00

D2
25 0.82 4.32 5.21 9.07
50 0.70 4.38 4.58 7.98
75 0.80 4.92 5.72 9.55

100 0.83 4.95 5.93 9.74

D3
25 2.10 15.96 9.46 21.80
50 3.19 21.13 9.58 20.64
75 3.69 23.70 9.26 23.42

100 3.49 24.07 9.25 22.34
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Table 6. Effect of the lead time for the warehouse on the
performance of LR, BA, and RS.

Lower bnd. Exp. cost
LR vs. LR vs.

Wh. l.t. BA RS BA RS

D1
1 −0.04 0.00 −0.04 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00

D2
1 0.70 4.38 4.58 7.98
2 −0.02 3.32 0.84 3.15
3 −0.13 2.90 0.23 1.98

D3
1 3.19 21.13 9.58 20.64
2 −0.05 15.62 4.70 20.17
3 −1.21 12.99 1.38 19.26

by solving problem (17) rather than using the trivial value of
zero.

Tables 2–7 show how the benchmarks perform when we
vary different problem parameters. We begin by varying the
holding cost at the warehouse in Table 2. For economy of
space, we only show the average results over seven instances
of a particular demand profile. More specifically, the three
portions of Table 2, respectively, focus on demand profiles
D1, D2, and D3. In each portion, the first column shows the
value of the holding cost at the warehouse. The second col-
umn shows the percent gap between the lower bounds on
the value function obtained by LR and BA, averaged over
seven instances of a particular demand profile. The fourth
columns show the percent gap between the expected costs
incurred by LR and BA, averaged over seven instances of
a particular demand profile. The third and fifth columns do
the same thing as the second and fourth columns, but they
focus on the percent gap between LR and RS. It is helpful
to note that the percent gaps are calculated in such a man-
ner that positive values favor LR and negative values favor
the other two benchmarks. We also emphasize that averag-
ing does not change the interpretation of the results signifi-
cantly. In particular, if the average performance of a particular
benchmark is noticeably better than that of another bench-
mark, then the performance is generally better over all seven
instances.

Table 2 indicates that the benchmarks continue to perform
similarly under demand profileD1. Under demand profilesD2

and D3, the average gap between the lower bounds obtained
by LR and BA increases in favor of LR as the holding cost at
the warehouse increases. A similar observation also applies
to the average gap between the expected costs incurred by LR
and BA. The average gap between the lower bounds obtained
by LR and RS decreases as the holding cost at the warehouse

increases, but there is no drastic change in the average gap
between the expected costs incurred by LR and RS.

In Table 3, we vary the backlogging cost at the retailers.
The observations for demand profile D1 remain unchanged.
Under demand profiles D2 and D3, BA obtains tighter lower
bounds and incurs lower expected costs than LR when the
backlogging cost at the retailers is low. Nevertheless, we note
that a backlogging cost of one is quite low as the holding
cost at the retailers is also one. As the backlogging cost at
the retailers increases, the lower bounds and expected costs
associated with LR become significantly better than those
associated with BA. The performance gap between LR and
RS also increases in favor of LR as the backlogging cost at
the retailers increases. Dogru [9] also mentions backlogging
cost at the retailers as a factor that affects the adequacy of the
balance assumption.

Table 4 varies the number of retailers in the distribution
system. Under demand profiles D2 and D3, the average gap
between the expected costs incurred by LR and BA increases
as the number of retailers increases. For distribution systems
with five retailers, the average gap between the expected costs
incurred by LR and BA is as large as 9.09%. Clark and Scarf
[8] show that BA obtains the optimal policy when there is
one retailer. Although LR does not have such an optimality
guarantee, its performance for the test problems with one
retailer is very close to optimal. The results are quite encour-
aging in the sense that LR tends to perform significantly better
than BA and maintains its performance margin when we work
with larger distribution systems. Except for the test problems
with one retailer, the performance gap between LR and RS
is also quite significant.

In Table 5, we vary the length of the planning horizon.
There does not seem to be a drastic effect of the length
of the planning horizon on the relative performance of the
benchmarks.

Table 7. Effect of the lead time for the retailers on the performance
of LR, BA, and RS.

Lower bnd. Exp. cost
LR vs. LR vs.

Ret. l.t. BA RS BA RS

D1
1 −0.04 0.00 −0.04 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00

D2
1 0.70 4.38 4.58 7.98
2 0.20 1.23 2.03 3.39
3 0.05 0.47 0.92 1.60

D3
1 3.19 21.13 9.58 20.64
2 2.80 13.02 6.77 12.87
3 1.45 7.63 5.09 10.74
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Table 6 varies the lead time for the replenishments of the
warehouse, and Table 7 varies the lead time for the reple-
nishments of the retailers. As the lead times increase, BA
becomes comparable to LR. RS consistently lags behind LR
and BA.

All the computational experiments were carried out in
MATLAB 7.0 on a Pentium D Desktop PC with 3.4 GHz
CPU and 1 GB RAM running Windows XP. For given
Lagrange multipliers, the CPU time required to compute
{V L

t (·|λ) : t ∈ T } is comparable to the CPU time required
to compute {V B

t (·) : t ∈ T }. This is not surprising, because
the optimality equations in (8) and (9) are similar to those
in (23) and (25). Therefore, BA and RS have comparable
CPU times. On the other hand, because LR solves problem
(17) by using subgradient optimization, the CPU time for LR
is considerably longer than the CPU time for BA. Table 8
shows the CPU times for LR and BA for the 21 test problems
in the base case and indicates that the CPU time for LR is
longer than the CPU time for BA by orders of magnitude.
Nevertheless, we emphasize that problem (17) is solved in
an offline manner, and long CPU times for LR should not
interfere with its practical appeal. Once we obtain the opti-
mal solution to problem (17), the CPU time required to make
the inventory replenishment decisions is essentially the same
for LR and BA, because both LR and BA make the inventory
replenishment decisions by solving problems (34)–(36) and
(37). Finally, Fig. 2 plots the CPU times for LR and BA as a
function of the length of the planning horizon and the number

Table 8. CPU times for LR and BA for the 21 test problems in the
base case.

CPU (sec.)

Prob. LR BA

(D1, 1) 351 0.50
(D1, 2) 357 0.47
(D1, 3) 361 0.48
(D1, 4) 368 0.51
(D1, 5) 375 0.55
(D1, 6) 362 0.41
(D1, 7) 369 0.44

(D2, 1) 491 0.73
(D2, 2) 495 0.52
(D2, 3) 479 0.50
(D2, 4) 496 0.52
(D2, 5) 510 0.53
(D2, 6) 513 0.63
(D2, 7) 507 0.72

(D3, 1) 376 0.54
(D3, 2) 344 0.42
(D3, 3) 350 0.39
(D3, 4) 353 0.52
(D3, 5) 353 0.49
(D3, 6) 359 0.45
(D3, 7) 351 0.40

of retailers. This figure indicates that the CPU times for both
LR and BA scale approximately linearly with the size of the
problem.

Figure 2. CPU times for LR and BA as a function of the length of the planning horizon and the number of retailers.
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Figure 3. The pairs [V L
1 (x1|λ̂)/V B

1 (x1), �LR/�BA] for all of the
400 test problems in our experimental setup.

In summary, BA and RS perform well under relatively sta-
tionary demand distributions. Indeed, BA and RS perform as
well as LR for all of our test problems under demand pro-
file D1. On the other hand, LR has the potential to provide
advantages when the demand distributions involve signifi-
cant nonstationarity. In addition to the nonstationarity of the
demand distributions, high holding cost at the warehouse,
high backlogging cost at the retailers, and large number of
retailers in the distribution system emerge as other factors
that may boost the performance of LR relative to BA and
RS. Another interesting observation from our computational
experiments is that the gap between the expected costs tends
to be significantly larger than the gap between the lower
bounds. This is worth mentioning because the policy perfor-
mance is more relevant than the quality of the lower bounds
from a practical perspective. Finally, we note that the gap
between the lower bounds on the value function obtained by
LR and BA seems to be a good predictor of when LR per-
forms better than BA. In particular, letting λ̂ be the optimal
solution to problem (17), and �LR and �BA respectively be
the expected costs incurred by LR and BA, Fig. 3 plots the
pairs [V L

1 (x1|λ̂)/V B
1 (x1), �LR/�BA] for all of the 400 test

problems in our experimental setup. This figure indicates that
whenever LR obtains a significantly tighter lower bound than
BA, it also incurs a significantly lower cost than BA.

9. CONCLUSIONS

In this work, we developed a new method for making the
inventory replenishment decisions in a distribution system.
Our method is based on formulating the problem as a dynamic
program and using Lagrange multipliers to relax the con-
straints that ensure the non-negativity of the shipments to the
retailers. Because the relaxation strategy of Federgruen and
Zipkin [14] is a special case of our method that is obtained
by setting all of the Lagrange multipliers to zero, our method
naturally improves the lower bound on the value function
that is obtained under the relaxation strategy. Computational
experiments indicate that we can tighten the lower bounds

on the value functions and improve the performance of the
inventory replenishment policies significantly by choosing
a good set of values for the Lagrange multipliers. Although
our method does not always perform better than the inventory
replenishment policies obtained under the balance assump-
tion of Clark and Scarf [8], it appears to be a viable alternative
when the balance assumption remains inadequate. From our
computational experiments, a distribution system with highly
nonstationary demand distributions, high holding cost at the
warehouse, high backlogging cost at the retailers, and large
number of retailers appears to be an ideal candidate for apply-
ing our method. Furthermore, the gap between the lower
bounds on the value function obtained by our method and the
balance assumption is a good predictor of when our method
would perform better than the balance assumption.

APPENDIX A: OMITTED RESULTS IN THE PAPER

Proof of Proposition 5 uses the next lemma.

LEMMA 7: If xφt <
∑

i∈I r̂it and the optimal solution to the problem

min
∑

i∈I∪{φ}
cit [yit − xit ] +

∑
i∈I∪{φ}

Lit (yit )

+
∑

i∈I∪{φ}
E

{
vB
i,t+1(yit − Dit )

}
(38)

subject to (2), (3) (39)

is the same as the optimal solution to problem (28)–(30), then we have
vB
it (xit ) = cit [r̂it − xit ] + Lit (r̂it ) + E{vB

i,t+1(r̂it − Dit )} for all i ∈ I.

PROOF: For all i ∈ I, we let r̃it be the largest optimal solution to prob-
lem (24). If we can show that r̃it ≥ xit for all i ∈ I, then r̃it is a feasible
solution to problem (23) for all i ∈ I and the result follows. To obtain a
contradiction, we assume that y1

t = {y1
it : i ∈ I ∪ {φ}} is the common

optimal solution to problem (28)–(30) and (38)–(39), but we have r̃i′t < xi′t
for some i′ ∈ I. The solution y2

t = {y2
it : i ∈ I ∪ {φ}} obtained by let-

ting y2
it = y1

it for all i ∈ I \ {i′}, y2
i′t = r̃i′t and y2

φt = y1
φt is feasible

to problem (28)–(30). Because the solution y1
t satisfies constraints (3), we

have r̃i′t < xi′t ≤ y1
i′t . Therefore, because r̃i′t is the largest minimizer of the

function ci′t [yi′t − xi′t ] + Li′t (yi′t ) + E{vB
i′ ,t+1(yi′t − Di′t )}, the objective

value obtained by the solution y2
t for problem (28)–(30) is strictly less than

the objective value obtained by the solution y1
t . This contradicts the fact that

y1
t is the optimal solution to problem (28)–(30). �

Proof of Proposition 6 uses the next lemma.

LEMMA 8: The optimal objective value of the problem

min
∑
i∈I

cit [yit − xit ] +
∑
i∈I

Lit (yit ) +
∑
i∈I

E
{
vB
i,t+1(yit − Dit )

}
(40)

subject to
∑
i∈I

yit ≤ xφt (41)

yit ≥ xit for all i ∈ I (42)
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is bounded from below by

�B
t (xφt ) +

∑
i∈I

min
yit ≥xit

{
cit [yit − xit ] + Lit (yit )

+ E
{
vB
i,t+1(yit − Dit )

}}
. (43)

PROOF: We let ỹt = {ỹit : i ∈ I} be the optimal solution to problem
(40)–(42). We define the new solution ŷt = {ŷit : i ∈ I} as ŷit = ỹit if
ỹit ≤ r̂it and ŷit = r̂it if ỹit > r̂it . Noting that

∑
i∈I ỹit ≤ xφt and ỹit ≥ ŷit

for all i ∈ I, the solution ŷt is feasible to problem (26)–(27). Evaluating the
objective function of problem (26)–(27) at the feasible solution ŷt , we have

�B
t (xφt ) ≤

∑
i∈I

1(ỹit ≤ r̂it )
{
cit [ỹit − r̂it ] + Lit (ỹit )

+ E
{
vB
i,t+1(ỹit − Dit )

} − Lit (r̂it ) − E
{
vB
i,t+1(r̂it − Dit )

}}
,

where 1(·) is the indicator function. On the other hand, because ỹit ≥ xit

for all i ∈ I, we have

min
yit ≥xit

{
cit [yit − xit ] + Lit (yit ) + E

{
vB
i,t+1(yit − Dit )

}}
≤ 1(ỹit ≤ r̂it )

{
cit [r̂it − xit ] + Lit (r̂it ) + E

{
vB
i,t+1(r̂it − Dit )

}}
+ 1(ỹit > r̂it )

{
cit [ỹit − xit ] + Lit (ỹit ) + E

{
vB
i,t+1(ỹit − Dit )

}}
for all i ∈ I. Adding the last two inequalities, it is easy to see that the expres-
sion in (43) provides a lower bound on

∑
i∈I cit [ỹit −xit ]+∑

i∈I Lit (ỹit )+∑
i∈I E{vB

i,t+1(ỹit − Dit )}, which is the optimal objective value of problem
(40)–(42). �

APPENDIX B: EXAMPLES THAT COMPARE THE
LOWER BOUNDS ON THE VALUE FUNCTIONS

In this section, we present two examples to show that we can have
maxλ≥0{V L

1 (x1|λ)} > V B
1 (x1) or maxλ≥0{V L

1 (x1|λ)} < V B
1 (x1) depending

on the problem parameters. Therefore, there does not exist a consistent order-
ing between the lower bounds computed under the Lagrangian relaxation
strategy and the balance assumption.

An Example with maxλ≥0{VL
1 (x1|λ)} > VB

1 (x1)

We consider a problem instance with I = {a, b}, T = {1}, ha1 = hb1 =
10, hφ1 = 5, ba1 = bb1 = 10, and ca1 = cb1 = cφ1 = 0. For the demand
random variables, we have Da1 = 10 and Db1 = 5 with probability 1. The
initial state variable is given by xa1 = 5, xb1 = 10, and xφ1 = 15. We show
that maxλ≥0{V L

1 (x1|λ)} > V B
1 (x1) for this problem instance.

Lagrangian Relaxation Strategy

We first consider the Lagrangian relaxation strategy. We let λ̂a1 = 0 and
λ̂b1 = 20, in which case problem (4)–(6) imply that

V L
1 (x1|λ̂) = min 5yφ1 − 20[yb1 − 10] − 5ya1 + 10[ya1 − 10]+

+ 10[10 − ya1]+ − 5yb1 + 10[yb1 − 5]+ + 10[5 − yb1]+
subject to ya1 + yb1 ≤ 15

yφ1 ≥ 15.

It is easy to check that ya1 = 0, yb1 = 15, and yφ1 = 15 is the optimal
solution to the problem above, and this solution yields the optimal objective
value of 100. Therefore, we have maxλ≥0{V L

1 (x1|λ)} ≥ V L
1 (x1|λ̂) = 100.

Clark and Scarf’s Balance Assumption

We consider the balance assumption next. By (23), we have

vB
a1(5) = min

ya1≥5
{−5ya1 + 10[ya1 − 10]+ + 10[10 − ya1]+} = −50.

The unconstrained minimizer of the objective function of the problem above
is 10, so that r̂a1 = 10. Similarly, we have

vB
b1(10) = min

yb1≥10
{−5yb1 + 10[yb1 − 5]+ + 10[5 − yb1]+} = 0

and r̂b1 = 5. Noting the argument in Case 1 in the proof of Proposition 5
and the fact that 15 ≥ r̂a1 + r̂b1, we have �B

1 (15) = 0. By (25), we have

vB
φ1(15) = min

yφ1≥15
{5yφ1} = 75.

Therefore, we obtain V B
1 (x1) = vB

a1(5)+vB
b1(10)+vB

φ1(15) = 25 < 100 ≤
maxλ≥0{V L

1 (x1|λ)}.
Because the demands are deterministic, the Lagrangian relaxation strategy

for this problem instance is equivalent to the standard Lagrangian relaxation
for deterministic optimization problems. This implies that the lower bound
computed under the Lagrangian relaxation strategy is tight and we have
maxλ≥0{V L

1 (x1|λ)} = V1(x1). On the other hand, noting that ya1 = 10
and yb1 = 5 is the only feasible solution that satisfies the constraints
ya1 + yb1 ≤ 15, ya1 ≥ 10, and yb1 ≥ 5, it is easy to check that the
optimal objective value of problem (1)–(3) for the first time period is 100.
If we drop the constraint ya1 + yb1 ≤ 15 from problem (1)–(3), then the
optimal objective value of problem (1)–(3) decreases to 25. Therefore, the
constraint ya1 + yb1 ≤ 15 is not redundant in problem (1)–(3), and because
we have xφ1 ≥ r̂a1 + r̂b1, (A.1) in the balance assumption does not hold.
This implies that Proposition 5 does not apply, and we do not necessarily
have V1(x1) = V B

1 (x1). We only have V1(x1) ≥ V B
1 (x1) by Proposition 6,

but the inequality turns out to be strict for this problem instance.

An Example with maxλ≥0{VL
1 (x1|λ)} < VB

1 (x1)

We consider a problem instance with I = {a, b}, T = {1, 2}, ha1 =
hb1 = ha2 = hb2 = 10, hφ1 = hφ2 = 5, ba1 = bb1 = ba2 = bb2 = 10,
ca1 = cb1 = cφ1 = 1, and ca2 = cb2 = cφ2 = 0. For the demand random
variables, we have Da1 = 0 with probability 0.5 and Da1 = 15 with proba-
bility 0.5, and Db1 = 10, Da2 = 10 and Db2 = 10 with probability 1. The
initial state variable is given by xa1 = 15, xb1 = 21, and xφ1 = 75. We show
that maxλ≥0{V L

1 (x1|λ)} < V B
1 (x1) for this problem instance.

Lagrangian Relaxation Strategy

We first consider the Lagrangian relaxation strategy. By (8), we have

vL
a2(xa2|λ) = min

ya2
{−λa2[ya2−xa2]−5ya2+10[ya2−10]++10[10−ya2]+}.

It is easy to check that the optimal objective value of the problem above is

vL
a2(xa2|λ) =

{−λa2[10 − xa2] − 50 if −15 ≤ λa2 ≤ 5
−∞ otherwise,

(44)

and the optimal solution is 10 when −15 ≤ λa2 ≤ 5. Because we are inter-
ested in solving the problem maxλ≥0{V L

1 (x1|λ)}, we only focus on the case
where −15 ≤ λa2 ≤ 5, which implies that r̂λ

a2 = 10.
Because the problem parameters for retailer b at the second time period

are the same as those for retailer a, vL
b2(xb2|λ) has the same form as (44),

and we have r̂λ
b2 = 10 when −15 ≤ λb2 ≤ 5.
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Using the same argument in Case 1 in the proof of Proposition 5, it is easy
to see that if xφt ≥ ∑

i∈I r̂λ
it , then we have �L

t (xφt |λ) = 0. In particular,
the unconstrained minimizer of the objective function of problem (10)–(11)
is {r̂λ

it : i ∈ I}. Furthermore, the solution {r̂λ
it : i ∈ I} is feasible to problem

(10)–(11) when we have xφt ≥ ∑
i∈I r̂λ

it . Therefore, the optimal solution to
problem (10)–(11) is {r̂λ

it : i ∈ I}, and we have �L
t (xφt |λ) = 0.

Because, we have xφ2 = xφ1 + qφ1 − Da1 − Db1 ≥ xφ1 − Da1 − Db1 ≥
75 − 15 − 10 ≥ 20 = r̂λ

a2 + r̂λ
b2 with probability 1, we can assume that

�L
2 (xφ2|λ) = 0 throughout. In this case, by (9), we have

vL
φ2(xφ2|λ) = min

yφ2≥xφ2
{5yφ2} = 5xφ2. (45)

Using (8) and (44), we have

vL
a1(15|λ) = min

ya1

{
[1 − λa1][ya1 − 15] − 5ya1

+ 1

2

{
10[ya1 − 0]+ + 10[0 − ya1]+ − λa2[10 − (ya1 − 0)] − 50}

+ 1

2
{10[ya1 − 15]+ + 10[15 − ya1]+ − λa2[10 − (ya1 − 15)] − 50

}}
.

One can check that the optimal objective value of the problem above is

vL
a1(15|λ) =




−2.5λa2 − 50 if −6 ≤ −λa1 + λa2 ≤ 4
15λa1 − 17.5λa2 + 10 if 4 ≤ −λa1 + λa2 ≤ 14
−∞ otherwise

(46)

and the optimal solution is 15 when −6 ≤ −λa1 + λa2 ≤ 4, and 0
when 4 ≤ −λa1 + λa2 ≤ 14. We note that there are multiple optimal
solutions when −λa1 + λa2 = 4. Therefore, we have r̂λ

a1 = 15 when
−6 ≤ −λa1 + λa2 ≤ 4 and r̂λ

a1 = 0 when 4 ≤ −λa1 + λa2 ≤ 14.
Similarly, we have

vL
b1(21|λ) = min

yb1
{[1 − λb1][yb1 − 21] − 5yb1 + 10[yb1 − 10]+

+ 10[0 − yb1]+ − λb2[10 − (yb1 − 10)] − 50}.

The optimal objective value of the problem above is

vL
b1(21|λ) =

{
11λb1 − 10λb2 − 111 if −6 ≤ −λb1 + λb2 ≤ 14
−∞ otherwise

(47)

and the optimal solution is 10 when −6 ≤ −λb1 + λb2 ≤ 14 so that r̂λ
b1 = 10

when −6 ≤ −λb1 + λb2 ≤ 14.
Using the same argument that we use for the second time period, because

we are interested in solving the problem maxλ≥0{V L
1 (x1|λ)}, we only focus

on the case where −6 ≤ −λa1 + λa2 ≤ 14 and −6 ≤ −λb1 + λb2 ≤ 14.
Noting that the largest value that r̂λ

a1 can take is 15, we always have
75 ≥ r̂λ

a1 + r̂λ
b1, and we can assume that �L

1 (75|λ) = 0 throughout. In
this case, by (9) and (45), we have

vL
φ1(75|λ)

= min
yφ1≥75

{
[yφ1 − 75] + 5yφ1 + 1

2
5[yφ1 − 10] + 1

2
5[yφ1 − 25]

}
= 662.5.

(48)

Because we have V L
1 (x1|λ) = vL

a1(15|λ) + vL
b1(21|λ) + vL

φ1(75|λ),
(46)–(48) imply that

V L
1 (x1|λ)

=




[−2.5λa2 − 50] if −6 ≤ −λa1 + λa2 ≤ 4
+ [11λb1 − 10λb2 − 111] + 662.5 −6 ≤ −λb1 + λb2 ≤ 14

−15 ≤ λa2 ≤ 5, −15
≤ λb2 ≤ 5

[15λa1 − 17.5λa2 + 10] if 4 ≤ −λa1 + λa2 ≤ 14
+ [11λb1 − 10λb2 − 111] + 662.5 −6 ≤ −λb1 + λb2 ≤ 14

−15 ≤ λa2

≤ 5, −15 ≤ λb2 ≤ 5.
(49)

Therefore, we can solve the problem maxλ≥0{V L
1 (x1|λ)} by solving two

linear programs and taking the maximum of the optimal objective values
obtained from these two linear programs. In this case, it is easy to check that
maxλ≥0{V L

1 (x1|λ)} = 572.5.

Clark and Scarf’s Balance Assumption

We consider the balance assumption next. By (23), we have

vB
a2(xa2) = min

ya2≥xa2
{−5ya2 + 10[ya2 − 10]+ + 10[10 − ya2]+}

= 5[xa2 − 10]+ − 50. (50)

The unconstrained minimizer of the objective function of the problem above
is 10 so that r̂a2 = 10. Because the problem parameters for retailer b at the
second time period are the same as those for retailer a, vB

b2(xb2) has the same
form as (50) and we have r̂b2 = 10. Noting the argument in Case 1 in the
proof of Proposition 5 and the fact that xφ2 = xφ1 + qφ1 − Da1 − Db1 ≥
xφ1 −Da1 −Db1 ≥ 50 ≥ 20 = r̂a2 + r̂b2 with probability 1, we can assume
that �B

2 (xφ2) = 0 throughout. By (25), we have

vB
φ2(xφ2) = min

yφ2≥xφ2
{5yφ2} = 5xφ2. (51)

Using (23) and (50), one can check that

vB
a1(15) = min

ya1≥15

{
[ya1 − 15] − 5ya1

+ 1

2

{
10[ya1 − 0]++10[0−ya1]++5[ya1−10]+−50

}
+ 1

2

{
10[ya1 − 15]+ + 10[15 − ya1]+

+ 5[(ya1 − 15) − 10]+ − 50
}} = −37.5

vB
b1(21) = min

yb1≥21

{[yb1 − 21] − 5yb1 + 10[yb1 − 10]+ + 10[10 − yb1]+

+ 5[(yb1 − 10) − 10]+ − 50
}

= −40.

The unconstrained minimizers of the objective functions of the two problems
above are respectively 15 and 10, so that r̂a1 = 15 and r̂b1 = 10. Because
we have r̂a1 + r̂b1 = 25 ≤ 75 = xφ1, we have �B

1 (xφ1) = 0 by the argument
in Case 1 of Proposition 5. Finally, by (25) and (51), we have

vB
φ1(75)

= min
yφ1≥75

{
[yφ1 − 75] + 5yφ1 + 1

2
5[yφ1 − 10] + 1

2
5[yφ1 − 25]

}
= 662.5.
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Therefore, we obtain V B
1 (x1) = vB

a1(15) + vB
b1(21) + vB

φ1(75) = 585 >

572.5 = maxλ≥0{V L
1 (x1|λ)}.

We also note that V L
1 (x1|0) = 501.5 < 585 = V B

1 (x1) by (49). Therefore,
the lower bound computed under the relaxation strategy of Federgruen and
Zipkin [14] is different from that computed under the balance assumption.

It turns out that the balance assumption is satisfied for this problem
instance, which implies that the lower bound computed under the balance
assumption is tight, and we have V B

1 (x1) = V1(x1) by Proposition 5. To
see this, we first note that we can assume without loss of generality that
xa2 ≤ 25, because the total demand at retailer a does not exceed 25 with
probability 1, and we would keep the excess inventory at the warehouse
rather than at the retailer. Similarly, we can assume without loss of gen-
erality that xb2 ≤ 20. We also have xφ2 = xφ1 + qφ1 − Da1 − Db1 ≥
xφ1 − Da1 − Db1 ≥ 50 ≥ 20 = r̂a2 + r̂b2 with probability 1. If
we solve problem (1)–(3) for the second time period without the con-
straint ya2 + yb2 ≤ xφ2, then one can check that the optimal solution
is ya2 = max{xa2, 10}, yb2 = max{xb2, 10}, and yφ2 = xφ2. Therefore,
because we have max{xa2, 10} + max{xb2, 10} ≤ 25 + 20 ≤ 50 ≤ xφ2,
the constraint ya2 + yb2 ≤ xφ2 is redundant in problem (1)–(3). Because
we have xφ2 ≥ r̂a2 + r̂b2 and the constraint ya2 + yb2 ≤ xφ2 is redundant
in problem (1)–(3), the balance assumption is satisfied for the second time
period. Similarly, if we solve problem (1)–(3) for the first time period with-
out the constraint ya1 + yb1 ≤ xφ1, then one can check that the optimal
solution is ya1 = 15, yb1 = 21, and yφ1 = 75. Therefore, because we have
15+21 ≤ 75 = xφ1, the constraint ya1 +yb1 ≤ xφ1 is redundant in problem
(1)–(3). Because we have xφ1 = 75 ≥ 25 = r̂a1 + r̂b1 and the constraint
ya1 + yb1 ≤ xφ1 is redundant in problem (1)–(3), the balance assumption is
satisfied for the first time period. On the other hand, the inventory position
at retailer a at the beginning of the second time period depends on the real-
ization of the demand at the first time period. This implies that the trajectory
of the state variable {xt : t ∈ T } depends on the sample path, and the lower
bound obtained by the Lagrangian relaxation strategy is not necessarily tight.
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