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Multi-Item auctions are of interest to companies that run online auctions. In

this dissertation, I examine auctions involving multiple items in three contexts.

The first context involves revenue improvement in the simultaneous auctions of

multiple items when the number of bidders and the number of bids for each item are

known. In this work, the lever for revenue improvement I examine is item-bundling.

Specifically, I study the problem of bundling items together in a manner that im-

proves the seller’s revenue prior to auctioning them off in simultaneous second-price

auctions. I propose an auction format, called the Pairwise Bundle Auction (PBA),

that elicits truthful bids from bidders for the items on sale. I provide a mathematical

formulation that computes the revenue-maximizing bundling of items in response to

the bids submitted. My work on identifying a revenue-maximizing bundling of items

is of use to companies that run online auctions as a core part of revenue-generation.

Examples include companies such as Google or Facebook that run auctions to sell

advertisement slots.

The second context involves minimizing the cost of uncertainty in the simulta-

neous auctions of multiple items when the number of bidders and the number of

bids for each item are uncertain. In this work, the lever for revenue improvement
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I examine is limiting item supply. When a set of items is put out for auction by a

seller, the uncertainty in the bidders’ participation decisions can result in adverse

outcomes for the seller. I refer to this as the “cost of uncertainty”. Therefore, the

seller would want to restrict the set of items put up for sale to minimize the cost of

uncertainty. I formulate the problem of identifying an optimal subset of items to put

up for simultaneous auction out of a master set of items. This optimal subset mini-

mizes the maximum regret arising from the uncertainty in the bidders’ participation

decisions. Our results focus on the computational complexity of this problem. My

work on identifying a maximum regret minimizing subset of items to put up for sale

is of use to companies that auction off items on online platforms (such as eBay)

where participation decisions are uncertain.

The third context involves maximizing the total welfare from item allocations

to bidders when allocative externalities are involved. Under the externality model

I consider, the value of an item to a bidder depends on the allocation of the other

items to the other bidders. I identify a class of valuation functions called the Pair-

wise Additive Negative Value Externalities (PANE) with interesting properties. I

show that the PANE class of valuation functions correspond to anonymous and sim-

ple pricing structures that support a social-welfare-maximizing allocation of items

to bidders. Like the first context, my work on identifying this class of valuation

functions is of use to companies that run online auctions as a core component of

revenue generation such as Google or Facebook.
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Chapter 1

Introduction

There has been a massive growth of research in multi-item auction design in recent

years. Many of the problems studied are of importance to the business of online

auctions. Examples of online include those of Facebook’s advertisement slot auctions

and those of eBay’s auctions whose transactions generate revenues to the tune of

billions of dollars.

Auction design primarily addresses two objectives of an auctioneer: piq maximiz-

ing the auctioneer’s revenue, and piiq maximizing the social welfare of the bidders

from the allocation of items to the bidders.

In this thesis, I address important questions around auction designs for maxi-

mizing the auctioneer’s revenue and for maximizing the social welfare of the bidders

in contexts that have not been explored in literature. In §1.1, I discuss in detail the

broad areas of research in multi-item auction design that my thesis has focused on. I

explain the importance of my work for business and for research and discuss how my

thesis helps answer some pressing questions in multi-item auction design. In §1.2,

I discuss the specifics of my contribution to the literature on revenue maximization

and social-welfare maximization. I summarize the contributions of my papers de-

tailed in Chapters 3, 4, and 5, and conclude my work with a brief discussion on the

future research for which my thesis has laid out a path.

12



1.1 Overview of Research Areas

1.1.1 Revenue Improvement for Multi-Item Auctions

Finding a revenue-maximizing sales procedure for the sale of multiple items to mul-

tiple bidders is an important goal in many business contexts. For example, gov-

ernments across the world auction spectrum and natural resources, and advertising

platforms auction off advertisement slots. In both these instances, there are several

items and several buyers interested in acquiring one or more of the items. In all

these cases, identifying a sales procedure (or a mechanism) that can maximize the

seller’s revenue is an important problem. Mechanism design is an approach taken

to design a set of rules meant to be followed by agents to achieve a specific goal.

Thus, designing a revenue-maximizing mechanism would entail a study of incentives

with approaches to aligning the incentives with the objectives of the seller. Auction

design is an important subclass of mechanism design. The aim of auction design

is to construct a set of rules that buyers are expected to compete under in order

to acquire one or more of the items on sale. In this regard, identifying an auction

design that maximizes the revenue of the seller is of business importance.

An open problem in multi-item auction design is that of designing a revenue-

maximizing mechanism for multi-item auctions. It is an open problem because,

thus far, there has been no characterization of a revenue-maximizing mechanism

even for a problem instance with two items and two bidders. The classic work by

Myerson (1981) characterizes the optimal revenue-maximizing auction for a single-

item setting when the distribution function of the bidders’ valuations are known.

Nisan et. al. (2007) presents a characterization of the result of Myerson (1981)

to multiple copies of a single item. In addition to this, the works of Avery et. al.

(2000) and Armstrong (2000) provide a characterization of the multi-item revenue-

maximizing auction to some special cases of the two-item two-bidder setting. The

work of Daskalakis (2015) provides some insight into the characterization of the

optimal mechanism. It shows how some features of the optimal mechanism include

13



the following: piq item bundling, piiq randomization, and piiiq complex menus.

Some of the above features, namely randomization and generating complex

menus, are often not possible in practice. Randomization involves assigning a winner

based on a lottery the probabilities of whose outcomes are determined in a certain

manner. Offering the bidders complex menus is not possible in practice, generally

speaking, because the number of options included in the menu could be uncountable.

As a result, even if the optimal auction were to be somehow fully characterized, its

implementation in practice would be difficult. Thus, the problem of characterizing

the revenue-maximizing mechanism for the sale of multiple items is complex. Owing

to the complexity of designing the revenue-maximizing multi-item auction, litera-

ture has often focused on examining suboptimal but simpler mechanisms that would

yield high revenue over existing mechanisms used in practice for the sale of multiple

items.

Bundling is one approach towards revenue improvement. Bundling does not

depend on randomization, does not rely on the need for complex menus, and is

used in practice as a means to improve revenue in sales. There are several pieces

of work in literature that study bundling as a means of improving revenue. Such

work includes those of Adams et. al. (1976), Guiltinan (1987), Hanson et. al.

(1990), Hitt et. al. (2005), Wu et. al. (2008), Chu et. al. (2011), Palfrey (1983),

Sandholm et. al. (2004), Jehiel et. al. (2007). As a result, implementing bundling

as a lever to improve revenue is not difficult to implement in practice.

Another avenue for revenue improvement is that of offering a subset of the set

of items on sale instead of all items on sale. This is known in literature as assort-

ment optimization. The set of items on offer affect the buyers’ purchasing decisions,

and optimizing this offer set to maximize revenue is often a goal of a seller. Like

bundling, this avenue for revenue improvement does not depend on randomization

or complex menus. It can be implemented easily in practice. Literature on assort-

ment optimization focus on settings where there is a single buyer with the aim of

maximizing expected revenue. In the case of multiple buyers, as is the case with

14



competitive bidding, literature has not studied the problem of optimizing the of-

fer set. In my thesis, I examine the question of identifying an offer set under a

simultaneous auction setting.

In conclusion, I discuss the two avenues of revenue improvement in the context

of multi-item auctions in Chapters 3 and 4 of this thesis. Chapter 3 discusses the

problem of identifying an optimal bundling in a VCG auction setting. Chapter

4 discusses the problem of optimizing an offer set in a second-price simultaneous

auction setting.

1.1.2 Social-Welfare-Maximizing Allocation for Multi-Item

Auctions

In many business contexts, maximizing the social welfare of the buyers arising from

an allocation is of importance. This objective is often in conflict with the objective

of revenue maximization. For example, it is important for advertising platforms

hosting advertisements to try and ensure that bidders who value an advertisement

slot the most are allotted the advertisement slot. This way, the auctioneer can

ensure that the advertisers continue to use the services of the platform in the long

term instead of considering a competitor. This is because revenue gains are often

brought about by extracting surplus from the advertisers, and frequently favoring

some advertisers as part of a revenue-maximizing auction design may hurt the long

term revenue of a platform. For this reason, the objective maximizing social welfare

is an important goal of the auctioneer.

For this reason, literature has paid a lot of attention to business contexts where

the goal of auction design is to maximize the social welfare of the bidders arising

from the allocation of items. An important class of auction mechanisms that always

result in allocations that maximize the total social welfare of the bidders is the

Vickrey-Clarke-Groves auction (VCG). While the VCG can be used to maximize

social welfare, it is a direct mechanism, and would require complete information

revelation to the auctioneer. On the other hand, indirect mechanisms are preferred
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in practice as they don’t require much information revelation, and also because

the computational burden on the bidders is low. Thus, indirect mechanisms that

result in a social-welfare-maximizing outcome is of importance for study. Literature

has examined a number of settings where the social-welfare-maximizing allocation

is obtained through indirect mechanisms. Such work includes those of Cramton

(1998), de Vries et. al. (2007), Demange et. al. (1986), Bikhchandani et. al.

(2002), Parkes (2001) and Candogan et. al. (2015) and the references therein.

The pieces of work in the above listed references (and the references therein)

examine the problem of designing indirect mechanisms for multi-item sales for a

variety of classes of the bidders’ valuation functions. However, to the best of my

knowledge, none of them have studied the problem of designing indirect mechanisms

when the bidders’ valuation functions include allocative externalities, i.e., settings

where a bidder’s valuation of an allocation depends not just on the items he has

been allocated, but also on the allocation of items to the other bidders.

I attempt to bridge this gap in literature by examining the question of designing

indirect mechanisms for social-welfare-maximization in a setting where the bidders’

valuation functions also consider allocative externalities. This study is detailed in

Chapter 5 of this thesis.

1.2 Contributions to Literature

In this section, I summarize the contributions the chapters of my thesis makes to

literature in the area of designing auctions for revenue-enhancement in multi-item

auctions and the area of designing auction mechanisms for social-welfare maximizing

allocation of items. My contributions to literature are titled as follows:

1. Optimal Bundling for Truthful Auctions

2. Optimizing Offer Sets for Multi-Item Simultaneous Auctions

3. Auction Mechanisms for Social-Welfare-Maximizing Allocations with Pairwise-

Additive Negative Value Externalities

16



1.2.1 Optimal Bundling for Truthful Auctions

In this chapter, we examine the question of computing the optimal bundling of items

if these bundles were to be sold using a VCG auction. In this regard, I propose

a class of truthful auctions called the PBA. The auctioneer can use the PBA to

compute the optimal bundling of items after the bidders reveal their valuations of

the items to the auctioneer. I propose a binary integer programming formulation

to compute the optimal bundling. This binary integer program is obtained after

a series of simplifications to a more complex binary cubic optimization problem. I

then present results from numerical runs and discuss insights from them. Apart from

these results, I present a class of linearly-constrained binary quadratic optimization

problems whose relaxations would still provide integral solutions at optimality.

1.2.2 Optimizing Offer Sets for Multi-Item Simultaneous

Auctions

I consider the auctioneer’s problem of optimizing the set of items to put out for

auction when the auction is a multi-item simultaneous second-price auction. Here, I

highlight the fact that the uncertainty in the bidders’ participation decisions (for a

given set of items put out for auction) can impact the auctioneer’s revenue from the

auction. I illustrate how putting up a certain set of items can give the auctioneer a

very high best-case expected revenue or a very low worst-case revenue. Therefore,

it is necessary that the auctioneer choose a subset of items keeping in mind this

uncertainty. In this regard, I use a minimax regret criterion to identify an optimal

subset of items to put up for sale. To the best of our knowledge, there is no prior

work of this form in literature.
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1.2.3 Auction Mechanisms for Social-Welfare-Maximizing

Allocations with Pairwise-Additive Negative Value Ex-

ternalities

I examine a class of valuation functions that captures negative externalities in al-

locations. The social welfare maximization problem under this class of valuation

functions is a binary quadratic program with binary linear constraints. I show that

the optimal solution to this optimization problem is binary even after the binary con-

straints are relaxed. I also show that the relaxed program exhibits strong duality.

With these results, I show that under these valuation functions, a social-welfare-

maximizing allocation of items to bidders can be brought about using simple and

anonymous item prices1. Finally, I propose two auction formats, a direct mech-

anism and an indirect mechanism, that terminate at a social-welfare-maximizing

allocation.

I discuss, in detail, the importance of identifying valuation functions for which

simple and anonymous items exist in Chapter 2. Chapter 2, therefore, may be a

prerequisite for readers not familiar with auction theory literature in multi-item

auction settings.
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Chapter 2

Auction Design and Linear

Programming

2.1 Linear Programming Theory

The following is a standard representation of a linear programming problem. I call

this problem P.

P: max cTx (2.1)

subject to Ax ď b (2.2)

x ě 0 (2.3)

Here, A is an mˆ n matrix with real values, c is an n´dimensional vector, b is

anm´dimensional vector, and x is an n´dimensional vector. Problem P, the primal

problem, is to compute a solution x that maximizes cTx subject to the constraints.

The dual problem D of problem P is the following problem.

D: minpTb (2.4)

subject to ATp ě c (2.5)

19



p ě 0 (2.6)

Here, p is anm´dimensional vector. Problem D, the dual problem, is to compute

a solution p that minimizes pTb subject to the constraints.

Let x˚ be the optimal solution to P and let p˚ be the optimal solution to D.

According to the weak duality theorem, cTx˚ ď p˚Tb. In other words, the dual

objective function value at optimality is an upper bound to the primal objective

function value at optimality. According to the strong duality theorem, the primal

and the dual optimal objective values are optimal if and only if the objective value

of the primal equals the objective value of the dual. Thus, if x and p optimize P

and D respectively, then cTx “ pTb.

The strong duality theorem can also be expressed in terms of conditions known

as the complementary slackness conditions. The primal complementary slackness

conditions can be stated as follows:

xT pATp ´ cq “ 0 (2.7)

or, in other words, xi ą 0 ðñ AT
i p “ ci where xi is the i

th component of vector

x, Ai is the ith column of matrix A, and ci is the ith component of vector c. The

dual complementary slackness conditions can be stated as follows:

pT pAx ´ bq “ 0 (2.8)

or, in other words, pj ą 0 ðñ ajx “ bj where pj is the j
th component of vector

p, aj is the jth row of matrix A, and bj is the jth component of vector b. Thus,

if x and p optimize P and D respectively, then x and p satisfy the primal and

dual complementary slackness conditions, or simply, the complementary slackness

conditions.
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2.2 Winner Determination in Simultaneous Auc-

tions with Additive Valuations

In the context of auctions with one or more indivisible items, where an item can only

go to one bidder, a goal of the auctioneer is to decide the winners of the auctions

using a metric. One metric could be to maximize the welfare of the bidders resulting

from the allocation. Let L be the set of items, and let B be the set of bidders. Let

bidder i value item a at an amount uai ą 0. Since the auctioneer’s goal is to maximize

the welfare of the bidders resulting from the allocation, the auctioneer solves the

following integer program IP.

IP: max
ÿ

iPB

ÿ

aPL

uai x
a
i (2.9)

subject to
ÿ

iPB

xai “ 1 @ a P L (2.10)

xai P t0, 1u @i P B @ a P L (2.11)

The objective function maximizes the total utility of the bidders from an alloca-

tion of items. Here, xai “ 1 if bidder i is assigned item a and xai “ 0 if bidder i is

not assigned item a. The first constraint models the fact that an item a can only be

assigned to one bidder. The second constraint constrains the decision variables to

binary values. The solution to IP is as follows: If ia “ argmaxjPB u
a
j , then x

a
ia “ 1

for all a P L. Else, xaia “ 0. In other words, the bidder who has the highest value

for item a, a P L, wins item a.

Consider the following linear program constructed from relaxing the binary in-

teger constraints in IP. I call this problem LP.

LP: max
ÿ

iPB

ÿ

aPL

uai x
a
i (2.12)

subject to
ÿ

iPB

xai “ 1 @ a P L ¨ ¨ ¨ ppaq (2.13)

xai ď 1 @i P B @ a P L ¨ ¨ ¨ pρai q (2.14)
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xai ě 0 @i P B @ a P L (2.15)

where pa and ρai are a Lagrangean multipliers associated with the respective

constraints. Because the entries in the right-hand-side vector of LP are integers,

and because the constraint matrix is Totally Unimodular, solving LP will yield a

solution xa˚
i for all i P B, a P L such that xa˚

i is either 0 or 1. The dual of LP can

be constructed as follows. I call this problem DP.

DP: min
ÿ

aPL

pa `
ÿ

iPB

ÿ

aPL

ρai (2.16)

subject to uai ´ pa ď ρai @i P B, a P L ¨ ¨ ¨ pxai q (2.17)

ρai ě 0 @i P B, a P L (2.18)

Since the problem LP is degenerate, the dual has multiple optimal solutions.

Two such optimal solutions are of interest from the perspective of auction theory

which we shall discuss below: Firstly, note that at optimality of DP, we have that

ρai “ maxtuai ´ pa, 0u. The term ρai can be regarded as the surplus of bidder i w.r.t

a. As I shall show, if ρai ě 0, then bidder i is assigned item a. If ρai ď 0, then bidder

i is not assigned item a.

Case 1 (Outcome corresponds to a first-price auction). If bidder i reported

his true valuation for item a, i.e., uai , as a bid, then a possible solution to the dual

variable pa for all a P L could be

pa˚
“

$

’

’

&

’

’

%

uaia if ia “ argmaxjPB u
a
j

0 otherwise

with ρai “ 0 for all i P B, a P L. Thus, the price of item a, i.e., pa˚ is equal to the

highest bid for item a. Item a is assigned to the highest bidder and he pays his bid

for item a. This corresponds to the outcome of a first price auction.

Case 2 (Outcome corresponds to a second-price auction). If bidder i reported

his true valuation for item a, i.e., uai , as a bid, then a possible solution to the dual
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variable pa for all a P L could be

pa˚
“

$

’

’

&

’

’

%

uaka if ka “ arg second-highestjPBu
a
j

0 otherwise

with ρai ą 0 if ia “ argmaxjPB u
a
j and ρai “ 0 otherwise for all a P L. The price of

item a, i.e., pa˚ is equal to the second-highest value for item a. Item a is assigned to

the bidder with the highest value for item a, and this bidder pays the second-highest

valuation for item a as the price. This corresponds to the outcome of a second price

auction.

The second-price auction interpretation is particularly interesting. If ρai ą 0, it

implies, from the complementary slackness conditions, that xai “ 1, and if ρai “ 0,

it implies, from the complementary slackness conditions, that xai “ 0. Thus, the

bidder i who wins item a, i.e., xai “ 1, then his surplus ρai “ uai ´ pa is positive. If

bidder i does not win item a, i.e., xai “ 0, then his surplus is maxtuai ´ pa, 0u “ 0

since if xai “ 0 ðñ uai ´ pa ď 0 by the complementary conditions.

Thus, from the discussion above, the complementary slackness conditions rep-

resent the vector of item prices and allocations that can be regarded as outcomes

of simultaneous second-price auctions. They are also known as the market-clearing

conditions.

The prices pa, a P L are known as equilibrium prices since they support feasible

social-welfare maximizing allocations without dividing the items. In this setting,

such prices exist because LP has integral optimal solutions. If, hypothetically-

speaking, LP did not have integral solutions, then the prices pa, a P L that support

feasible social-welfare maximizing allocations without dividing the items would not

exist. The fact that the bidders’ valuations for multiple items are additive con-

tributed to the existence of such prices. As we shall see next, if the bidders’ valu-

ations for multiple items were non-additive, prices of the form pa, a P L would not

exist, i.e., prices at the level of an item would not exist.

Note. In auction theory literature, prices that are set at the item level and are
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not dependent on the identity of the bidder are called simple and anonymous prices

respectively.

2.3 Winner Determination when Valuations are

Non-Additive

Let Ω be the power set of the item set L. Let the value of a bundle S of items to

bidder i be vipSq. Let xipSq “ 1 if bidder i receives item set S, and let xipSq “ 0 if

bidder i does not receive item set S. The allocation that results in maximizing the

total utility of the bidders is the obtained by solving the following binary integer

program I call NAIP.

NAIP: max
ÿ

SPΩ

ÿ

iPB

vipSqxipSq (2.19)

subject to
ÿ

SPΩ

xipSq ď 1 @ i P B (2.20)

ÿ

iPB

ÿ

SPΩ:aPS

xipSq ď 1 @ a P L (2.21)

xipSq P t0, 1u @ S P Ω @ i P B (2.22)

The first constraint ensures that bidder i only gets one bundle of items from Ω.

The second constraint ensures that an item a is only present in one of the bundles

that is allocated to the bidders. The third constraint ensures that the decision

variables involved are binary-valued.

I now discuss how modifications to the problem NAIP can provide insight into

the nature of the equilibrium pricing structures for non-additive bundle valuations.

This analysis was presented originally in Bikhchandani et. al. (2002). Here, I

present the insights of Bikhchandani et. al. (2002) without going into the details.
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2.3.1 First-order Linear Programming Formulation

The first-order linear programming formulation corresponding to NAIP is constructed

by simply relaxing the integrality constraints on the variables xipSq, i P B, S P Ω. I

call the following linear program FO-NALP.

FO-NALP: max
ÿ

SPΩ

ÿ

iPS

vipSqxipSq (2.23)

subject to
ÿ

SPΩ

xipSq ď 1 @ i P B ¨ ¨ ¨ pqiq (2.24)

ÿ

SPΩ:aPS

xipSq ď 1 @ a P L ¨ ¨ ¨ ppaq (2.25)

xipSq ě 0 @ S P Ω @ i P B (2.26)

Consider the dual of FO-NALP, which I call D-FO-NALP, presented as below:

D-FO-NALP: min
ÿ

iPB

qi `
ÿ

aPL

pa (2.27)

subject to qi ě vipSq ´
ÿ

aPS

pa @ i P B, S P Ω (2.28)

qi ě 0 @ i P B (2.29)

pa ě 0 @ a P L (2.30)

At optimality of D-FO-NALP, qi “ maxtvipSq ´
ř

aPS p
a, 0u can be understood

as the utility of bidder i if he is assigned set S and if he pays a price pa for each item

a P S he receives. The term
ř

aPL p
a is the auctioneer’s revenue. However, unlike

formulation LP in §2.2, the linear program FO-NALP does not possess the inte-

grality property in general. Therefore, FO-NALP does not solve NAIP in general.

Therefore, prices of the form pa, a P L, i.e., linear prices at the item level cannot

bring about an allocation of indivisible items in a manner where the total welfare of

all bidders is maximized when bidder valuations of a set S are non-additive. As I

shall further discuss, pricing will need to be more complex (i.e., prices may have to

depend on the identity of the bidders and would have to be set at the level of item
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sets instead of individual items) in order to bring about a social-welfare-maximizing

and feasible allocation of the indivisible items.

2.3.2 Second-order Linear Programming Formulation

The second-order linear programming formulation corresponding to NAIP is con-

structed by modifying the constraint space of problem FO-NALP. Let Ψ be the set

of all partitions of item set L. I call the following linear program SO-NALP.

SO-NALP: max
ÿ

SPΩ

ÿ

iPS

vipSqxipSq (2.31)

subject to
ÿ

SPΩ

xipSq ď 1 @ i P B ¨ ¨ ¨ pqiq (2.32)

ÿ

iPB

xipSq ď
ÿ

ψPΨ:SPψ

ypψq @ S P Ω ¨ ¨ ¨ pλSq (2.33)

ÿ

ψPΨ

ypψq ď 1 ¨ ¨ ¨ pπq (2.34)

xipSq ě 0 @ S P Ω @ i P B (2.35)

The dual of SO-NALP, that I call D-SO-NALP, is as below:

D-SO-NALP: min
ÿ

iPB

qi ` π (2.36)

subject to qi ě vipSq ´ λS @ i P B, S P Ω (2.37)

π ě
ÿ

SPψ

λS @ ψ P Ψ (2.38)

qi ě 0 @ i P B (2.39)

λS ě 0 @ S P Ω (2.40)

π ě 0 (2.41)

At optimality of D-SO-NALP, λS, S P Ω is the price of bundle S, and qi “
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maxtvpSq ´ λS, 0u is the surplus of bidder i for bundle S, and π is the auctioneer’s

surplus. However, the linear program SO-NALP does not possess the integrality

property. As a result, the SO-NALP does not solve NAIP. Therefore, the dual

prices λS, S P Ω do not support a feasible allocation of indivisible items that results

in social-welfare maximization. Thus, a feasible allocation of indivisible items that

results in social-welfare maximization is not supported even when the prices are of

the form λS, S P Ω, i.e., the prices are set at the level of item subsets. As we shall

see, more complex pricing at the level of both item subsets and the identity of the

bidders is needed.

2.3.3 Third-order Linear Programming Formulation

Let θ be a feasible allocation of item bundles to bidders. Let Θ be the set of all

feasible allocations of item bundles to bidder. The third-order linear programming

formulation is constructed as follows. I call this problem TO-NALP.

TO-NALP: max
ÿ

SPΩ

ÿ

iPB

vipSqxipSq (2.42)

subject to
ÿ

SPΩ

xipSq ď 1 @ i P B ¨ ¨ ¨ pqiq (2.43)

xipSq ď
ÿ

θPΘ:pi,SqPθ

ypθq @ i P B, S P Ω ¨ ¨ ¨ pδipSqq (2.44)

ÿ

θPΘ

ypθq ď 1 ¨ ¨ ¨ pπq (2.45)

xipSq ě 0 @ i P B, S P Ω (2.46)

ypθq ě 0 @ θ P Θ (2.47)

The first, second, and third constraints ensure that an item is not allocated to

more than one bidder. The following linear program is the dual of TO-NALP. I call

this D-TO-NALP.
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D-TO-NALP: min
ÿ

iPB

qi ` π (2.48)

subject to qi ě vipSq ´ δipSq @ S P Ω (2.49)

π ě
ÿ

θPΘ:pi,SqPθ

δipSq @ θ (2.50)

qi ě 0 @ i P B (2.51)

δipSq ě 0 @ i P B, S P Ω (2.52)

At optimality of D-TO-NALP, we have that qi “ maxtvipSq ´ δipSq, 0u. Here,

a price of δipSq is charged to bidder i who is assigned set S. π is the auctioneer’s

revenue. Linear program TO-NALP has integral solutions at optimality. There-

fore, TO-NALP solves problem NAIP. Therefore, complex prices that are depen-

dent on the item bundles and the identities of the bidders result in a social-welfare-

maximizing allocation of the non-divisible items. Thus, prices that achieve a social-

welfare-maximizing allocation of items always exist. However, the structure of such

prices can be complex. Complex pricing structures make the practical implemen-

tation of an auction difficult if the aim of this auction is to discover such prices

(and end with a social-welfare-maximizing allocation of items to bidders). Since

the complexity of equilibrium prices is dependent on the nature of the valuation

functions of the bidders, it is of academic interest to identify classes of valuation

functions for which social-welfare-maximizing allocations are supported by simple

price structures.

2.4 Computationally Tractable Instances of the

Winner Determination Problems

The winner determination problem of the form NAIP equivalent to the maximum

weighted set packing problem. As a result, such problems are computationally hard

to solve in general. However, under certain conditions on the valuation functions
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vipSq for all S P Ω for all i P B, it is possible to solve the winner determination

problem in polynomial time. For example, if the valuation function vipSq were

such that problem NALP ´ a relaxation of the binary constraints on NAIP ´

had integral solutions at optimality, then the winner determination problem can be

solved in polynomial time. Other conditions, such as restrictions on the sizes or

the structures of the bids, can also result in computationally tractable computation.

de Vries and Vohra (2003), Rothkopf (1998), and Candogan et. al. (2015)

present several such conditions that lead to computationally tractable solutions to

the winner determination problems.

2.5 Primal-Dual Algorithms for the Winner De-

termination Problems

Primal-dual algorithms are a broad class of algorithms for combinatorial optimiza-

tion problems. The problems are formulated in their primal and dual forms, and

a primal-dual algorithm searches for primal and dual feasible solutions that sat-

isfy the complementary slackness conditions. The broad structure of a primal-dual

algorithm is as follows. A primal-dual algorithm

1. identifies a feasible dual solution and,

2. computes a feasible primal solution that minimizes violations of the comple-

mentary slackness conditions for the given feasible dual solution.

3. If the complementary slackness conditions are satisfied, the algorithm termi-

nates.

4. If the complementary slackness conditions are not satisfied, the algorithm

identifies a new feasible dual solution towards an optimal solution using in-

formation from the current primal solution and the complementary slackness

conditions, and continues from step 2 with the updated dual solution.
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Primal dual algorithms can be interpreted as a market mechanism. Step 1 can

be interpreted as the auctioneer initializing a set of item prices. Step 2 can be

interpreted as the bidders expressing their interest in the items for these prices.

Step 3 can be interpreted checking if the market has cleared for these prices, i.e., if

the bidders’ interest in the items is such that a feasible allocation of items is possible

at these prices. Step 4 can be interpreted as the auctioneer changing item prices in

response to the interest expressed by the bidders to the old prices in a manner that

leads to market clearance.
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Notes

1Simple prices refer to prices set at the level of each item, and anonymous refer to the fact that

item prices do not depend on the identities of the buyers.
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Chapter 3

Optimal Bundling for Truthful

Auctions

3.1 Introduction

Firms use online advertisements to promote their brands, products, and services

on the Internet. They place their advertisements on various online communica-

tion channels such as social media websites (e.g., Facebook, Twitter, Instagram),

electronic mails (Gmail), search engine webpages (e.g., Google’s sponsored search),

digital display advertising (e.g., advertisements on online news articles), and mobile

advertising (e.g., in-app advertisements). Firms (henceforth referred to as advertis-

ers) make payments to online platforms (such as Google and Facebook) to earn the

rights to display their advertisements on the platforms. Auctions are commonly-

used sale mechanisms for the sale of advertising positions on online media. The

Vickrey-Clarke-Groves (VCG) (used by Facebook and Yandex2), and the General-

ized Second-Price (GSP) (used by Google) are well-known auction formats for the

sale of online advertising space (Varian et. al. 2014, Edelman et. al. 2007). We

briefly review the working of the two mechanisms now.

Vickrey-Clarke-Groves (VCG) mechanism. The VCG mechanisms are a

general class of truthful mechanisms. In such mechanisms, it is a dominant strategy
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for the bidders to report their valuation functions truthfully to the auctioneer. The

VCG mechanism results in an allocation where the welfare of the bidders is maxi-

mized. This follows from the fact that each bidder is required to pay the externality

he inflicts on the other bidders by participating in the auction.

Generalized Second Price (GSP) mechanism. The GSP is a mecha-

nism often used for the sale of multiple items, particularly in the context of online

adtervisement slots where there is clear ordering of the slots in terms of desirability.

Unlike the VCG, the GSP is a non-truthful mechanism. It starts with each bidder

presenting a single bid to the auctioneer. The bidder who bids the highest, receives

the highest slot, the second-highest bidder receives the second-highest slot, and so

on. I refer readers to Edelman et. al. (2007) for a detailed explanation of the

working of the GSP.

In this chapter, I examine the problem of optimally partitioning the set of ad-

vertisement slots3 into bundles before selling them via a VCG auction4 to maximize

the online platform’s revenue from this VCG sale. In this study, I consider that piq

the advertisers’ valuations of a bundle (multiple slots) is additive in the valuations

of the constituent slots, piiq an advertiser’s valuation of any set of slots is positive,

piiiq the advertisers are not budget constrained, and pivq the online platform (auc-

tioneer) is aware that piq, piiq, and piiiq are true. It is noteworthy that there are

several advantages to using a VCG format over other formats in settings involving

the sale of multiple items. I refer readers to Varian et. al. (2014) for a detailed

insight into the advantages of the VCG format for advertisement slot auctions on

online platforms. When a group of slots is bundled, all the slots in a bundle are

assigned to the same advertiser.

Consider the following example understand how bundling may improve VCG

revenue for the online platform (under the aforementioned setting). Suppose there

are a set of advertisement slots ta, b, cu on a web page and three advertisers t1, 2, 3u

who wish to bid for these slots. Assume the online platform knows the advertisers’

valuations of individual slots, as listed in Table 3.1a. For example, advertiser 2
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values slot c at 84 units and advertiser 3 values slot b at 12 units. Under a VCG

a b c
1 17 63 12
2 28 8 84
3 19 12 98

(a) Advertiser valuations for slots.

Partition
(Bundling) VCG Revenue
tau, tbu, tcu 115
ta, bu, tcu 120
tb, cu, tau 111
ta, cu, tbu 124
ta, b, cu 120

(b) VCG revenues from partitioning.

Table 3.1: Example of VCG revenue with bundling.

auction, the allocation of items to the advertisers for a given bundling of slots is such

that it maximizes social welfare. Then, the advertisers make the VCG payments

corresponding to the bundle they receive. The total payment received by the online

platform is the VCG revenue. As shown in Table 3.1b, when the online platform

allows separate sales, slot a is given to advertiser 2, slot b is given to advertiser 1,

and slot c is given to advertiser 3. The social welfare, for this base case, is 28+63+98

= 189 units. Advertiser 2 pays 19 units, advertiser 1 pays 12 units, and advertiser 3

pays 84 units. Hence the online platform’s VCG revenue is 19+12+84 = 115 units.

However, bundling the items as ta, cu, tbu provides the online platform with the

highest revenue of 124 units. Under this bundling, slots a and c (i.e., the bundle of

slots ta, cu) are given to advertiser 3, and slot b is given to advertiser 1. The social

welfare from this allocation is 117+63 = 180 units. Advertiser 3 pays 112 units and

advertiser 1 pays 12 units. Advertiser 2 pays nothing, since he is not assigned any

slot.

Unlike the illustration discussed earlier, a practical setting poses two major chal-

lenges for the auctioneer5, piq how should the auctioneer elicit a bidder’s true valu-

ation of an item?, and piiq how to optimally partition the set of items to maximize

revenue under a VCG auction format? Without prior knowledge of the bidders’

valuations, the chance that a chosen bundling would yield the highest revenue is

almost negligible.

This leads us to the following research question: Is there a mechanism whereby
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piq bidders reveal their valuations truthfully to the auctioneer, and piiq the auctioneer

uses the valuations to optimally partition the set of items into bundles to maximize

her revenue when she sells the bundles using a VCG auction format? These are

important considerations, since, essentially, such a mechanism would yield the same

revenue even if the auctioneer declared the bundles a priori, solicited bids for the

bundles from the bidders, and then sold the bundles using a VCG auction. The

goal of this chapter is to determine such a mechanism. As with most combinatorial

problems with a similar structure, the number of possible partitions of a set of

items, i.e., the Bell number, is extremely large. In particular, if there are n items, the

number of ways of partitioning the set of n items into mutually exclusive collectively

exhaustive sets is equal to Bn “
řk“n´1
k“0

`

n´1
k

˘

Bk. As n increases, Bn can become

very large leading to the complexity of computing the optimal bundling.

3.1.1 Summary of Our Main Contributions

My main contribution is that I identify, and analyze, a mechanism – the Pairwise

Bundler Auction (PBA) – that allows an auctioneer to achieve truthful revelation

and optimally partition the set of items before sale such that her VCG revenue

is maximized. I reduce the optimal bundling problem – a bilevel, cubic, binary

optimization problem – to a mixed binary integer programming formulation, and

develop a Benders decomposition based algorithm to solve it. Additionally, as part of

our discussion of the PBA mechanism, I present a class of binary integer, quadratic

programming formulation, whose continuous relaxation guarantees (binary) integer

solutions. This result is of general interest for a class of quadratic semi-assignment

problems. Finally, using numerical experiments, I show that the revenue benefit of

bundling is considerably higher when the ratio of the number of items to the number

of bidders is high.

The rest of the chapter is organized as follows. In §3.2, I review relevant lit-

erature. I also explain our contribution to literature in detail. In §3.3, I describe

the PBA auction format and present the optimal bundling problem, a bilevel binary
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cubic program, to identify the revenue-maximizing bundling, given the bidders’ bid

reports. In §3.4, I show that the PBA is truthful and present some technical results.

In §3.5, I simplify the optimal bundling problem to a single-level binary linear integer

program. In §3.6, I describe how Benders decomposition can be used as a solution

technique to compute the optimal bundling. In §3.7, we present numerical results,

and discuss insights from the numerical runs. In §3.8, I summarize the chapter and

discuss future research.

3.2 Literature Review

Finding the optimal mechanism for the sale of multiple items to multiple buyers is

seen as a difficult problem in auction theory literature (Tang et. al. 2012, Sandholm

et. al. 2004). Myerson (1981) solved the problem for the single-item setting.

Literature has several pieces of work on improving revenue using various mechanisms

from practice such as posted prices, reserve-prices, and bundling (Chawla et. al.

2010, Balcan et. al. 2008, Guruswami et. al. 2005, Tang et. al. 2012). In

this chapter, I examine the use of bundling as a means to improve revenue in a

multi-item VCG sale setting. Bundling as a revenue-enhancement tool for the sale

of multiple items has been studied in the contexts of bundle pricing and bundling

in auctions. Here, I review literature in these contexts.

3.2.1 Literature on Bundle Pricing

Bundling has been studied in literature in the context of bundle pricing, i.e., the

seller would decide on the bundles she would sell their prices. Some the earliest

pieces of work in the area of bundling pricing is that of Adams et. al. (1976).

Other later pieces of literature include Guiltinan (1987) and Hanson et. al. (1990).

Taking note of the fact that computing optimal bundle compositions is intractable

in general, bundling literature has discussed other forms of bundle-pricing schemes.

For example, Hitt et. al. (2005), Wu et. al. (2008), and Wu et. al. (2019)

36



discuss a bundling framework where the buyers are allowed to choose a bundling

of their choice based on the prices set by the seller. Chu et. al. (2011) discuss a

bundling framework where the price of a bundle depends on the size of the bundle.

My setting is different from these papers in the sense that I study an auction setting,

i.e., bundle prices are determined by an auction.

3.2.2 Literature on Bundling in Auctions

One of the earliest pieces of literature in bundling in an auction setting is due to

Palfrey (1983). One of his key results show that when there are two bidders in

a second-price auction setting, bundling the items together would maximize the

auctioneer’s revenue. Sandholm et. al. (2004) study a class of combinatorial

auctions called the virtual valuation combinatorial auctions (VVCA) in which the

VCG is used on an affine transformation of the bidders’ valuations. In this chapter,

the authors propose computational solutions to enhance revenue in the combinatorial

auction setting using the VVCA model. Subramaniam et. al. (2009) study bundling

in a two-item second-price auction setting where the items may be complements or

substitutes. Tang et. al. (2012) discuss bundling in a two-item setting where the

valuation of the bundle of items is additive, and derive expressions for the optimal

reserve price in the mixed bundling auction of the two items. The extant literature

has also studied formats wherein the auctioneer grants exclusivity in the positioning

of advertisements on webpages (Sayedi et. al. 2018). Bidders desiring exclusivity

in advertising may express their interest in being the only advertiser on an entire

webpage or on a part of the webpage (Constantin et. al. 2011, Sayedi et. al. 2018,

Bhargava et. al. 2019). Bundling a set of slots and granting exclusivity on a set

of slots are similar to the extent that the set slots are to be assigned to one bidder

only.

Another related paper is that of Jehiel et. al. (2007). Here, the authors

introduce a class of dominant-strategy auctions that assigns a weight c to the various

partitions of the set of items on sale. These weights result in some partitions being
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chosen with higher probability than the others. The analysis in the paper revolves

around finding an optimal value of c that maximizes expected revenue. A downside

to using expected revenue as a criterion is that it may yield arbitrarily bad results

when the bidders’ valuations are realized since the bundling parameter c is decided

before the bids are called for based on the prior distributions of the valuations. In

our view, this is a limitation.

I present several results apart from extending the results in Jehiel et. al. (2007).

First, I propose a class of truthful auction formats called the Pairwise Bundler

Auctions (PBA). Using the PBA, the auctioneer can compute the optimal bundling

after the bidders’ valuations are realized and reported to the auctioneer. Therefore,

the auctioneer does not need the knowledge of the distributions of the bidders’

valuations of the items to compute the optimal bundling. Importantly, under this

mechanism, the bidders are incentivized to truthfully report their valuations even

though the auctioneer uses their bids to partition the set items into bundles before

eventually selling them.

Second, I present a binary integer programming formulation to compute the opti-

mal bundling of items. I obtain this formulation by reducing a bilevel, cubic, binary

optimization problem to a linear binary integer programming problem. This model

structure allows us to use a Benders decomposition solution approach, where the

master problem is a binary integer program and the sub-problem is a linear program.

Third, I describe how the dual variables corresponding to the linear program in the

sub-problem in the final iteration can be interpreted as the marginal revenue benefit

of having a given pair of items in the same bundle. Fourth, I present results from

numerical experiments to show how the usefulness of bundling as a lever to improve

revenue is the highest when there are many more items than there are bidders. I

also discuss the impact of higher competition on the usefulness of bundling as a

revenue-improvement lever. Another insight from our approach is that bundling the

items is, in some sense, akin to manipulating the negative externalities that one bid-

der imposes on the others (Belloni et. al. 2017). Manipulating the externalities to
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make them take high values is identical to giving the bidders allocation exclusivity.

Thus, besides contributing to literature on bundling in auctions, I add to the broader

literature around revenue-enhancement mechanisms for the sale of multiple items

to multiple buyers. In addition, I also present a class of linearly-constrained binary

quadratic optimization problems whose relaxations provide integral solutions at op-

timality. This finding may be useful for future research into assignment problems

involving negative externalities.

3.3 Pairwise Bundler Auctions (PBAs)

I begin this section with definitions of a few parameters and decision variables. I

then describe the sequence of events, followed by the optimization model for the

PBA.

3.3.1 Preliminaries

Let L represent a set of heterogeneous (indivisible) items to be auctioned, and B

represent the set of bidders interested in acquiring some or all items in L. While

a bidder may receive more than one item, each item is sold to at most one bidder.

Each bidder i P B has a private value of uai , u
a
i ą 0, for item a P L.

Assumption 3.1 For each a, a P L, bidder i’s valuation uai is sampled from a

continuous probability distribution with finite support.

As a result of Assumption 3.1, no bidder can exactly guess another bidder’s

valuation with non-zero probability. From a practical standpoint, it is almost im-

possible for a bidder, or the auctioneer, to guess a bidder’s valuation exactly. If it

were possible to do so, the auctioneer could simply post a price equal to the highest

valuation for an item or a bundle and capture all of the bidder’s surplus.

The decision variable xai equals 1, if bidder i receives item a, and is zero otherwise.

Bidder i’s valuation for an allocation x “ ă xai , i P B, a P L ą, vipxq, can be written
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as

vipxq “
ÿ

aPL

uai x
a
i , (3.1)

where BL “ B ˆ L (the cartesian product of the sets B and L). The total social

welfare of the bidders is given by

ÿ

iPB

vipxq “
ÿ

pi,aqPBL

uai x
a
i . (3.2)

The allowable allocations x are those allocations where
ř

iPB x
a
i “ 1 is satisfied for

all a P L (it is an equality constraint since uai ą 0 implies that all items get assigned

to a bidder).

3.3.2 The PBA

The sequence of events in the PBA is as shown in Figure 3.1. The sequence contains

Auctioneer partitions set 
L and creates bundles

Auctioneer solicits bids 
for individual items/slots
in set L using a sealed-bid 
format

Auctioneer assigns the 
bundles to bidders in set 
B and collects VCG 
revenues

Figure 3.1: Sequence of events.

three important stages/steps.

Step 1: Each bidder i P B bids an amount ûai for each item a P L using a sealed-bid

format.

Step 2: The auctioneer creates bundles by partitioning the set L using the bids

ûai , pi, aq P BL.

Step 3: She sells these bundles to individual bidders using the VCG auction format.

Note that ûai may or may not be equal to uai for all pi, aq P BL. The auctioneer’s

problem in Step 2 is to partition L in such a way that she maximizes her revenue
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from the VCG auction of the item bundles in Step 3. Thus, the auctioneer must

make two levels of decisions simultaneously, piq identify an optimal bundling of the

item set, and piiq identify the corresponding allocation of items to individual bidders.

The PBA model formulation, described in §3.3.3, achieves both.

3.3.3 The PBA Optimization Model

I describe the components involved in building the auctioneer’s optimization model

in Step 2 that simultaneously partitions L optimally and determines optimal allo-

cations of items to bidders in set B, after receiving sealed bids ûai , pi, aq P BL. Let

the decision vector

λ “ă λab, a ‰ b, a, b P L ą, (3.3)

be defined such that paq λaa “ 0, pbq λab P t0, 1u , and pcq λab “ λba @ a , b P L, a ‰ b.

Essentially, λ represents a partition of the item set L in the following manner. For

all a, b P L, b ‰ a, λab “ 1 if items a and b belong to the same bundle, and λab “ 0

if items a and b do not belong to the same bundle. The components of λ, of the

form λab where a, b P L, b ‰ a, are decision variables that model whether or not two

items a and b belong to the same bundle.

Winner determination under partitioning (bundling) λ. Under any given

partition, λ, the auctioneer conducts a VCG auction. The winners the VCG auction

are obtained by solving the binary-integer optimization model (3.4) – (3.6), with

decision vector x. This optimization problem identifies the allocation that maximizes

total value of the bids under bundling λ.

max
x

Hpx;λq “
ÿ

pi,aqPBL

”

ûai ´
ÿ

bPL
b‰a

Mabλab
ı

xai `
ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

Mabλabxai x
b
i , (3.4)

s.t.
ÿ

iPB

xai “ 1 @a P L, (3.5)

xai P t0, 1u @ pi, aq P BL. (3.6)

In (3.4), the parameters Mab for all a, b P L and for all i P B are “penalty” param-
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eters such that

Mab
“

$

’

’

&

’

’

%

M if a ‰ b,

0 if a “ b,

(3.7)

where M is a suitably large positive value.

In any feasible solution, xai “ 1 implies that bidder i is assigned item a. If

xai “ 0, it implies that bidder i is not assigned item a. The optimal allocation x˚ is

such that each bundle in the partition represented by λ is assigned to exactly one

bidder. Notice that if λab “ 1 and λcd “ 0 for all c ‰ a ‰ b, d ‰ a ‰ b for some

items a and b in L, then the allocation vector x˚ that maximizes Hpx;λq is such

that items a and b are assigned to the same bidder. This is because the objective

function (3.4) incurs a large penalty from making an allocation where xai “ 1 and

xbj “ 1 where i ‰ j. However, when xai “ xbi “ 1 for some i, the terms ´Mabλabxai

and `Mabλabxai x
b
i cancel each other in the objective function (3.4), i.e. no penalty is

incurred. Likewise, the terms ´M baλbaxbi and `M baλbaxbix
a
i cancel each other in the

objective function (3.4). In effect, setting λab “ 1 yields an allocation of the form

xai “ xbi “ 1 for some i P B. Essentially, when items a and b are bundled (λab “ 1),

they cannot be allocated separately. Likewise, setting λab “ 0 allows for the sale

of items a and b to two different bidders, say i and j, as there is no penalty from

making such an assignment. This is because Mabλabxai “ 0 and Mabλabxai x
b
i “ 0

since λab “ 0. Thus, the item bundles (in the partition represented by λ) are

assigned to the bidders in such a way that the total bid value is maximized and

all items bundled together are assigned to exactly one bidder. Next, I describe the

VCG revenue computation, given a partition λ.

Computing the VCG revenue under bundling λ. The first step to com-

puting VCG revenue under bundling λ is to solve the total bid value maximization

problem without bidder i, represented by the following optimization problem with
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the binary decision variables y´i “ă ya,´il , l P B, l ‰ i, a P L ą, for all bidders i P B.

maxH´ipy
˚
´i;λq “ max

y´i

ÿ

pl,aqPBL
l‰i

”

ûal ´
ÿ

bPL
b‰a

Mabλab
ı

ya,´il `
ÿ

lPB
l‰i

ÿ

aPL

ÿ

bPL
b‰a

Mabλabya,´il yb,´il ,

(3.8)

s.t.
ÿ

lPB
l‰i

ya,´il “ 1 @ a P L, (3.9)

ya,´il P t0, 1u @ pl, aq P BL, l ‰ i. (3.10)

Here, ya,´il “ 0 if bidder l is assigned item a and ya,´il “ 0 if bidder l is not assigned

item a. This optimization problem is structurally identical to the model described

in (3.4) – (3.6). The second step is to compute the function H´ipx
˚;λq for each

bidder i P B as follows.

H´ipx
˚;λq “

ÿ

pl,aqPBL

”

ûa,´il ´
ÿ

bPL
b‰a

Mab,´i
l λab

ı

xa˚
l `

ÿ

lPB

ÿ

aPL

ÿ

bPL
b‰a

Mab,´i
l λabxa˚

l x
b˚
l (3.11)

where x˚ is the optimal solution to (3.4)) – (3.6) and for all a P L and l, i P B,

ûa,´il “

$

’

’

&

’

’

%

ûal if l ‰ i,

0 if l “ i,

(3.12)

and,

Mab,´i
l “

$

’

’

&

’

’

%

Mab if l ‰ i,

0 if l “ i.

(3.13)

The quantity H´ipx
˚;λq is the total bid value of all bidders excluding i under the

optimal allocation x˚ for bundling λ. The quantity H´ipx
˚;λq ´ H´ipy

˚
´i;λq repre-

sents the magnitude of the “externality” imposed by bidder i on all other bidders

by virtue of his participation in the auction with bundling λ. Therefore, under the

VCG auction, bidder i is charged an amount equal to the externality he imposes,

i.e., he is charged an amount H´ipy
˚
´i;λq ´ H´ipx

˚;λq. The auctioneer’s revenue
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from the VCG auction under partition λ can be computed as

Rpλq “
ÿ

iPB

”

H´ipy
˚
´i;λq ´ H´ipx

˚;λq

ı

. (3.14)

Thus, for a given bundling λ, the bidder who is assigned a bundle is the bidder

who values it the most, and this bidder pays the second-highest bid for the bundle.

This is because the bundles in the partition represented by λ are sold in simultane-

ous VCG auctions (since bundle valuations are additive), and for each bundle, the

VCG payment corresponds to the second-highest bid for the bundle (Krishna 2002,

Ausubel 2006). Using the illustration in §5.1, in Table 3.2, I show how the various

bundlings, encoded using the parameters λab, a, b P L, a ‰ b when L “ ta, b, cu,

induce the appropriate VCG revenues.

Bundling λab λbc λac Revenue
tau, tbu, tcu 0 0 0 115
ta, bu, tcu 1 0 0 120
tb, cu, tau 0 1 0 111
ta, cu, tbu 0 0 1 124
ta, b, cu 1 1 1 120

Table 3.2: Partitions and corresponding VCG revenues.

Next, putting together all the aforementioned optimization models, I describe

the auctioneer’s optimization problem in Step 2 that simultaneously determines the

optimal bundling and corresponding winner allocations.

The optimal bundling problem (OBP). The auctioneer’s optimization prob-

lem in Step 2 of the PBA is to identify λ˚ “ argmaxλRpλq while simultane-

ously determining the winners/allocations. I present problem OBP below. OBP

is the expanded representation of the optimization problem maxλRpλq described

in (3.14). As mentioned earlier, the decision variables λ “ă λab, a, b P L ą corre-

spond to the Step 2 decisions of identifying a bundling, while the variables x and

y “ă ya,´il , l P B, l ‰ i, a P L, i P B ą correspond to the Step 3 decisions of

44



allocations and VCG payments under the bundling identified in Step 2.

OBP: max
λ

ÿ

iPB

«

ÿ

lPB
l‰i

ÿ

aPL

”

ûal ´
ÿ

bPL
b‰a

Mabλab
ı

ya,´il `
ÿ

lPB
l‰i

ÿ

aPL

ÿ

bPL
b‰a

Mabλabya,´il yb,´il

ff

(3.15)

´
ÿ

iPB

«

ÿ

lPB

ÿ

aPL

”

ûa,´il ´
ÿ

bPL
b‰a

Mab,´i
l λab

ı

xa˚
l `

ÿ

lPB

ÿ

aPL

ÿ

bPL
b‰a

Mab,´i
l λabxa˚

l x
b˚
l

ff

,

s.t.
ÿ

lPB
l‰i

ya,´il “ 1 @ a P L @i P B, (3.16)

x˚
“ argmax

x
Hpx;λq subject to

ÿ

iPB

xai “ 1 @ a P L, xai P t0, 1u @ pi, aq P BL,

(3.17)

ya,´il P t0, 1u @ pl, aq P BL, l ‰ i, @i P B, (3.18)

λab “ λba @ a P L, b P L, b ‰ a, (3.19)

λaa “ 0 @ a P L, (3.20)

λab P t0, 1u @ a P L, b P L, b ‰ a. (3.21)

The objective function (3.15) is the expansion of Rpλq defined in equation (3.14).

Constraints (3.16) and (3.18) follow from constraints (3.9) and (3.10). Constraint

(3.17) follows from the winner determination model in (3.4) – (3.6). Constraints

(3.19), (3.20), (3.21) follow from the definition of λ. Thus, identifying λ˚ that maxi-

mizes OBP is equivalent to identifying the bundling that maximizes the auctioneer’s

revenue from the VCG auction of the item bundles in Step 3 of the PBA.

I point out that there is no need to include “consistency” constraints. For exam-

ple, if items a, b, c belong to the same bundle, there is no need to specify constraints

of the form “if λab “ λbc “ 1, then λac “ 1”. This is because setting λab “ λbc “ 1

is sufficient to ensure that items a, b, c are assigned to the same bidder. Setting

λab “ 1 ensures that the objective function is penalized if items a and b are assigned

to different bidders. Likewise, setting λbc “ 1 ensures that the objective function

is penalized if items b and c are assigned to different bidders. Consequently, items
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a, b, c will end up being assigned to the same bidder. In conclusion, if a, b, c belong to

the same bundle, then λab “ λbc “ 1, λac “ 0{1 ensures the same objective function

value for OBP.

3.4 PBA Model Analysis

In this section, I present important structural results related to the optimization

model OBP developed in §3.3. I begin with the inner binary integer optimization

problem (3.4) – (3.6), i.e., constraint (3.17), when λ is fixed. It is noteworthy that

the model is a binary-integer, quadratic programming, problem with linear semi-

assignment constraints – an NP-Hard problem in general.

Consider the following continuous version of the quadratic programming problem

(3.4) – (3.6) wherein decision variables xai , pi, aq P BL are relaxed to permit fractional

values at optimality.

max
x

Hpx;λq “
ÿ

pi,aqPBL

”

ûai ´
ÿ

bPL
b‰a

Mabλab
ı

xai `
ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

Mabλabxai x
b
i , (3.22)

s.t.
ÿ

iPB

xai “ 1 @ a P L, (3.23)

0 ď xai ď 1 @pi, aq P BL. (3.24)

I show that the continuous relaxation continues to guarantee binary integer optimal

solutions in Theorem 3.1.

Theorem 3.1 The optimal solution, x˚, to problem (3.22) – (3.24) is integral.

Proof of Theorem 3.1.

I first prove a technical result, and show that the statement of Theorem 3.1 is

true using this result. Let

Qpxq “
ÿ

pi,aqPBL

uai x
a
i ´

ÿ

pi,aqPBL

ÿ

pj,bqPBL

wabij x
a
i x

b
j.
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Here, the parameter wabij is defined as follows:

wabij “

$

’

’

&

’

’

%

0 if a “ b or i “ j,

ě 0 otherwise.

Now, consider the following optimization problem

max
x

Qpxq “ max
x

ÿ

pi,aqPBL

uai x
a
i ´

ÿ

pi,aqPBL

ÿ

pj,bqPBL

wabij x
a
i x

b
j, (3.25)

s.t.
ÿ

iPB

xai “ 1, @ a P L, (3.26)

0 ď xai ď 1 @ i P B @ a P L. (3.27)

I claim that the solution x˚ to (3.25) – (3.27) is integral. I now prove the claim:

Assume, to the contrary, that the optimal solution x˚ to (3.25) – (3.27) is not

integral. This means that for some pi, aq, xa˚
i is fractional. Suppose xk˚

p is fractional.

This implies that variable xk˚
v is also fractional for some v ‰ p. This follows from

constraint (3.26). In other words, we have that item k is fractionally allocated to

bidders p and v.

The component xk˚
p of x˚ contributes an amountQpxk˚

p q “

´

ukp ´
ř

pj,bqPBLw
kb
pjx

b˚
j

¯

xk˚
p

to the objective function Qpx˚q and the component xk˚
v contributes an amount

Qpxk˚
v q “

´

ukv ´
ř

pj,bqPBLw
kb
vjx

b˚
j

¯

xk˚
v to the objective function Qpx˚q. Let Zpxk˚

p q “
´

ukp ´
ř

pj,bqPBLw
kb
pjx

b˚
j

¯

. Similarly, define Zpxk˚
v q “

´

ukv ´
ř

pj,bqPBLw
kb
vjx

b˚
j

¯

. I point

out that the coefficient of the term of the form xk˚
p x

k˚
v is zero. Therefore, such a

term does not exist.

I now show that the optimality of xk˚
p and xk˚

v implies that Zpxk˚
p q “ Zpxk˚

v q.

Case 1. Suppose Zpxk˚
p q ě Zpxk˚

v q. Consider a solution x̂ where component

x̂kp “ xk˚
p ` xk˚

v , x̂kv “ 0 and x̂ai “ xa˚
i for all pi, aq P BL, pi, aq ‰ pp, kq, pi, aq ‰ pv, kq.

Now Qpx̂q “ Qpx˚q ` Zpxk˚
p qxk˚

v ´ Zpxk˚
v qxk˚

v ě Qpx˚q since Zpxk˚
p q ě Zpxk˚

v q.

Case 2. Suppose Zpxk˚
v q ě Zpxk˚

p q. Consider a solution x̂ where component

x̂kv “ xk˚
v ` xk˚

p , x̂kp “ 0 and x̂ai “ xa˚
i for all pi, aq P BL, pi, aq ‰ pp, kq, pi, aq ‰ pv, kq.
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Now Qpx̂q “ Qpx˚q ` Zpxk˚
v qxk˚

p ´ Zpxk˚
p qxk˚

p ě Qpx˚q since Zpxk˚
v q ě Zpxk˚

p q.

Therefore, Zpxk˚
p q “ Zpxk˚

v q.

Now, I define a solution x̂ where x̂kp “ xk˚
p ` xk˚

v , x̂
k
v “ 0, x̂ai “ xa˚

i for all pi, aq.

Note that the number of fractional components of x̂ is one less than the number

of fractional components of x˚, and can have two less fractional components if

x̂kp “ 1. Since Zpxk˚
v q “ Zpxk˚

p q, we have that Qpx̂q “ Qpx˚q. If x̂kp ă 1, there

must exist some fractional variable x̂kv . I can then define another solution x̄ where

x̄kp “ x̂kp ` x̂kv , x̄
k
v “ 0, x̄ai “ x̂ai for all pi, aq in a manner similar to the definition of x̂

and repeat the same arguments with x̄ as I did with x̂. Say I arrive at a solution y

where ykp “ 1, ykv “ 0 for all p, p ‰ v and yai “ xa˚
i for all pi, aq.

Now, starting with the solution y, I repeat the above arguments for each item

that is fractionally allocated to two or more bidders. With this, I arrive at a solution

where the variables at optimality are either 0 or 1.

I now derive a special-case for our setting. Consider the term
ř

pi,aqPBL

ř

pj,bqPBLw
ab
ij x

a
i x

b
j

in (3.25). I set wabi “ wabij for all j P B, j ‰ i.

ÿ

pi,aqPBL

ÿ

pj,bqPBL

wabij x
a
i x

b
j “

ř

pi,aqPBL x
a
i

”

ř

pj,bqPBLw
ab
ij x

b
j

ı

,

“
ř

pi,aqPBL x
a
i

”

ř

bPL

ř

jPB w
ab
ij x

b
j

ı

,

“
ř

pi,aqPBL x
a
i

”

ř

bPLw
ab
i

ř

jPB
j‰i

xbj

ı

,

“
ř

pi,aqPBL x
a
i

”

ř

bPL
b‰a

wabi p1 ´ xbiq
ı

.

Using constraint (3.26) I get,

ř

jPB
j‰i

xbj “ 1 ´ xbi ,

“
ÿ

pi,aqPBL

ÿ

bPL
b‰a

wabi x
a
i p1 ´ xbiq.

Thus, when wabij “ wabi for all j P B, j ‰ i for all i P B, the objective function (3.25)
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is
ÿ

iPB

ÿ

aPL

uai x
a
i ´

ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

wabi x
a
i p1 ´ xbiq (3.28)

or,
ÿ

pi,aqPBL

”

uai ´
ÿ

bPL
b‰a

wabi

ı

xai `
ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

wabi x
a
i x

b
i . (3.29)

Consequently, by setting wabij “ wabi for all j P B, j ‰ i for all i P B, I get the

following quadratic optimization problem:

max
ÿ

pi,aqPBL

”

uai ´
ÿ

bPL
b‰a

wabi

ı

xai `
ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

wabi x
a
i x

b
i (3.30)

s.t.
ÿ

iPB

xai “ 1 @ a P L, (3.31)

0 ď xai ď 1 @ pi, aq P BL. (3.32)

Problem (3.22) – (3.24) is an instance of the above problem (3.30) – (3.32) where

wabi “ Mabλab for all i P B and a, b P L, b ‰ a. Thus, problem (3.22) – (3.24) has

integral optimal solutions. Hence, Theorem 3.1 follows. ˝

It is noteworthy that our proof of Theorem 3.1 is a more general result (appli-

cable to quadratic programs modeling externalities and with linear semi-assignment

constraints) which is of interest of its own. Theorem 3.1 has implications for de-

veloping solution algorithms that guarantee optimal solutions. However, it is well

known that the general continuous quadratic programs continue to remain NP-hard

because the objective function is generally neither convex nor concave. But, in this

case, upon closer inspection of the model in (3.22) – (3.24), it is readily noticeable

that the model is structurally identical to the problem described in problem (1) in

Page 756, §3.1 of Candogan et. al. (2015). Consequently, the continuous relaxation

(3.22) – (3.24) can be solved using a linear program. I make use of the technique de-

tailed in Appendix §3.9 to solve (3.22) – (3.24). As a consequence of this, instances

of this model can be solved in polynomial time.

In addition to the integrality result in Theorem 3.1, any optimal solution to (3.22)
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– (3.24), and consequently to the binary integer quadratic programming problem

(3.4) – (3.6), satisfies the following necessary condition mentioned in Lemma 3.1.

Lemma 3.1 Given a partition λ, define ηpxq “ ´
ř

pi,aqPBL

ř

bPL
b‰a

Mabλabxai p1´ xbiq.

If x˚ is the optimal solution to (3.22) – (3.24), then ηpx˚q “ 0 in the expansion of

Hpx˚;λq.

Proof of Lemma 3.1. If λ is such that λab “ λba “ 1 for some a, b P L, b ‰ a,

then for some i P B, we have that xa˚
i “ xb˚i “ 1 at optimality. Thus, the terms

´Mabλabxa˚
i and Mabλabxa˚

i x
b˚
i cancel out since one is a negation of the other. If

λab “ 0, then ´Mabλabxai “ Mabλabxai x
b
i “ 0 for any value of x. Thus, Lemma 3.1

holds true. ˝

Intuitively, Lemma 3.1 implies that the “big-M” terms do not figure in the

optimal solution to (3.22) – (3.24), and consequently to the binary integer quadratic

programming problem (3.4) – (3.6). The big-M penalty exists to influence the

optimal winner allocation (x˚) to the partition vector λ.

We now state the following Lemma that describe the auctioneer’s bundling

choices that the bidders would prefer the most.

Lemma 3.2 Separate selling maximizes social welfare from the resulting allocation.

A bidder would make a weakly higher surplus from a separate sale than from a sale

after bundling in any form.

Proof of Lemma 3.2. Separate selling maximizes social welfare since every

bidder who values an item the most receives the item, whereas under bundling, a

bidder may receive an item even if he does not value it the most, while the bidder

valuing such an item the most does not receive it. As a result, a bidder would always

prefer that the auctioneer choose separate selling. ˝

From Lemma 3.2, it appears that the bidders may have the incentive to misreport

their bids in Step 1 to influence the auctioneer to conduct a separate sale of the items.

However, as we shall show, truthful bidding in Step 1 is a weakly dominant strategy.
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Proposition 3.1 The sealed bids collected by the auctioneer in Step 1 of the PBA

are truthful, i.e., truthful bidding is a weakly dominant strategy for all bidders in set

B.

Proof of Proposition 3.1. Step 1 of PBA is for the bidders to report their

bids to the auctioneer. Step 2 is where the auctioneer would compute a value for

λ, i.e., the auctioneer decides on an item bundling. Step 3 is where the auctioneer

would allocate the bundles to the bidders and collect payments for the the bundle.

It is important to note that in Step 2, the bids collected in the Step 1 are used to

compute item bundlings, allocations, and payments that maximize the auctioneer’s

revenue from Step 3. We now present a Lemma.

Lemma 3.3 Given a partition of items, which is unknown to the bidders, it is a

dominant strategy for them to bid truthfully at the item level, so that their bid for

any bundle is truthful, irrespective of the partition created by the auctioneer.

Proof of Lemma 3.3. Let ûai , pi, aq P BL be bidder i’s reported bids for item

a P L in Step 1. After the bidders report their bids to the auctioneer in Step

1, the auctioneer would consider one out of the B|L| possible bundlings in Step 2

(here, B|L| is the |L|th Bell number; Bell numbers were discussed in §5.1). Let PA

be one bundle of items in the bundling that the auctioneer decides in the second

step of the PBA. According to the rules of the PBA, if bidder i wins bundle PA,

which happens if his bid for bundle PA is the highest, his payment would be the

second-highest bid for bundle PA. These allocation and payments are computed in

Step 3. Therefore, bidder i would find it weakly dominant to report his value for

bundle PA truthfully in Step 1., i.e.,
ř

aPPA
ûai “

ř

aPPA
uai . The argument behind

this assertion is as follows: Let ÛA
i “

ř

aPPA
ûai for some i and let UA

i “
ř

aPPA
uai .

Let ŪA “ second-highest jPB

ř

aPPA
ûaj .

1. If ÛA
i ą ŪA ą UA

i , the bidder i wins bundle PA, but pays Ū
A. Since UA

i ´ Ū ď

0, bidding ÛA
i ą UA

i is not a rational decision for bidder i.
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2. If ŪA
i ą ÛA

i , then bidder i loses the auction for bundle PA. He pays nothing,

and gains nothing. Thus, his payoff is zero. Here ÛA
i may be greater than,

equal to, or lower than UA
i .

3. If ÛA
i ą UA

i ą ŪA, then bidder i wins the auction for bundle PA and pays ŪA.

Thus, any value of ÛA
i ą ŪA would have resulted in bidder i winning bundle

PA followed by paying ŪA.

Thus, it is a weakly dominant strategy for any bidder to bid his own valuation in

Step 1 for any bundle PA that may come about in Step 2. For any bundle PA Ď L

and bidder i, the value of ûai should be such that ÛA
i “ UA

i .

From these arguments, it may appear that as long as ÛA
i “ UA

i , bidder i plays

rationally irrespective of what the values of ûai are. However, we claim that it is

important for the bidder that the bids be true at the item level, i.e., ûai “ uai for

all pi, aq P BL. Suppose bidder i reports ûai ‰ uai for all a P L in Step 1 of the

PBA. Based on these reports, the auctioneer comes up with an item bundling in

Step 2. Let P1, P2, ¨ ¨ ¨ , Pk, ¨ ¨ ¨ , PM be the item bundles in the bundling. Note that

the bidders do not know what these item bundles are in Step 1. Let Uk
i “

ř

aPPk
uai

be bidder i’s valuation for bundle Pk. Note, from the discussion above, that truthful

bidding at the level of the bundle is weakly dominant.

In Step 3, if it turns out that
ř

aPPk
ûai ‰ Uk

i , then bidder i’s reported value for

bundle Pk is not truthful. This will result in the following outcome in Step 3 of

the PBA: (i) If bidder i values the bundle Pk the highest, he makes a non-negative

surplus (i.e., positive surplus if he is assigned Pk, and zero surplus if he is not

assigned Pk), and (ii) if bidder i does not value bundle Pk the highest, but
ř

aPPk
ûai

is the highest, he wins, and he makes a negative surplus on bundle Pk.

In Step 3, if it turns out that
ř

aPPk
ûai “ Uk

i , then bidder i’s reported for bundle

Pk is truthful, and this results in the following outcome: (i) If bidder i values the

bundle Pk the highest, he wins, and makes a non-negative surplus, and (ii) if bidder

i does not value the bundle Pk the highest, he loses, and makes a zero surplus on

bundle Pk.
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Also, when all bidders l P B, l ‰ i bid truthfully, i.e., ûal “ ual for all l P B, l ‰ i

and a P L, the positive surplus that bidder i makes on any bundle Pj, j ‰ k under

non-truthful bidding, if he wins bundle Pj, j ‰ i, is equal to the positive surplus

that bidder i makes on bundle Pj, j ‰ k under truthful bidding. Therefore, non-

truthful reporting for Pk is weakly dominated by truthful reporting for Pk, since

truthful reporting removes the possibility of making a negative surplus on winning

Pk. Thus, the reported values ûai such that
ř

aPPk
ûai “

ř

aPPk
uai for all k is when

ûai “ uai for all pi, aq P BL. This proves Lemma 3.3.

We now move onto the proof of Proposition 3.1 now by examining the bidders’

incentives to bid truthfully. First, we conduct the analysis using two item bundles

PA and PB. To start, assume that all bidders bid truthfully except bidder k. As

part of the analysis that follows, we examine bidder k’s incentives to be truthful and

his incentives to misreport his bid.

Suppose bidder k bid truthfully. The following cases can arise.

1. Bidder k’s value for PAB is not the highest. Bidder k has the highest value for

PA. Bidder k does not have the highest value for PB.

(a) Suppose the bids are such that the auctioneer chooses to sell PA and

PB separately. Then bidder k wins PA, and does not win PB. Bidder k

makes a positive surplus from winning PA, and makes zero surplus from

PB, since he does not win it.

(b) Suppose the bids are such that the auctioneer chooses to sell bundle PAB.

Bidder k makes a surplus of zero since he does not win PAB. Note that

bidder k has not been able to win PA despite having the highest value for

PA.

2. Bidder k’s value for PAB is not the highest. Bidder k’s value for PA is not the

highest, and his value for PB is not the highest.

(a) Suppose the bids are such that the auctioneer chooses to sell PA and PB

separately. Then bidder k makes a surplus of zero.
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(b) Suppose the bids are such that the auctioneer chooses to sell PAB. Then

bidder k makes a surplus of zero.

3. Bidder k’s value for PAB is the highest. Bidder k’s value for PA is the highest.

Bidder k’s value for PB is the highest.

(a) Suppose the bids are such that the auctioneer chooses to sell PA and PB

separately. The bidder k wins both PA and PB. He makes a positive

surplus on both PA and PB.

(b) Suppose the bids are such that the auctioneer chooses to sell PAB. Bidder

k wins PAB, but makes a lower (but positive) surplus than he does in case

3(a).

4. Bidder k’s value for PAB is not the higehst, but his values for PA and PB are

separately the highest.

(a) This is an impossible case.

We now discuss bidder k’s incentives to misreport his bids for each of these cases.

Let the bidders’ valuations for PA and PB be the following.

PA PB

1 a1 b1

2 a2 b2
...

...
...

k ak bk
...

...
...

|B| a|B| b|B|

For cases 2(a), 2(b), 3(a), and 3(b), if bidder k bids higher than his truthful bid

on either PA or PB or both, his surplus is either going to be zero or is going to be

non-negative. Therefore, for these cases, bidder k has no incentives to bid higher.

We now look at Cases 1(a) and 1(b) in detail. We begin with Case 1(a).

54



Case 1(a). From the assumptions of Case 1(a), we have that piq ak`bk ă aj`bj

for some j, piiq ak ą aj for all j, piiiq bk ă bj for some j, and that pivq second-highest

report for PA + second-highest report for PB is greater than or equal to the second-

highest report for PAB, since the auctioneer prefers separate selling in Case 1(a).

Under separate selling, bidder k makes zero surplus from PB, and makes positive

surplus from winning PA.

By bidding higher on PA or PB, bidder k could make the auctioneer choose

separate selling of PA and PB or bidder k could make the auctioneer choose to sell

PAB.

1. Under the misreported bids, suppose the auctioneer chooses to sell PA and PB

separately, then bidder k would win PA and PB, but would make a negative

surplus on PB, while winning the same surplus on PA as under truthful bidding.

Thus, truthful bidding weakly dominates.

2. Under the misreported bids, suppose the auctioneer chooses to sell PAB. Bid-

der k can then be the highest bidder on PAB, but his surplus from winning PAB

will be lower than his surplus from truthful bidding. Thus, truthful bidding

weakly dominates.

Thus, for Case 1(a), truthful bidding is weakly dominant. We now examine Case

1(b).

Case 1(b). From the assumptions of Case 1(b), we have that piq ak`bk ă aj`bj

for some j, piiq ak ą aj for all j, piiiq bk ă bj for some j, and pivq second-highest

report for PAB is greater than or equal to the second-highest report for PA + second-

highest report for PB. Let ak “ α. Let bk “ β. Let the second-highest report for

PA be γ. Let the second-highest report for PB be δ. Let the highest bid for PB be

µ, and assume that this bid is from bidder s. Let bidder s’s bid for PA be ϵ.

From the case 1(b) assumption that bidder k does not win bundle PAB, we have

that

α ` β ă γ ` δ ă ϵ ` µ for some bidder s. (3.33)
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Also, we have that

α ą γ ą ϵ and µ ą δ ą β (3.34)

Suppose bidder k misreported his bid for PB as τ instead of β, where τ ą µ.

It could result in the auctioneer choosing either selling PA and PB separately, or

selling bundle PAB. If the auctioneer chose to sell bundle PAB, then misreporting

is weakly dominated by truthful bidding. If the auctioneer chose to sell PA and PB

separately, we have the following analysis: We have that

α ` β ă γ ` δ ă ϵ ` µ for some bidder s.

Subtracting ϵ from all sides, we have

α ` β ´ ϵ ă γ ` δ ´ ϵ ă ϵ ` µ ´ ϵ

Subtracting β from all sides, we have

α ` β ´ ϵ ´ β ă γ ` δ ´ ϵ ´ β ă ϵ ` µ ´ ϵ ´ β

ùñ α ´ ϵ ă γ ` δ ´ ϵ ´ β ă µ ´ β

ùñ α ´ ϵ ă µ ´ β

ùñ α ´ γ ă α ´ ϵ ă µ ´ β

Here, α´γ is bidder k’s surplus for PA from separate selling of PA and PB, and µ´β

is bidder k’s surplus for PB from the separate selling of PA and PB. Notice that

since bidder k bid τ ą µ, the second-highest bid for PB is µ. Since bidder k pays µ,

while his true value for PB is β, his loss is equal to µ´β. Thus, by misreporting his

bid for PB and forcing separate selling of PA and PB, bidder k’s surplus is equal to

β ´ µ ` α ´ γ ă 0
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Thus, by misreporting his bid for PB and forcing separate selling of PA and PB,

bidder k makes a surplus lower than his surplus from truthful bidding. As a result,

truthful bidding is weakly dominant.

Thus, for Case 1(b), truthful bidding is weakly dominant when bidder k reports

τ ą µ.

Suppose bidder k bid τ “ µ (violating Assumption 3.1). In this case, there is a

tie for PB. If the ties are broken uniformly, then bidder k’s surplus is

0.5 ˆ pβ ´ µq ` 0.5 ˆ 0 ` α ´ γ

which may be greater than zero. In this case, misreporting τ “ µ gives bidder k a

higher surplus than zero. However, by Assumption 3.1 that the bidders’ valuations

come from continuous probability distributions functions, bidder k cannot exactly

guess the highest bid for any bundle with non-zero probability. As a result, we

discard the case where τ “ µ.

In conclusion, for all of the cases laid out above, truthful bidding is weakly

dominant. Thus, we show how truthful bidding is a weakly dominant strategy

considering two bundles PA and PB.

From the discussion thus far, we observe that Case 1(b) is the non-trivial case.

This case is characterized by the following features that hold true together. Let ϕ

be the possible set of partitions of the item set L. For any partition P, P P ϕ that

the bidders can force the auctioneer to choose through misreporting, we have that

1. There is a bidder k such that he values some bundles P h,k Ď P the highest.

2. This bidder k does not value some bundles P ´ P h,k the highest.

3. Under truthful bidding, the auctioneer chooses a partition where the items in

Q1 Ď P h,k and items in any set Q2, where Q2 Ď P ´P h,k are bundled together,

and bidder k gets a surplus of zero.

4. If the items from Q1 Ď P h,k and items from bundle Q2 Ď P ´ P h,k are not
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bundled together, then bidder k would get a positive surplus on Q1 and zero

surplus on Q2.

To examine the incentives for truthful bidding, we extend the analysis discussed

thus far by considering PA “ Q1, Q1 Ď P h,k and PB “ Q2, Q2 Ď P ´ P h,k for any

partition P, P P ϕ that the bidders can force force the auctioneer to choose through

misreporting.

In the above analysis, if more than one bidder decide to misreport their bids by

inflating them (i.e., reporting higher bids than their values for each item) , they stand

to lose in a similar way, i.e., their surpluses are negative. Their gains from winning

bundle Q1, Q1 Ď P h,k are offset by the losses from winning bundle Q2 Q2 Ď P´P h,k

for any partition P, P P ϕ that the bidders can force through misreporting their

bids.

In conclusion, truthful bidding at the item-level is a weakly dominant strategy

under the condition that no bidder can guess any other bidder’s bid for any item. ˝

The intuition behind Proposition 3.1 is that for any bundle of items that gets

sold in Step 3, the bundle is allocated to the bidder with the highest bid for the

bundle, and the payment is the second-highest bid for the bundle. Therefore, if

bidders do not report their values truthfully in step 1, their payments in Step 3 will

be to their detriment. The reasoning is identical to the reasoning behind why truth-

telling is weakly dominant in a second-price auction since the argument also holds

for any bundle (whose valuation is the sum of the values of the items included in the

bundle). Consequently, Proposition 3.1 implies that ûai “ uai for all pi, aq P BL. In

the Appendix, §3.11, I provide a detailed example illustrating why truthful bidding

is a dominant strategy for the bidders.

3.5 Solving OBP

OBP is a bilevel, cubic, binary integer optimization problem with the inner opti-

mization problem (3.17) being linked to the outer optimization problem through
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the variable λ. Given the computational complexity of OBP, we explore ways to

simplify the problem structure. First, I explore ways to replace the complicating

inner optimization problem with linear constraints, and then through relaxation and

linearization techniques, we transform OBP to an equivalent linear integer program-

ming formulation that can be solved efficiently using known techniques, such as the

branch-and-bound based techniques. It is noteworthy that Proposition 3.1 allows

us to equate ûai “ uai , pi, aq P BL throughout the remainder of our analysis. As

described next, in §3.5.1 I begin by replacing the inner optimization problem with

a set of linear constraints.

3.5.1 Replacing the Inner Optimization Problem (3.17) with

Linear Constraints

For brevity, I describe the technique to solve problem (3.17), when λ is fixed, in

Appendix §3.9. Thus, if x is a solution to the inner optimization problem (3.17),

then, for any feasible solution to OBP, it satisfies the following conditions (for a

given λ vector.)
ÿ

iPB

xai “ 1 @a P L, (3.35)

zabi ď xai @i P B, @a P L, b P L, b ‰ a, (3.36)

zabi ď xbi @i P B, @a P L, b P L, b ‰ a, (3.37)

zabi ě xai ` xbi ´ 1 @i P B, @a P L, b P L, b ‰ a, (3.38)

xai ě 0 @pi, aq P BL, (3.39)

pa ´
ÿ

bPL
b‰a

”

q1abi ` q2bai ´ rabi

ı

ě uai ´
ÿ

bPL,
b‰a

Mabλab @pi, aq P BL, (3.40)

´Mabλab ` q1abi ` q2abi ´ rabi ě 0 @i P B @a P L, b P L, b ‰ a, (3.41)

qab,ai ě 0, rabi ě 0 @i P B @a P L, b P L, b ‰ a (3.42)
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ÿ

pi,aqPBL

”

uai ´
ÿ

bPL
b‰a

Mabλab
ı

xai `
ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

Mabλabzabi “
ÿ

iPB

ÿ

aPB

ÿ

bPL
b‰a

rabi `
ÿ

aPL

pa. (3.43)

This is because (3.17) can be solved as a linear program and constraints (3.35) –

(3.43) represent the primal feasibility, dual feasibility, and strong duality conditions.

However, note that these conditions are linear in the binary integer variables λab, a P

L, b P L. Moreover, the terms ´Mabλabxai andM
abλabzabi cancel out for all i P B, a P

L, b P L, b ‰ a when x is optimal. This follows from Lemma 3.1. As a result, for a

given λ vector (whose components are either 0 or 1), the strong duality condition

(3.43) for an optimal solution x, can be further simplified as,

ÿ

pi,aqPBL

uai x
a
i “

ÿ

iPB

ÿ

aPB

ÿ

bPL
b‰a

rabi `
ÿ

aPL

pa. (3.44)

In Proposition 3.2, we formalize the argument that if λab P t0, 1u, @ a, b P L then

(3.44) holds true given the inequalities (3.35) – (3.42).

Proposition 3.2 If λab P t0, 1u, @a, b P L, then (3.44) holds true at optimality along

with inequalities (3.35) – (3.42).

Proof of Proposition 3.2. Let x be a solution to (3.35) – (3.42) and (3.43). If

λab P t0, 1u, @ a, b P L, then by Lemma 3.1, we have that ηpxq “ 0. As a result,

(3.35) – (3.42) and (3.44) hold true. ˝

Next, I use Proposition 3.2 to transform OBP to a linear integer programming

problem. The details are as discussed next in §3.5.2.

3.5.2 Relaxing and linearizing OBP

Here, I describe further steps to simply problem OBP. Besides replacing the inner

optimization problem (3.17) with constraints (3.35) – (3.42), and (3.43), we make

use of the following linearizations. To do so, I define variables sab,´il , ϕab,´il , tab,´il ,
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gabl , and γabl as follows and impose the appropriate linear constraints.

sab,´il ” ya,´il yb,´il , ϕab,´il ” λabsab,´il , tab,´il ” λabya,´il , gabl ” λabxal , γabl ” λabzabl .

(3.45)

For notational ease we define vectors s, ϕ, t,g, γ corresponding to sab,´il , ϕab,´il , tab,´il ,

gabl , and γabl respectively. This leads us to a linear integer programming problem,

OBP-IP, where λ is the only binary integer decision variable. To avoid clutter and

improve readability, we present the complete formulation of OBP-IP in Appendix

§3.10. It is noteworthy that formulation OBP-IP includes the constraints (3.114)

and (3.115). Proposition 3.3 below justifies the need for these constraints in OBP-IP.

Proposition 3.3 The inclusion of constraints gabi “ γabi for all i P B, a, b P L and

tab,´il “ ϕab,´il for all i P B, l P B, l ‰ i, a P L, b P L, b ‰ a in the constraint set of

OBP-IP ensures that the optimal objective value of OBP-IP is equal to the optimal

objective value of OBP.

Proof of Proposition 3.3.

The necessary conditions for the optimality of OBP is as discussed in §3.5.1. At

optimality of OBP, it is a necessary condition that

ÿ

pi,aqPBL

uai x
a
i “

ÿ

iPB

ÿ

aPB

ÿ

bPL
b‰a

rabi `
ÿ

aPL

pa

with xai , pi, aq P BL taking integral values. In the absence of constraints (3.114) and

(3.115), there may exist fractional solutions to variables xai , pi, aq P BL that satisfy

constraint (3.98). Such fractional values of xai , pi, aq P BL may lead to objective

function values higher than that OBP-IP at optimality. Constraints (3.114) and

(3.115) ensure that the necessary condition for optimality of OBP is satisfied. Since

the optimal solution to OBP is integral (by definition), and the optimal solution to

OBP-IP are integral (by Lemma 3.4), since the integral points in the feasible region

of OBP-IP are identical to the feasible region of OBP, the optimal objective values

of OBP-IP and OBP are identical. ˝
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Finally, in Lemma 3.4, I show that only the variables λ need be constrained to

take binary values, while all the remaining variables can be relaxed to take contin-

uous values. Thus, the number of binary variables in OBP-IP is
`

|L|

2

˘

“
|L|p|L|´1q

2
.

Lemma 3.4 OBP-IP always has a feasible solution. The optimal solution to OBP-

IP is such that y˚,x˚, z˚, s˚, ϕ˚, t˚,g˚, γ˚ are integral, though they are allowed to

take continuous values.

Proof of Lemma 3.4. Consider any a P L. Let λab P t0, 1u for all b P L, b ‰ a as

required in OBP-IP. Then, the following values of the decision variables p,q, r, π,

of OBP-IP solve OBP-IP.

1. rabi “ 0 for all i P B and b P L, and

2. q1abi ` q2abi “ Mab
i λ

ab for all i P B and b P L.

Given vector λ, for each a P L, define a set L1paq that is constructed as follows:

1. L1paq is empty initially,

2. L1paq is populated with elements b P L such that λab “ 1,

3. L1paq is further populated with elements c P L, c R L1paq such that λbc “ 1 or

λbc “ 0 for all b P L such that λab “ 1,

4. L1paq is populated with element a.

Intuitively, the set L1paq is the subset of set L that contains item a and all items

bundled with a. The vector λ induces such a bundling (see definition 3.3.) For all

items c P L1paq, set pc such that
ř

cPL1paq
pc “

ř

cPL1paq
uci˚paq

where

i˚paq “ argmax
kPB

t
ÿ

cPL1paq

ucku. (3.46)

In a similar manner, I define L1peq and i˚peq for all e P L, e R L1paq. We repeat this

exercise for all item bundlings induced by λ. This way, we now have partition of set
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L, and each item bundling in the partition can be defined by a unique item. Let

LU Ď L be a set of all items that can be used to uniquely identify a bundling in the

partition induced by λ. Thus, we have

ÿ

aPLU

ÿ

cPL1paq

pc “
ÿ

aPLU

ÿ

cPL1paq

uci˚paq. (3.47)

Notice that
ř

aPLU

ř

cPL1paq
uci˚paq

is a value I have obtained for the RHS of equation

(3.98). Using this, I obtain values for x and z such that equation (3.98) is satisfied.

Such values can be obtained as follows:

xci˚paq “ 1 @ a P L1
paq, zcdi˚paq “ 1 @ c, d P L1

paq, d ‰ c. (3.48)

xcj “ 0 @ j ‰ i˚paq, zcdj “ 0 @ j ‰ i˚paq, c, d P L1
paq, d ‰ c.

With this selection of x and z, we have that the LHS of (3.98) also equals

ÿ

aPLU

ÿ

cPL1paq

uci˚paq.

With these values for decision variables in OBP-IP, it is easy to pick feasible values

for the other decision variables of OBP-IP. Thus, we have a feasible solution for

OBP-IP.

I now move onto the second statement of Lemma 3.4. For any vector λ feasible

to OBP-IP, we have that x˚, z˚ are integer-valued at optimality of OBP-IP. This

follows from the fact that problem SWLP has integral solutions, and that x˚, z˚ are

a solution to the inner optimization problem in problem OBP, and that this inner

optimization problem can be solved using a linear program with the structure of

SWLP. The presence of the constraints (3.114) and (3.115) ensures that there are

no terms involving variables g, γ, t, ϕ in the objective function of OBP-IP. Thus,

they are not influenced by the objective function. This implies that since x˚, z˚

are integer-valued at optimality, we have that g˚ and γ˚ are integral at optimal-

ity. Variables y˚ and s˚ are integral at optimality, since, for a fixed vector λ, the
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variables y and s are not dependent on x and z, and the structure of the problem

involving y and s is identical to the problem SWLP. The variables t and ϕ do not

feature in the objective function of OBP-IP because of constraint (3.115). Thus,

they are not influenced by the objective function. This implies that since y˚, s˚ are

integer-valued at optimality, we have that t˚ and ϕ˚ are integral at optimality. ˝

As we show in §3.6, Lemma 3.4 enables the development of an iterative algorithm

using Benders decomposition approach to solve OBP-IP. Thus, the solution to OBP-

IP will provide the auctioneer the optimal partition for Step 2 of the PBA (defined

in §3.3) after the bids have been solicited in Step 1 (recall that the bids solicited in

Step 1 are truthful by Proposition 3.1).

3.6 Benders Decomposition to Solve OBP-IP

The structure of OBP-IP allows for the application of the Benders decomposition

technique as a solution algorithm. Consider a rewriting of problem OBP-IP where

all terms involving λ are moved to the right-hand sides of the constraints where

such terms are present. Essentially, problem OBP-IP can then be rewritten in the

following compact notation that we call problem P-OBP-IP:

P-OBP-IP: max cTh ` 0Tλ, (3.49)

s.t. Ah ď RHSpλq, (3.50)

λab P t0, 1u @a, b P L, b ‰ a, (3.51)

where A is the coefficient matrix, h represents the vector of all variables in OBP-

IP other than λ, 0 is the zero-vector, and RHSpλq represents the right-hand side

vector of OBP-IP when all terms involving λ are moved to the right-hand side. It is

readily observable that the variable λ represents the first-stage variables that are to

be fixed for each iteration of Benders decomposition, while the variable h represents

64



the second stage-variables whose values depend on the first stage variable λ. In the

context of Benders decomposition, the problem P-OBP-IP can be decomposed into

a master problem (MP), only involving binary integer variables λ, and a subproblem

(SP) involving all other continuous variables in the relaxed linear program. In every

iteration of the decomposition algorithm, the first stage variables in λ are first

computed using MP, and then used to solve the second stage problem SP. At the

end of each iteration, additional valid inequalities, generated after solving the SP,

are added to the MP and the process is repeated until the algorithm converges to

an optimal solution. Problems MP and SP are described below.

MP: max z, (3.52)

s.t. λab “ λba @a, b P L, b ‰ a, (3.53)

λaa “ 0 @a P L, (3.54)

λab P t0, 1u @a, b P L, b ‰ a. (3.55)

For a fixed value of λ “ λ˚, the primal of the subproblem SP (to be defined shortly),

which we call P-SP, is as follows.

P-SP: max cTh, (3.56)

s.t. Ah ď RHSpλ˚
q, (3.57)

h ě 0. (3.58)

Note that P-SP is a linear program. This follows from Lemma 3.4. This is important

because it allows us to have a dual formulation, which we call SP. The problem SP,

when λ “ λ˚, is as follows.

SP: min RHSpλ˚
q
Td, (3.59)
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s.t. ATd ď c, (3.60)

d ě 0. (3.61)

Next, I present the Benders decomposition algorithm in Algorithm 1. In Algorithm

1, SW Max refers to the maximum social welfare obtainable from a feasible assign-

ment of the items to the bidders. This is an upper bound on the maximum VCG

revenue. The terms PBR and SSR refer to the VCG revenue obtained from pure

bundling and separate selling respectively. They represent a (possibly tight) lower

bound on the VCG revenue. PBR and SSR can be computed a priori from the

values uai , @pi, aq P BL provided in Step 1 of the PBA. The term ε is a tolerance

parameter used as a stopping criterion for the algorithm.

Algorithm 1 Benders decomposition for OBP-IP.

1. Initialize λ˚ “ 0, receive values uai pi, aq P BL, set M

2. Initialize UB “ SW Max, LB “ maxtPBR, SSRu

3. while UB ´ LB ą ε do

4. Solve problem SP using λ˚ and obtain d˚, which is the optimal value of d

when SP is solved

5. Set UB “ mintUB,RHSpλ˚q
Td˚u

6. If RHSpλ˚q
Td˚ is unbounded, add constraint RHSpλq

Td˚ ě 0 to MP

7. Else add constraint z ď RHSpλq
Td˚ to MP

8. Solve MP max z s.t. λab P t0, 1u, @a, b P L, b ‰ a, and subject to the

generated constraints in lines 6 and 7, and obtain λ˚ and z˚, which are the

optimal values of λ and z when MP is solved

9. Set LB “ maxtLB, z˚u

end

10. Return λ˚

As noted earlier, the MP is a mixed-integer program with binary variables λ

and continuous variable z, while the problem SP is a linear program in d. MP can

be solved using standard techniques for mixed integer programming, while SP can

be solved using standard techniques for linear programs. The cuts (optimality and
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feasibility) added to the master problem MP, in steps 6 and 7, are such that the

objective of MP is (weakly) monotonically improving. The proof of this follows from

standard literature on Benders decomposition (Bertsimas and Tsitsiklis 1997).

The construction of Algorithm 1 gives us an insight into the marginal value of

bundling two items. Line 4 involves the computation of d˚ that is used to update

λ in line 8. The components of d˚ can be used to compute the marginal change

in revenue from changing a component of vector λ between two iterations. Thus,

for the item bundling λ˚ computed in the final iteration, the coefficient of λab˚ in

z˚ “ RHSpλ˚qT pd˚q in the final iteration is the marginal revenue benefit of putting

together items a and b.

3.7 Numerical Experimentation

In this section, I present results from numerical experiments of OBP-IP. For every

value of |L| and |B|, as considered in Table 3.3a, Table 3.3b, and Table 3.4, I run 5

instances. For each of these 5 instances, a bidder’s value for an item is an integer

drawn from the set t1, 2, 3, ¨ ¨ ¨ , 100u with equal probability. I set the value of M

to 10,000 for all experiments. I run the computations with CPLEX 20.1 (via the

DOCPLEX package on Python) on a MacBook Air 2015 on the macOS Catalina

operating system with a 1.6 GHz Dual-Core Intel Core i5 processor, and a 4 GB

1600 MHz DDR3 RAM.

|L|

3 4 5 6 7 8 9

|B|

3 16.82 23.11 26.98 25.79 28.88 26.30 27.75
4 10.31 12.15 10.15 10.26 10.85 13.59 17.29
5 3.76 5.67 5.35 4.99 4.43 4.13 5.01
6 1.78 3.38 3.30 4.23 3.54 3.35 0.99
7 2.72 3.22 3.07 3.62 2.92 1.77 0.93
8 1.47 3.09 3.15 2.45 2.33 1.01 0.00
9 0.09 0.64 0.48 0.34 0.74 0.38 0.09
10 0.27 0.35 0.42 0.53 0.79 0.09 0.00
11 1.96 0.56 0.20 0.24 0.31 0.00 0.14
12 0.10 0.50 0.48 0.08 0.55 0.17 0.00

(a) APIR.

|L|

3 4 5 6
3 0.034 0.157 0.595 1.656
4 0.045 0.207 0.492 12.543
5 0.086 0.317 1.440 10.439
6 0.104 0.365 1.460 20.083
7 0.140 0.529 2.906 25.353
8 0.146 0.615 5.928 58.539
9 0.203 0.872 5.121 77.946
10 0.232 1.050 8.217 90.942
11 0.319 1.288 8.635 99.118
12 0.335 1.402 11.687 168.214

(b) Solution time (in secs.)

Table 3.3: APIR and solution times.

The results in Tables 3.3a, 3.3b, and 3.4 are obtained from the use of the default
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technique for integer programs available with CPLEX6. For each of the 5 instances

for a value of |B| and |L|, there is an associated percentage increase in revenue

(PIR), defined as the percentage gain in revenue from optimal bundling over the

revenue from separate selling. Table 3.3a reports the average PIR (APIR) across

the 5 instances for a given value of |L| and |B|. I observe a general trend that as |L|

|B|

decreases, APIR decreases. I attribute this to what we call the “competition effect”

on revenue explained as follows: When |B| increases, the revenue from separate

selling increases, since higher competition implies higher bids in expectation. As

a result, the increase in revenue provided by optimal bundling over the revenue

from separate selling decreases. I also note a trend where APIR increases on the

whole as |L| increases when |B| is fixed. I attribute this trend to the “item effect”:

More items on sale results in more possibilities for bundling and surplus extraction.

However, the results show that this effect is not as pronounced as the “competition

effect”. The “competition effect” appears to dampen the “item effect” leading to

low APIR despite increasing the number of items. Figure 3.2a depicts the variation

of the average APIR (where the averaging is across |L|) with the number of bidders

|B|. Note how the percentage increase in revenue decreases as a general trend when

the number of bidders increases.

(a) APIR averaged across |L| vs. |B|. (b) OBR
SW Max averaged across |L| vs. |B|.

Figure 3.2: Average APIR and OBR
SW MAX

versus |B|.

Table 3.3b presents the average solution time for problem instances. I observe that
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the solution time increases substantially when |L| is large. This is attributable

to the fact that the number of components of vector λ increases as |L| increases.

The number of components of λ is upper-bounded by |L|p|L|´1q

2
, and this bound can

increase quickly as |L| increases. As larger instances (i.e., instances where |L| ě 7)

take longer to run, we terminate the numerical runs after 10 minutes. Without a

time limit constraint, I observe that computational times exceed 30 minutes. For

instances where |L| ą 8, I observe that computational times exceed an hour without

any appreciable change to the optimality gap. To check the quality of the solutions,

especially for instances where |L| ě 7, whose computational time was restricted to

10 minutes, I examine the average of the ratio of bundling revenue to the maximum

social welfare (the average is taken across all 5 instances for a given |L| and |B|), since

the maximum social welfare is the best achievable revenue for the auctioneer under

any mechanism. These figures are shown in Table 3.4. When |L| “ 7, 8, 9, OBR

refers to the highest objective value of OBP-IP obtained at the time of termination

of the computations (which was exactly after 10 minutes). For instances where |L| “

3, 4, 5, 6, OBR refers to the optimal bundling revenue. The term SW Max refers

to the maximum social welfare achievable in a problem instance. As |B| increases,

I note an increasing trend (on average) in the ratio of bundling revenue to the

maximum social welfare. This is because higher competition eats into the surplus of

every bidder, reducing the gap between the revenue from bundling and the maximum

social welfare. Figure 3.2b depicts the variation of the average of the OBR
SW Max

ratio

(averaged across the number of items) with the number of bidders |B|. Note the

general increasing trend in the OBR
SW Max

ratio. An important observation from this

analysis is that the benefits of item-bundling are best realized when the ratio of

items to bidders is high, and that the benefits of item-bundling may not be very high

when the auctioneer faces a large number of bidders. Since the “competition effect”

dominates the effect of |L| on auctioneer revenue when the number of bidders is high,

the auctioneer may consider trading off between the costs of longer computation

times and the revenue benefits of bundling. From the numerical results, it appears
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|L|

3 4 5 6 7 8 9

|B|

3 70.21 67.67 68.30 74.91 72.03 74.12 75.68
4 76.55 73.97 77.08 74.84 82.03 77.52 80.59
5 83.45 97.35 83.21 82.36 87.01 80.53 84.96
6 85.85 79.35 86.65 83.87 86.32 83.43 84.54
7 85.85 83.80 85.60 85.50 88.77 85.05 82.88
8 87.31 83.89 81.20 90.22 90.23 90.39 87.78
9 87.60 90.83 91.49 90.41 91.36 87.13 88.41
10 91.01 88.71 90.81 91.60 90.64 89.60 90.07
11 94.36 88.81 91.64 91.22 91.39 90.46 89.98
12 91.92 91.01 92.64 91.63 90.97 93.24 92.63

Table 3.4: The OBR
SW Max

ratio (%).

that the auctioneer will not benefit considerably from the optimal bundle, and may

choose to consider a suboptimal bundle in return for quick computation time, since

the high competition would extract much of the surplus already.

My implementation of Benders decomposition is based on a functionality pro-

vided in CPLEX7. Given any mixed-integer linear program as an input, CPLEX

uses the integer variables for the master-problem (MP), and uses the continuous

variables for the sub-problem SP as a default setting if Benders decomposition is

specified as a solution strategy. I use this CPLEX functionality because our decom-

position algorithm is similar to the master- and sub-problem structure. I observe

that the Benders decomposition algorithm (as implemented in CPLEX) is slower

in convergence compared to the default algorithm to solve mixed-integer programs.

Figure 3.3 shows the progression of the objective function value (of MP) with the

iterations. Figure 3.3a shows an instance where we obtain the optimal solution

(computation time: 4.426s). Table 3.5 shows two problem instances using Benders

decomposition where the algorithm did not terminate even after a large number of

iterations. The column ‘Opt. Gap’ displays the reported optimality gap, and the

column ‘Solution Time’ reports the time at which the algorithm was exogenously

terminated. The column ‘Objective’ reports the highest objective value achieved

at the time of termination. Figure 3.3b and Figure 3.3c show the progress of the

objective value with the iterations of the Benders decomposition algorithm.
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Instance Objective SW Max Objective
SW Max

Opt. gap Solution time (secs.)
|L| “ 9, |B| “ 3 543 604 89.90% 11.23% 1216.82
|L| “ 12, |B| “ 3 765 1016 75.30% 32.81% 1221.29

Table 3.5: Performance of Benders decomposition for two instances.

3.8 Conclusions

My problem is motivated as part of a broader problem on identifying revenue-

improving mechanisms for multi-item settings (Sandholm et. al. 2004). As I

showed in the illustration in §5.1, bundling can help improve the auctioneer’s rev-

enue. However, a challenge is that the auctioneer is not aware of the bidders’ valu-

ations of the items to make decisions on bundling. To solve this problem, I propose

a 3-step mechanism, called the Pairwise Bundler Auction (PBA), which incentivizes

the bidders to report their item-level valuations truthfully to the auctioneer before

she bundles the items. The revenue from the PBA with the optimal bundling and

the revenue from a VCG auction of the items using the same bundling are the same.

As a result, the auctioneer no longer has to decide on an item-bundling based on

ex-ante valuations to maximize her revenue (which, as noted, could be arbitrarily

bad once the bidders’ valuations are realized).

The main step of the PBA is Step 2, where the auctioneer optimally bundles the

items using the bidders’ valuations (reported truthfully in Step 1), to maximize her

revenue from the VCG auction of the bundles in Step 3. In this regard, I formally

describe the problem of computing the optimal bundling for revenue maximization

under a VCG auction, followed by a formulation the optimal bundling problem. As

part of problem formulation, I describe a series of simplification steps that reduced

the problem of computing an optimal bundle to that of solving a binary integer

linear program.

I show that the structure of the binary integer program used to solve the optimal

bundling problem had the structure needed for the application of Benders decom-

position. The binary integer variables are a part of the master problem, while the

other variables are considered under the subproblem. Thus, the master problem
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(a) |L| “ 6 and |B| “ 3. (b) |L| “ 9 and |B| “ 3.

(c) |L| “ 12 and |B| “ 3.

Figure 3.3: Bundling revenue versus iterations.

is a binary integer program, while the subproblem is a linear program. The solu-

tion to the subproblem in the final iteration has an interesting interpretation: They

represent the marginal benefit of having a pair of items together in the same bundle.

My results from numerical experiments show that the benefit of bundling over

separate selling decreases as the number of bidders increases. I refer to this phe-

nomenon as the “competition effect”. I conclude that the benefits of bundling are

best realized when the ratio of the number of items to the number of bidders per item

is high. From our numerical experiments, we observe that the computation time of

the optimal bundling problem is significantly high when the number of items is 7

or more. However, a feasible solution (bundling) that improves revenue over sepa-
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rate selling can be found fairly quickly by terminating the computations early. In

addition to these results, we present a class of linearly-constrained binary quadratic

optimization problems whose linear relaxations continue to yield binary solutions.

This contributes to literature in operations research theory.

My work is promising for the following reasons. I identified a mechanism (the

PBA) that incentivizes truthful bidding before the allocation rule is decided8 when

the bidders’ bundle valuations are additive. To the best of our knowledge, there is

no such precedent in literature. This has implications on auction design for revenue

improvement in multi-item auctions. A more general line of work we have identified

is auction design under a set of possible allocation rules, where bids (truthful or not)

are solicited before the final allocation rule is decided from this set.

As part of future research, one may consider the problem of item bundling in

settings with non-additive valuations. However, I point out that truthful bidding

may not be the optimal strategy for bidders with non-addtive bundle valuations

under the PBA sequence of events. Under this setting, perhaps other types of

payments and allocation rules can be considered. Alternatively, the problem of

identifying valuation functions for which truthful bidding is an optimal strategy

may be examined.
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Notes

2See https://yandex.com/support/direct/technologies-and-services/vcg-auction.html

3We use the terms “slots” and “items” interchangeably throughout the text.

4Essentially, a bundling refers to a partition of the set of items, and a bundle is a subset of

items included in the partition, i.e., a bundle is assigned to exactly one bidder. I use the terms

bundling and partitioning interchangeably.

5From here on, we refer to the online platform (i.e., the advertising service provider) as the

auctioneer (pronoun: she) and the advertisers as bidders (pronoun: he).

6https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-solving-mixed-integer-programming-

problems-mip

7https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-benders-algorithm

8The allocation of items to bidders depends on λ, which itself depends on the reported bids.
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3.9 Appendix: Solving (3.22), (3.23), (3.24)

We examine the solution technique for (3.22) – (3.24). Here, (3.22) – (3.24) is struc-

turally identical to problem (1) of Candogan et. al. (2015). As a result, its global

optimum can be obtained through a linearization scheme applied on (3.22) – (3.24)

(Candogan et. al. 2015). Candogan et. al. (2015) shows that solving the following

linear program, SWLP, yields the solution to (3.22) – (3.24). Let wabi “ Mabλab for

all i and for all a, b P L.

SWLP: max
ÿ

pi,aqPBL

”

ûai ´
ÿ

bPL
b‰a

wabi

ı

xai `
ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

wabi z
ab
i , (3.62)

s.t.
ÿ

iPB

xai “ 1 @ a P L ¨ ¨ ¨ ppaq, (3.63)

zabi ď xai @ i P B, @ a P L, b P L, b ‰ a ¨ ¨ ¨ pq1abi q, (3.64)

zabi ď xbi @ i P B, @ a P L, b P L, b ‰ a ¨ ¨ ¨ pq2abi q, (3.65)

zabi ě xai ` xbi ´ 1 @ i P B, @ a P L, b P L, b ‰ a ¨ ¨ ¨ prabi q, (3.66)

xai ě 0 @ pi, aq P BL. (3.67)

DSWLP: min
ÿ

iPB

ÿ

aPB

ÿ

bPL
b‰a

rabi `
ÿ

aPL

pa, (3.68)

s.t. ´
ÿ

bPL
b‰a

”

q1abi `q2bai ´rabi

ı

ě ûai ´
ÿ

bPL
b‰a

Mab
i λ

ab
@ pi, aq P BL ¨ ¨ ¨ pxai q, (3.69)

´wabi ` q1abi ` q2abi ´ rabi ě 0 @ i P B @ a P L, b P L, b ‰ a ¨ ¨ ¨ pzabi q, (3.70)

q1abi ě 0, rabi ě 0, q2abi ě 0 @ i P B @ a P L, b P L, b ‰ a. (3.71)

Thus, if x solves problem SWLP, then the following conditions on x hold true.

Primal Feasibility Conditions:

ÿ

iPB

xai “ 1 @ a P L, (3.72)
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xai ď 1 @ pi, aq P BL, (3.73)

zabi ď xai @ i P B, @ a P L, b P L, b ‰ a, (3.74)

zabi ď xbi @ i P B, @ a P L, b P L, b ‰ a, (3.75)

zabi ě xai ` xbi ´ 1 @ i P B, @ a P L, b P L, b ‰ a, (3.76)

xai ě 0 @ pi, aq P BL. (3.77)

Dual Feasibility Conditions:

pa ´
ÿ

bPL
b‰a

”

q1abi ` q2bai ´ rabi

ı

ě ûai ´
ÿ

bPL
b‰a

wabi @ pi, aq P BL, (3.78)

´wabi ` q1abi ` q2abi ´ rabi ě 0 @ i P B @ a P L, b P L, b ‰ a, (3.79)

q1abi ě 0, q2abi ě 0, rabi ě 0 @ i P B @ a P L, b P L, b ‰ a, (3.80)

πai ě 0 @ pi, aq P BL, (3.81)

pa is unrestricted @ a P L. (3.82)

Strong Duality Conditions:

ÿ

pi,aqPBL

”

ûai ´
ÿ

bPL
b‰a

wabi

ı

xai `
ÿ

iPB

ÿ

aPL

ÿ

bPL
b‰a

wabi z
ab
i “

ÿ

iPB

ÿ

aPB

ÿ

bPL
b‰a

rabi `
ÿ

aPL

pa. (3.83)

3.10 Appendix: Problem OBP-IP

OBP-IP: max
λ,y

ÿ

iPB

«

ÿ

lPB
l‰i

ÿ

aPL

”

ual y
a,´i
l ´

ÿ

bPB
b‰a

Mabtab,´il

ı

`
ÿ

lPB
l‰i

ÿ

aPL

ÿ

bPL
b‰a

Mabϕabl

ff

(3.84)

´
ÿ

iPB

«

ÿ

lPB

ÿ

aPL

”

ua,´il xal ´
ÿ

bPL
b‰a

Mab,´i
l gabl

ı

`
ÿ

lPB

ÿ

aPL

ÿ

bPL
b‰a

Mab,´i
l γabl

ff

,

s.t.
ÿ

lPB
l‰i

ya,´il “ 1 @ a P L @ i P B, (3.85)
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ya,´il P t0, 1u @ pl, aq P BL, l ‰ i, @ i P B, (3.86)

λab “ λba @ a P L, b P L, b ‰ a, (3.87)

λaa “ 0 @ a P L, (3.88)

λab P t0, 1u @ a P L, b P L, b ‰ a, (3.89)

ÿ

iPB

xai “ 1 @ a P L, (3.90)

zabi ď xai @ i P B, @ a P L, b P L, b ‰ a, (3.91)

zabi ď xbi @ i P B, @ a P L, b P L, b ‰ a (3.92)

zabi ě xai ` xbi ´ 1 @ i P B, @ a P L, b P L, b ‰ a, (3.93)

xai ě 0 @ pi, aq P BL, (3.94)

pa ´
ÿ

bPL
b‰a

”

q1abi ` q2abi ´ rabi

ı

ě uai ´
ÿ

bPL
b‰a

Mabλab @ pi, aq P BL, (3.95)

´Mabλab ` q1abi ` q2abi ´ rabi ě 0 @ i P B @ a P L, b P L, b ‰ a, (3.96)

q1abi ě 0, q2abi ě 0, rabi ě 0 @ i P B @ a P L, b P L, b ‰ a, (3.97)

ÿ

pi,aqPBL

uai x
a
i ´

ÿ

pi,aqPBL

ÿ

bPL
b‰a

Mabgabi `
ÿ

pi,aqPBL

ÿ

bPL
b‰a

Mabγabi “
ÿ

iPB

ÿ

aPB

ÿ

bPL
b‰a

rabi `
ÿ

aPL

pa, (3.98)

sab,´il ď ya,´il @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.99)

sab,´il ď yb,´il @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.100)

sab,´il ě ya,´il ` yb,´il ´ 1 @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.101)

ϕab,´il ď λab @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.102)

ϕab,´il ď sab,´il @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.103)

ϕab,´il ě λab ` sab,´il ´ 1 @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.104)

tab,´il ď λab @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.105)
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tab,´il ď ya,´il @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B (3.106)

tab,´il ě λab ` ya,´il ´ 1 @ l P B, l ‰ i, a P L, b P L, b ‰ a, i P B, (3.107)

gabl ď λab @ l P B, a P L, b P L, b ‰ a, (3.108)

gabl ď xal @ l P B, a P L, b P L, b ‰ a, (3.109)

gabl ě λab ` xal ´ 1 @ l P B, a P L, b P L, b ‰ a, (3.110)

γabl ď λab @ l P B, a P L, b P L, b ‰ a, (3.111)

γabl ď zabl @ l P B, a P L, b P L, b ‰ a, (3.112)

γabl ě λab ` zabl ´ 1 @ l P B, a P L, b P L, b ‰ a, (3.113)

gabl “ γabl @ l P B, a P L, b P L, b ‰ a, (3.114)

tab,´il “ ϕab,´il @ i P B, l P B, l ‰ i, a P L, b P L, b ‰ a, (3.115)

All variables except pa, a P L are non-negative. (3.116)

3.11 Appendix: Illustration of Truthful Bidding

Let L “ t1, 2u and let B “ t1, 2u. Let the true valuations for the items be as follows:

u11 “ 1, u21 “ 5, u12 “ 2, u22 “ 3.

1 2
1 1 5
2 2 3

Table 3.6: True Valuations.

Instance 1 (Overreporting). Let û11 “ 3 ą u11 “ 1, û21 “ u21 “ 5, û12 “ u12 “

2, û22 “ u22 “ 3. Note that bidder 1 has misreported his value for item 1 at 3 instead

of its true value 1.

If the two items were bundled, Bidder 1 wins item 1 and item 2 since û11 ` û21 ą

û12 ` û22 and pays an amount equal to û12 ` û22 “ 2 ` 3 “ 5. Bidder 1’s payoff is
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1 2
1 (3) 1 5

2 2 3

Table 3.7: Misreported valuation underlined in parentheses with the true valuation
outside the parentheses.

u11 ` u21 ´ pu12 ` u22q “ 1 ` 5 ´ p2 ` 3q “ 1. If bidder 1 had reported truthfully, i.e.,

û11 “ u21, then he would win item 1 and item 2 since û11 ` û21 ą û12 ` û22 and pays an

amount equal to û12` û22 “ 2`3 “ 5. His payoff then is payoff is u11`u21´pu12`u22q “

1 ` 5 ´ p2 ` 3q “ 1.

If the two items were sold separately, Bidder 1 would win item 1 and item 2

since û11 ą û12 and û21 ą û22. Bidder 1 would pay û12 “ 2 for item 1 and û22 “ 3 for

item 2. His payoff would be u11 ´ û12 ` u21 ´ û22 “ 1 ´ 2 ` 5 ´ 3 “ 1. If bidder 1

had reported truthfully, i.e., û11 “ u21, then bidder 1 loses item 1 and pays zero for

item 1. Bidder 1 wins item 2 since û21 ą û22 and pays û22 for item 2. His payoff from

reporting truthfully is u21 ´ û22 “ 5 ´ 3 “ 2 ą 1. This different of 1 unit of surplus

is because bidder 1 did not have to lose 1 unit of surplus (from acquiring item 1)

under truthful bidding that he lost under misreporting his value for item 1. Note

that bidder 1 continues to make the same surplus of 5 ´ 3 “ 2 units from acquiring

item 2 under misreporting that he did even under truthful bidding. Thus, the loss

of 1 unit of surplus is not compensated for by surplus gains on item 2.

Instance 2 (Underreporting). Let û11 “ 0.5 ă u11 “ 1, û21 “ u21 “ 5, û12 “

u12 “ 2, û22 “ u22 “ 3. Note that bidder 1 has misreported his value for item 1 at 0.5

instead of its true value 1.

1 2
1 (0.5) 1 5

2 2 3

Table 3.8: Misreported valuation underlined in parentheses with the true valuation
outside the parentheses.

If the two items were bundled, bidder 1 would win item 1 and item 2, and would

pay û12`û22 “ 2`3 “ 5. His surplus would be u11`u21´pû12`û22q “ 1`5´p2`3q “ 1.

If bidder 1 had reported truthfully, i.e., û11 “ u11, he would win item 1 and item 2,
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and would pay û12 ` û22 “ 2 ` 3 “ 5. His surplus would be u11 ` u21 ´ pû12 ` û22q “

1 ` 5 ´ p2 ` 3q “ 1. Thus, misreporting his bid is not providing bidder 1 with any

additional surplus gain.

If the two items were sold separately, then bidder 1 would win item 2 and bidder

2 would win item 1. Bidder 1 would pay û22 for item 2 and make a surplus of

u21 ´ û22 “ 5´3 “ 2. If bidder 1 would have reported truthfully, then bidder 1 would

win item 2 and bidder 2 would win item 1. Bidder 1 would pay û22 for item 2 and

make a surplus of u21 ´ û22 “ 5 ´ 3 “ 2. Thus, misreporting his bid is not providing

bidder 1 with any surplus gain.

Instance 3 (Overreporting). Let û11 “ u11 “ 1, û21 “ 7 ą u21 “ 5, û12 “ u12 “

2, û22 “ u22 “ 3. Note that bidder 1 has misreported his value for item 2 as 7 instead

of the true value 5.

1 2
1 1 (7) 5

2 2 3

Table 3.9: Misreported valuation underlined in parentheses with the true valuation
outside the parentheses.

If the two items were bundled, bidder 1 would win both item 1 and item 2. His

surplus would then be u11 ` u21 ´ pû12 ` û22q “ 1 ` 5 ´ p2 ` 3q “ 1. If bidder 1 bid

truthfully, i.e., û21 “ u21, then bidder 1 would win item 1 and item 2 with a surplus

of u11 ` u21 ´ pû12 ` û22q “ 1 ` 5 ´ p2 ` 3q “ 1.

If the two items were sold separately, then bidder 2 would win item 1 since

û12 ą û11 and bidder 1 would win item 2 since û21 ą û22. Bidder 1 would pay û22 “ 3

for item 2. Bidder 1’s surplus would be u21 ´ û22 “ 5´3 “ 2. If bidder 1 had reported

his value truthfully, i.e., û21 “ u21, then he would have won item 2 and lost item 1.

Then, his surplus would be u21 ´ û22 “ 5 ´ 3 “ 2.

Instance 4 (Underreporting). Let û11 “ u11 “ 1, û21 “ 3.5 ă u21 “ 5, û12 “

u12 “ 2, û22 “ u22 “ 3 Note that bidder 1 has misreported his value for item 2 as 3.5

instead of the true value 5.

If the two items were bundled together, then say bidder 2 would win items 1
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1 2
1 1 (3.5) 5

2 2 3

Table 3.10: Misreported valuation underlined in parentheses with the true valuation
outside the parentheses.

and 2 since û12 ` û22 ą û11 ` û21. Bidder 1’s surplus would be zero. If bidder 1 bid

truthfully, then bidder 1 would win items 1 and 2 and would make a surplus of

u11 ` u21 ´ pû12 ` û22q “ 5 ` 1 ´ p2 ` 3q “ 1. Thus, bidder 1 gains from bidding

truthfully.

If the two items were sold separately, then bidder 1 would win item 2 and would

pay û22 “ 3. His surplus would be u21 ´ û22 “ 5 ´ 3 “ 2. If bidder 1 bid truthfully,

then bidder 1 would win item 2 and would pay û22 “ 3. His surplus would be

u21 ´ û22 “ 5 ´ 3 “ 2.

We note that in all four instances, a bidder would weakly gain by bidding truth-

fully, whether or not the items are bundled. This demonstrates that bidding truth-

fully is a weakly dominant strategy. Similar demonstrations can be obtained in cases

with more than 2 items and 2 bidders by assuming that items 1 and 2 are bundles

and by assuming that bidder 2’s valuation is the second-highest of item 1 and item

2 respectively (when considering that item 1 and 2 are being sold separately) and by

assuming that bidder 2’s valuation for items 1 and 2 together is the second-highest

of all bidders for items 1 and 2 together (when considering that item 1 and 2 are

being sold as a bundle).
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Chapter 4

Optimizing Offer Sets for

Multi-Item Simultaneous Auctions

4.1 Introduction

Simultaneous sealed-bid auctions are a commonly-used format for the sales of sev-

eral items simultaneously to multiple interested buyers (henceforth referred to as

bidders). In a simultaneous sealed-bid auction, the auctioneer auctions off several

items concurrently, with bidders submitting sealed bids for the items they are in-

terested in separately. The use of simultaneous sealed-bid auctions can be seen in

the US oil and natural gas auctions, timber auctions, Essential Air Service auctions,

and the Regional Connectivity Scheme auctions (Hendricks et. al. 2014, Athey and

Levin 2001, Essential Air Service 2018, RCS Scheme 2016) and eBay auctions

(Overby and Kannan 2015).

In practice, bidders have to ascertain the values of the items they are interested

in bidding for before they submit their bids for the items (Golrezaei and Nazerzadeh

2017, Ye 2007, Hendricks et. al. 2014, Athey and Levin 2001). For example, when

bidders have to bid for oil tracts, they conduct inspections to obtain estimates of the

various tracts put up for sale. This process of conducting due diligence, or simply,

an inspection, is a costly affair in practice. An analogous phenomenon can also be
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found in online auctions on websites such as eBay. Here, bidders need to identify

items that they would be interested in, and they incur search costs in doing so.

These search costs determine the number of auctions a bidder can participate in

(Overby and Kannan 2015).

The high costs of inspection result in the following consequences for the bidders

and the auctioneer: paq bidders are limited in the number of items they can submit

bids for, since bid formulation is preceded by costly inspection, and pbq bidders may

try to avoid inspecting items they believe the rival bidders are inspecting so that

they avoid competition at the bidding stage (Haile et. al. 2010, Hendricks et. al.

2014). Point paq refers to the fact that the bidders have limited inspection budgets.

As a result, bidders only inspect (and bid for) as many items as their inspection

budgets permit. Point pbq refers to the fact that bidders may try to avoid other

bidders, and this affects the number of bidders on each item that is put up for sale.

In short, paq and pbq influence a bidder’s participation decisions in the simultaneous

auction of the various items put up for sale.

In this chapter, we examine the auctioneer’s problem of identifying a subset of

items (out of all available items) to put up for sale under a simultaneous second-

price auction, given points paq and pbq that influence the bidders’ participation

decisions. The auctioneer’s search for this subset is driven by the fact that she

cannot accurately predict the participation decisions of the bidders on a set of items

she chooses to put up for sale. That is, the auctioneer does not have knowledge

of either the bidders’ inspection budgets or their participation decisions until after

they have submitted their bids, and she needs to decide on a set of items to put

up for sale before they do so. We show an illustration below to describe how the

bidders’ participation decisions can impact the auctioneer’s expected revenue.

Consider a simple instance with 9 identical bidders looking to acquire one item

each from a set I “ t1, 2, 3u of items. Let the bidders’ private values for item 1

be distributed uniformly between r1, 2s, item 2 be distributed uniformly between

r2, 3s, and item 3 be distributed uniformly between r3, 4s. In such a setting, the
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auctioneer’s expected revenue from the sale of items in set I is maximized when

the bidders participate in a manner where there are 3 bidders on each one of the

items. When this happens, the auctioneer’s expected revenue from a simultaneous

second-price auction is 1` 2
4

`2` 2
4

`3` 2
4

“ 7.59. However, if it were such that there

were 4 bidders on item 2 and 5 bidders on item 3, then the auctioneer’s expected

revenue would be 2 ` 3
5

` 3 ` 4
6

“ 6.2667 ă 4.5. The worst-case expected revenue

is realized when all 9 bidders bid for item 1. In this case, the auctioneer’s expected

revenue is 1 ` 8
10

“ 1.8 ă 6.2667 ă 7.5. This simple illustration demonstrates how

the uncertainty in the bidders’ participation decisions can make a difference to the

auctioneer’s expected revenue for the same set I of items put up for sale.

We will, henceforth, refer to the various possible sets of participation decisions of

the bidders as the bidders’ participation patterns. For any set of items the auctioneer

puts up for sale, there are several possible participation patterns. For example, if

the auctioneer puts up a set Z of items for sale, she could potentially see all of the

bidders bidding for just one item in the set Z with all others remaining unsold, or

she could potentially see bidders participating in large numbers for some items in Z

but very thinly on some others. The total expected revenue from putting up item set

Z for sale depends on what participation pattern is realized, and this participation

pattern is uncertain.

The auctioneer needs to identify a subset of items to put up for sale keeping

in mind the uncertainty in participation patterns of the bidders. We make use of

a minimax regret criterion to solve the auctioneer’s problem of identifying a set

of items to put up for sale. We call such a set the offer set. The uncertainty

in the problem arises from the fact that the auctioneer does not know what the

bidders’ participation pattern will look like for any offer set. In the light of this

uncertainty, a minimax regret criterion would be appropriate, as opposed to an

expected expected10 revenue maximization criterion. This is because the expected

expected revenue maximization criterion makes use of the bidders’ mixed strategy

Nash equilibrium probability distributions, and these distributions are difficult to
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estimate in practice. In contrast, the minimax regret criterion is a distribution-free

criterion, and will thus be well-suited to our problem. To the best of our knowledge,

there has never been a precedent for an optimal subset selection problem of this

nature in management literature.

In the context of our problem, the term regret alludes to the “cost of uncer-

tainty” (borne by the auctioneer) posed by the uncertainty in the bidders’ partic-

ipation decisions. As we showed in the illustration above, the uncertainty in the

bidders’ participation decisions (or participation patterns) impacts the auctioneer’s

expected revenue. In practice, it may not be possible for the auctioneer to estimate

the probability distributions of each bidder’s participation decisions. Therefore, an

approach that aims to minimize the worst-case “cost of uncertainty” is appropriate.

We also briefly discuss why two other common approaches to dealing with uncer-

tainty, i.e., the worst-case approach and expected value maximization approach, are

not appropriate here.

Our key result is that the problem of identifying the max-regret minimizing

subset of items is achievable in polynomial time when piq the bidders’ item valuations

are additive, piiq bidders’ valuations for an item are independently and identically

distributed, and piiiq the size of the state space modeling uncertainty is polynomially

bounded.

A modeling construct we make use of in our problem is that for any set of items

put up for sale, there is a discrete set of possible expected revenue amounts the

auctioneer could gain. Each value of expected revenue corresponds to a participation

pattern, and the number of possible participation patterns is finite in number. As a

result, we are able to rank-order the possible values of expected revenue and treat

each value of expected revenue as an outcome of a state of nature.

Our results are insightful in business settings that involve the simultaneous auc-

tions of multiple items where the bidders’ participation is limited to a subset of the

entire inventory of items either because item inspection is costly or because search

costs can be very high. A known example of costly pre-bidding item inspection can
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be found in the context of auctions for natural resource tracts. Here, bidders do not

bid for every tract that is open for auction (Haile et. al. 2010, Hendricks et. al.

2014). Additionally, bidding data described in Haile et. al. (2010) and Hendricks

et. al. (2014) shows that the number of bids (and bid values) per tract is, quite

often, a low number. Hendricks et. al. (2014) attribute this to the large number

of oil tracts being made available in every auction. We believe that targeted sales

of the oil tracts (as opposed to opening up all of them for sale) could mitigate the

problem of low competition and low revenue. This chapter provides a first step

towards understanding the problem of optimally deciding on an offer set of tracts.

Along similar lines, the eBay auction context aptly describes a setting where bidder

participation in auctions is limited by the bidders’ search costs (Overby and Kannan

2015). In either setting, it is worthwhile for the seller to determine an optimal set

of items to put up for sale considering the uncertainty in the bidders’ participation

patterns.

In §4.2 we review the relevant literature and explain our contributions. In §4.3,

we describe the model preliminaries and formally state our problem. In §4.4, we

describe the results and present their proofs. In §4.5, we examine the problem of

minimax regret when we only consider a state space that is polynomially bounded

and review the illustration in §4.1. In §4.6, we conclude the chapter and describe

some potential directions for future research.

4.2 Literature Review

Our work contributes to literature in auctions involving pre-bidding inspection costs

or search costs and the broader literature on auctions involving the sale of multiple

items.

Literature on costly pre-bidding inspection. Auctions with costly infor-

mation acquisition before bidding are well-studied in literature. Hendricks et. al.

(2014) describe how oil firms need to invest in costly information acquisition on the

oil tracts before formulating their bids. Athey and Levin (2001) describe how bid-
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ders conduct a costly information acquisition process before placing their bids in the

context of timber auctions. Ye (2007) and Golrezaei and Nazerzadeh (2017) study

a two-stage auction format that involves costly information acquisition after a first

stage of non-binding bidding. A similar notion of costly participation can be seen in

the context of internet auctions. Such participation costs are known as search costs

(Overby and Kannan 2015). Although search costs are generally understood from

the lens of posted-price settings, the idea extends to settings involving auctions.

The key difference is that in auctions, the prices are set based on the number of

participants in the auctions, and search costs affect bidder participation (Overby

and Kannan 2015).

Literature on mechanisms involving the sale of multiple items. Auc-

tions involving multiple items are conducted using simultaneous sales, where the

items are auctioned off at the same time, or sequential sales, where the items are

auctioned off one after the other. One of the earliest papers on multi-item auctions

is Engelbrecht-Wiggans and Weber (1979) where the authors discuss equilibrium

behaviour in simple multi-item concurrent auctions. Rosenthal and Wang (1996)

consider a multi-item setting and discuss equilibrium bidding behaviour involving

common values and bid synergies. We refer the readers to de Vries and Vohra (2003)

and Pekec and Rothkopf (2003)) for a comprehensive survey on the related area of

combinatorial auction design, where bidders may have synergies in the values of the

items, i.e., a bidder may value a bundle at an amount different from the sum of his

values for the individual items that make up the bundle. Combinatorial auctions

allow for the expression of such synergies.

Literature on congestion games and potential games. Collective in-

formation acquisition decisions (or participation decisions) give rise to games that

are similar to congestion games (Rosenthal 1973). Agents choose items to acquire

information on based on how many other agents choose the same items to acquire in-

formation on, and would prefer the items that would give them the highest expected

payoff given the strategies of the other players. In potential games, the collective de-
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cisions of the players can be mapped onto a quantity known as the potential function

(Monderer and Shapley 1996). In this work, the collective participation decisions

of the bidders can be mapped onto the auctioneer’s expected revenue function. The

idea of the participation decisions of the bidders impacting the auctioneer’s revenue

has been discussed in Overby and Kannan (2015).

Literature on the sale of assets. Our work is related to the asset-selling

problem well-studied in management literature. In the asset-selling problem, the

decision-maker decides on an optimal proportion of her assets to sell away. In its

most basic form, the asset selling problem was studied by Karlin (1962). Other

pieces of literature include those of Prastacos (1983) and Ahn et. al. (2021). A

common assumption in much of literature is that the asset is divisible, making it

possible to sell off “fractions” of the asset. A fundamental manner in which our

work differs from those of literature is the discrete nature of the assets the seller

has in our context. Our problem examines a setting where the items on sale are

indivisible, i.e., each item must be sold as a whole or not sold at all.

Our contribution to literature. We highlight the fact that there exists

uncertainty in the bidders’ participation decisions that we call the participation

patterns. As we showed in the illustration in §4.1, the same set of items put up

for auction can result in differing values of expected revenue depending on what

participation pattern plays out. Putting up a certain set of items on auction can

give the auctioneer a very high best-case expected revenue but also a very low worst-

case expected revenue. Therefore, the auctioneer needs to prudently choose a subset

of items (out of the entire inventory of items) to put up for sale. To the best of

our knowledge, there is no paper in literature that has examined a question of this

nature. In this regard, we use a minimax regret criterion to identify an optimal

subset for putting up for sale. Our work is related to literature on the sale of

assets with two important distinctions from literature: piq we consider sales where

the revenue is determined through an auction and piiq the assets are heterogeneous

and indivisible. Thus, we hope to have contributed to literature on asset-selling by
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opening up a new avenue for research that, to the best of our knowledge, has not

been studied before.

4.3 Model

4.3.1 Preliminaries

Setting and assumptions. There is a set I of heterogeneous and indivisible

items. There is a set of bidders B. The auctioneer is looking to sell some or all of

the items in the set I to the bidders in set B. Bidders in the set B are looking to

purchase some or all of the items the auctioneer chooses to put up for sale. The

auctioneer uses a simultaneous second-price sealed bid auction to sell the items she

chooses to put up for sale.

Suppose the auctioneer chooses to put up a set Z Ď I for sale. The bidders

choose a set of items from set Z to inspect and learn their private value for the

items they choose to inspect. Before inspection, each bidder b P B has a private

value for item i, denoted by random variable Xib, where Xib is distributed with

a PDF fi and CDF Fi with finite support rli, uis. We also assume that the CDF

Fi, i P I are all regular, i.e., the hazard rate of Fi, i P I increases. Each bidder

b P B, needs to inspect item i before submitting a bid for item i. Thus, for a given

i P I, the random variables Xib, b P B are independent and identically distributed

(IID). A bidder does not participate in the auction for an item if he does not inspect

it first. After inspection, bidder b knows his private value for item i as xib, and

participates in the auction for item i by submitting a sealed bid for item i. Bidder

b P B values item set J Ď I as
ř

iPJ xib. If he wins item i, he pays the second-highest

bid for item i or the reserve price ri for item i. We assume that ri “ li for all i P I.

Note that this may not be the optimal reserve price for the auctioneer. However,

we do not go into the problem of determining an optimal reserve price for the items

in our analysis. This timeline of events is summarized in Figure 4.1.

Each bidder b P B has inspection budget nb, where nb is an integer. We make
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Figure 4.1: Timeline of events.

the following assumptions:

piq It costs 1 unit to conduct an inspection of any item,

piiq nb P tNbL, NbL ` 1, ¨ ¨ ¨ , NbU ´ 1, NbUu where NbL and NbU are integers, piiiq a

bidder does not compete against himself,

pivq a bidder will attempt to acquire as many items as possible under the simulta-

neous second-price auction. In this regard, each bidder will inspect as many items

as he can (and bid for them), based on what nb is and what the cardinality of the

offer set is. Thus, each bidder b will spend all of his inspection budget nb.

pvq nb is known to bidder B and is unknown to the auctioneer and unknown to the

other bidders,

pviq the fact that nb P tNbL, NbL ` 1, ¨ ¨ ¨ , NbU ´ 1, NbUu is known to the auctioneer

and the other bidders, and

pviiq NbL “ 1 for all b P B.

The bidder’s objective is to improve his surplus by acquiring as many items as

possible in the set of items offered by the auctioneer under a second-price auction.

We assume that the bidders’ degree of uncertainty about the valuation of the items

is high enough to necessarily require an inspection before bid submission. This is

often the case in practice, for example, in oil and natural gas auctions (Hendricks et.

al. 2014) and influences bidder participation decisions as noted in the observations

of Hendricks et. al. (2014) and Haile et. al. (2010).

Modeling uncertainty in participation pattern. We describe the nature

of the uncertainty as follows. For any set Z of items the auctioneer puts up for sale,

the auctioneer can see a participation pattern that

1. gives her the highest expected revenue from the sale of items in set Z or,
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2. gives her the second-highest expected revenue from the sale of items in set Z

or,

3. gives her the third-highest expected revenue from the sale of items in set Z or,

4. gives her the fourth-highest expected revenue from the sale of items in set Z

¨ ¨ ¨ ¨ ¨ ¨ or,

5. gives her the worst expected revenue from the sale of items in set Z

Let p P tH, 2, 3, 4, ¨ ¨ ¨ , Lu be the parameter that represents the state of the

nature, i.e., the bidder participation pattern, that is realized when the auctioneer

puts up any set Z of items for sale. For example, if I “ t1, 2, 3, 4, 5u and Z “

t2, 3, 4u, then p “ H represents a participation pattern on items in Z where the

auctioneer earns the highest expected revenue from the sale of the items in Z, p “ 3

represents a participation pattern on items in Z where the auctioneer earns the

third-highest expected revenue from the sale of the items in Z. It is possible that

two states p1 and p2 where, without loss of generality, p1 “ p2 ` 1 may share the

same expected revenue value. Note that for a set Z of items put up for sale and

some state p that materializes, it may be possible that some items in set Z do not

receive any bids. Additionally, note that the bidders’ inspection budgets nb, b P B

also influence the participation patterns.

Our motivation for this modeling construct is based on the fact that piq only

a discrete number of states (or participation patterns) is possible, since there is a

countably finite number of possible participation patterns when set Z is put up

for sale, and that piiq there is an expected revenue associated with each participa-

tion pattern, making it possible to rank-order the expected revenue values across

participation patterns.

Without loss of generality, we could consider the number of states for every set

Z Ď I to be the same. To do this, for every set of items Z offered, we can set the

number of possible states (or the number of expected revenue “ranks”) to be equal

to the number of states achievable when Z “ I. Note that this could mean that two
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or more states could correspond to the same expected revenue value. This is without

loss of generality because, by considering the number of states this way, we can have

a threshold p “ p̄pZq for every Z Ď I such that ΠpZ, p̄pZqq “ ΠpZ, p̄pZq ` 1q “

ΠpZ, p̄pZq ` 2q “ ¨ ¨ ¨ “ ΠpZ,Lq and for Z,Z 1 Ď I where |Z| ‰ |Z 1|, we could have

that p̄pZq ‰ p̄pZ 1q, where ΠpZ, p̄pZqq is the auctioneer’s expected revenue when she

puts up item set Z for sale.

The size of the state space for a given item set Z Ď I is at least exponential in the

cardinality of Z. In fact, even under the assumption that nb “ 1, it is the number

of non-negative integral solutions to the following equation in variable ui, i P I

ÿ

iPI

ui “ |B|, (4.1)

which is

ˆ

|B| ` |I| ´ 1

|I| ´ 1

˙

. Here, the value of ui, i P I can be interpreted as the

number of bidders bidding for item i, i P I. The number of non-negative integral

solutions to the above equation is equal to the number of possible ways in which

the bidders participate in the auction for the set of offered items I (i.e., the possible

participation patterns possible when set I is put up for sale to |B| bidders) under

the assumption that each bidder only bids for one item. Thus, when nb ě 1, @b P B,

the size of the state space is very large. Given such a large state space, the expected

revenue from the sale of a set Z of items, with the expectation being taken over

all possible states and over the second-highest bid for each item given a state, is

computationally very difficult for the auctioneer to calculate.

4.3.2 The Minimax Regret Criterion

Let ΠpZ, pq be the auctioneer’s expected revenue when she puts up set Z Ď I

of items for sale, and the participation pattern she will observe on those items is

p P P “ tH, 2, 3, 4, ¨ ¨ ¨ , Lu. The regret RegpZ, pq of offering a set Z when the state

is p is calculated as

RegpZ, pq “ max
Y ĎI

ΠpY, pq ´ ΠpZ, pq (4.2)
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The auctioneer considers all states p P tH, 2, 3, 4, ¨ ¨ ¨ , Lu and evaluates the max-

imum regret for each choice Z

max
p
RegpZ, pq @Z Ď I (4.3)

The auctioneer selects a strategy Z˚ where

Z˚
“ argmin

ZĎI
max
p
RegpZ, pq (4.4)

We refer to the problem of computing Z˚ in the above manner as the Optimal

Offer Set Selection problem (OOSS). Our use of the minimax regret criterion stems

from how the term “regret” can be interpreted to mean “cost of uncertainty” in the

context of our problem, and also from the drawbacks of other approaches to take

into account uncertainty: The expected-revenue-maximization approach is not easy

in practice as it involves the computation of the mixed strategy Nash equilibria of

the participation decisions of the bidders, and is therefore not easy to use in practice.

Because of this, we have chosen a minimax regret criterion as it models the “cost of

uncertainty” appropriately in our context.

4.4 Main Results

In this section, we present several results necessary for the efficient computation of

Z˚ in §4.3.2. Each of these results offer useful insights into the structure of the

OOSS.

4.4.1 The fundamental optimization problem

The computation of ΠpZ, p “ Hq, where Z Ď I, is fundamental to our results.

ΠpZ, p “ Hq can be computed by solving the following optimization problem. We

call the following problem COMP(Z).

93



COMP(Z): max
y

Gpyq “
ÿ

iPZ

ERi

´

ÿ

bPB

yib

¯

(4.5)

subject to
ÿ

iPZ

yib “ NbU @ b P B (4.6)

yib P t0, 1u @ i P Z, @ b P B (4.7)

where

ERipnq “ ErmaxtXip2:nq, rius, (4.8)

y “ ⟨yib, i P I, b P B⟩, and Xip2:nq is the second-highest random variable in a sample

of n random variables sampled from a distribution with CDF Fi and ri “ li is the

reserve price for item i. We do not go into computing reserve prices for items.

The quantity ErmaxtXip2:nq, rius is the expected value of the maximum of Xip2:nq

and ri. The term
ÿ

bPB

yib in the argument of ERip¨q in (4.5) is the total number

of bidders participating in the auction for item i. The objective function (4.5)

is the total expected revenue the auctioneer makes by conducting a simultaneous

second-price sealed-bid auction of items in the set Z. Constraint (4.6) constrains the

number of items bidder b can inspect and subsequently bid on. Since we consider

the state p “ H, we set the RHS of constraint (4.6) to its highest value possible,

i.e., NbU , b P B. This is because setting the RHS of constraint (4.6) to NbU , b P B

maximizes bidder participation since their inspection budgets are set their respective

maximum levels. Constraint (4.7) restricts yib, i P Z, b P B to 0 or 1, where yib “ 1

indicates that bidder b bids for item i, and yib “ 0 indicates that bidder b does not

bid for item i. We assume throughout this chapter that the function ERip¨q can be

computed in constant time.

We now present a polynomial-time greedy heuristic GH to solve COMP(Z).
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Algorithm 2 GH

1. Initialize yib “ 0, @ i P Z, b P B

2. while
ÿ

iPZ

yib ‰ NbU , @ b P B do

3. for i P I, b P B do

4. if yib “ 0 then

5. if pi, bq : pi, bq “ argmaxpj,cq Gpy|yjc “ 1q ´ Gpy|yjc “ 0q then

6. Set yib “ 1

end

end

end

end

7. Show yib, i P I, b P B

In Line 5, the term Gpy|yjc “ hq, where h P t0, 1u, refers to the value of the

objective function (4.5) when all components of y, except component yjc, are held

at their current values, and yjc is set to value h, h P t0, 1u.

Algorithm GH starts by setting yib “ 0 for all i P Z, b P B. Then, it selects

an arbitrary bidder b and sets yib “ 1 if doing so results in the maximum increase

in the objective function value (4.5) compared to when yib “ 0. Next, it selects a

bidder b1, where b1 may or may not be b, and sets yi1b1 “ 1, where i1 may or may

not be equal to i when b1 ‰ b, if doing so results in the maximum increase in the

objective function value (4.5) compared to when yi1b1 “ 0 while fixing yib “ 1. It

repeats until
ÿ

iPZ

yib “ NbU for all b P B. We now have the following result regarding

the computation time of GH.

Proposition 4.1 GH is an exact algorithm, and COMP(Z) can be solved in Op|B||I|2q

steps.

Proof of Proposition 4.1

First, we note that the objective function (4.5) is separable in i. Secondly, the

quantity ERipx ` 1q ´ ERipxq ď ERipxq ´ ERipx ´ 1q, @x P Integers , i.e., the
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quantity ERipx ` 1q ´ ERipxq decreases as x increases. This follows from the fact

that the random variables Xib, b P B are IID for each given i P B and that Fi, i P I

is regular. A proof of this is provided in Overby and Kannan (2015). Thirdly, we

note that the quantity
ÿ

bPB

yib (in the argument of function ERip¨q for each i P Z in

objective function (4.5)) is the number of bidders who participate in the auction for

item i.

At every step of GH, a decision dpi1, i2, b1q needs to be made on whether to set

yi1b1 “ 1 or if yi2b1 “ 1, i.e., a choice needs to be made as to whether bidder b1 should

be assigned to item i1 or item i2. Let the number of assigned bidders to item i1 when

decision dpi1, i2, b1q needs to be made be x˚
i1 and let number of assigned bidders to

item i2 when decision dpi1, i2, b1q needs to be made be x˚
i2 .

The marginal gain in objective function (4.5) when yi1b1 “ 1 is ERi1px
˚
i1 ` 1q ´

ERi1px
˚
i1q, and The marginal gain in objective function (4.5) when yi2b1 “ 1 is

ERi2px˚
i2 ` 1q ´ ERi2px˚

i1q. Now, GH would choose yi1b1 “ 1 if ERi1px
˚
i1 ` 1q ´

ERi1px
˚
i1q ě ERi2px˚

i2 ` 1q ´ ERi2px˚
i1q. As a result, at the end of every step of

GH, there is an improvement in the objective function (4.5), and this the maximum

improvement from the value of objective function (4.5) in the previous step. Also,

there is a finite number of such improvement steps. Since, for each item i, the bid-

ders’ values of are IID, GH results in convergence to the optimal solution to problem

COMP(Z).

We noted earlier that GH is a polynomial time heuristic, and we showed here

that GH converges to the optimal solution to problem COMP(Z). Thus, there exists

a polynomial time algorithm to solve problem COMP(Z).

To show that the number is steps is Op|B||I|2q, we note that GH makes a total

of |I||B| assignments. Also, it takes Op|I|q steps to compute the optimal assignment

yib for a given b, since it requires searching over at the most |I| items to identify

the assignment that contributes the highest marginal increase in objective function.

Therefore, GH takes Op|B||I|2q steps to terminate. ˝

Thus, the auctioneer’s maximum expected revenue from offering a set Z Ď I for
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sale can be computed in polynomial time. We now look at some important results

needed for solving OOSS.

4.4.2 Important Observations and Results

We present the following result from Lawler (1972) for a binary integer optimization

problem with m binary variables.

Proposition 4.2 (Originally from (Lawler 1972); restated here) If the number of

steps required to compute a solution to a single binary optimization problem with m

variables is cpmq, then the number of computational steps required to compute the

K best solutions is OpKmcpmqq.

Computing ΠpZ, pq for states other than p “ H.

We make use of the solution to ΠpZ, p “ Hq (computed using GH) to compute

ΠpZ, pq where p ‰ H. In particular, we make use of the approach discussed in

Lawler (1972). However, computing ΠpZ, pq when p P t2, 3, ¨ ¨ ¨ , Lu can take a very

long time. This is because, as we noted in §4.3.1, the number of states is at least

exponential in size.

Computing ΠpZ, p “ Lq.

This would involve solving problem (4.5), (4.6), (4.7) but with a minimization

objective function. This, too, can be solved in polynomial time by identifying an

assignment resulting in the minimum increase in Line 5 instead of the maximum

increase. This solution results in the worst-case expected revenue for the auctioneer

if item set Z is put up for sale. We now present some structural results.

Lemma 4.1 Consider two sets of items Y1 Ď I and Y2 Ď I such that |Y1| “ |Y2|.

Consider a natural number n, where n “ |B|. Let i1 “ argmaxiPY1 ERipnq and let

i2 “ argminiPY2 ERipnq. For any p, let ΠpY, pq be the auctioneer’s expected profit

when set Y of items is sold to set B of bidders. If Y1 and Y2 are such that ERi1pnq ď

ERi2pnq, then it is always true that ΠpY1, pq ď ΠpY2, pq and maxY ĎY1 ΠpY, pq ď

maxY ĎY2 ΠpY, pq.
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Lemma 4.1 essentially states that for a given natural number n if one considers

two sets (say Y1 and Y2) of equal cardinality and a given state p, the item set (say

Y2) containing the items, which, if auctioned off singly to n bidders (each of whom

can only acquire one item), would yield a higher expected revenue to the auctioneer

compared to the item set (say Y1) containing the items, which, if auctioned off singly

to n bidders, would yield a lower expected revenue to the auctioneer. This follows

from the fact that the items in the set Y2 would receive bids the second-highest of

which (or the reserve price) is higher in expectation than the bids the items in set

Y1 receive. Therefore, for a given state p, selling items from set Y2 on auction would

give the auctioneer a higher expected revenue than selling items from set Y1.

Intuitively, Lemma 4.1 refers to the fact that putting up a set of items (of a given

cardinality) that are “more valuable” for sale to a given number of bidders would

provide the auctioneer with higher revenue in expectation compared the expected

revenue from putting up a set of items (with the same cardinality) that are “less

valuable” to the same set of bidders.

Lemma 4.2 Let Y ˚˚ “ argmaxY ĎI ΠpY, p “ Hq. Then,

Y ˚ppq ” argmaxY ĎI ΠpY, pq for all p “ tH, 2, 3, ¨ ¨ ¨ , Lu is such that Y ˚ppq Ď Y ˚˚.

Note that the set Y ˚˚ is such that for every j P I´Y ˚˚, there exists i P Y ˚˚ such

that ERipnq ě ERjpnq for n “ |B|. This follows from the way the set Y ˚˚ is chosen

using algorithm GH. As a result of Lemma 4.2, for any state p, it is the subsets

Y of the set Y ˚˚ that will maximize ΠpY, pq and not the subsets of any other set

I ´ tY ˚˚u. Thus, this result provides a way to reduce the search space for solving

the OOSS. Note that Y ˚˚ Ď I. Thus, a reduction of search space from I to a strict

subset of I may not be possible for all problem instances.

Lemma 4.3 Consider two sets of items Y1 Ď I and Y2 Ď I such that |Y1| “ |Y2|.

Consider a natural number n “ |B|. Let i1 “ argmaxiPY1 ERi1pnq and let i2 “

argminiPY2 ERi2pnq. If Y1 and Y2 are such that ERi1pnq ď ERi2pnq. For any p, let

RegpY, pq be the auctioneer’s regret associated with selling item set Y to bidders in

set |B|. Then, for any p, it is always true that RegpY1, pq ě RegpY2, pq.
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Lemma 4.3 follows directly from Lemma 4.1. Intuitively, the expected revenue from

putting up a set of items with higher bidder valuations (in expectation) is higher than

the expected revenue from putting up a set of items with lower bidder valuations

(in expectation). Therefore, set Y2 yields a lower regret to the auctioneer. We now

define the set Ī constructed as follows:

1. Initialize Ī “ tu, Initialize J “ Y ˚˚

2. Ī Ð Ī Y J .

3. Let i˚ “ argminiPJ ERipnq where n “ |B|.

4. J Ð J ´ ti˚u

5. Go to step 2 until J is empty

It is important to note Step 3 and Step 4 above. We remove the item i˚ and

create a new set J without item i˚. Repeating this process creates a set of item sets

Ī with the following property: No subset of I that does not belong to Ī will solve

OOSS, as we see from Lemma 4.3. This is because for every subset of Y ˚˚ Ď I of

a given cardinality, there exists an element of set Ī, which, if sold to bidders in B

would yield a higher or equal expected revenue for all states p P P . This follows

from Lemma 4.1. Thus, the set Ī only contains those sets of items that solve OOSS.

Therefore, only these item sets need be examined as possible solutions to OOSS.

The computational complexity of computing the regret associated with

an offer set Z. From §4.3.2, the regret RpZ, pq from offering a set Z when the

state is p is calculated according to equation (4.2). The computation of ΠpZ, pq in

equation (4.2) will first involve the computation of ΠpZ, p “ Hq. This can be done

in polynomial time using algorithm GH.

Examining the problem of computing ΠpZ, pq for any p P P , p ‰ H in terms of

Proposition 4.2, we have that m “ |Z||B| and from Proposition 4.1, we have that

cpmq “ |B||I|2. If K “ |P | is the number of states, the time taken for computing
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ΠpZ, pq for all p is OpK|Z||B|2|I|2q and is exponentially large since K “ |P | is expo-

nentially large. This makes the computation of the minimax regret computationally

difficult despite only having to search for the optimal strategy Z˚ in the set Ī.

Since the computational complexity of OOSS depends crucially on the cardi-

nality of the set P , restricting the elements of of set P to take on values within a

polynomially bounded range of H and L can ensure polynomial time computations.

Thus, if |P | were polynomially bounded, computing OOSS is possible in polynomial

time.

4.5 Solving the OOSS if the state space is poly-

nomially bounded

As noted at the end of §4.4.2, restricting the state space P such that P “ tH,Lu

will speed up computation time at the cost of being able to find an exact solution.

If we only consider that p P tH,Lu and ignore all the other states, the following

algorithm solves OOSS in polynomial time.

Algorithm 3 Solving OOSS under restricted state-space P .

1. Initialize J “ I

2. while J ‰ tu do

3. Compute RegpJ, pq for p “ tH,Lu

4. Compute maxpPtH,Lu RegpJ, pq

5. Set j “ argminjPJ ERjpnq where n “ |B|

6. J Ð J ´ tju

end

7. Z˚ “ J˚ “ argminJPĪ maxpPtH,Lu RegpJ, pq

Notice that J in step 6 is such that J P Ī. Note that the cardinality of Ī is |I|.

For all J P Ī, note that the values of maxpPtH,Lu RegpJ, pq are computed in step 4 for

all J P Ī. Computing maxpPtH,Lu RegpJ, pq for a given J P Ī is possible in polynomial

time. The final step 7 can be performed in polynomial time.
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Note that we only need to search over all J P Ī and not all subsets of I because

of Lemmas 4.1, 4.2, and 4.3. This is exactly what we do in Algorithm 3. For each

J P Ī, we perform a polynomial number of operations in step 3 and step 4. The

final step is a polynomial time step. In general, if |P | is polynomially bounded,

Algorithm 3 terminates in polynomial time.

We now solve the OOSS with Algorithm 3 for the problem instance discussed in

§4.1 by only considering two states tH,Lu. To restate the problem in terms of our

notation, we have I “ 1, 2, 3, B “ 1, 2, 3, l1 “ 1, l2 “ 2, l3 “ 3, u1 “ 2, u2 “ 3, u3 “ 3.

Also, Xib, b P B are uniformly distributed with support rli, uis, i P I.

When p “ H, then

Jpp “ Hq “ argmax
Y ĎI

ΠpY, p “ Hq “ t1, 2, 3u (4.9)

ΠpJpp “ Hq, p “ Hq “ 1 `
2

4
` 2 `

2

4
` 3 `

2

4
“ 7.5 (4.10)

When p “ L, then

Jpp “ Lq “ argmax
Y ĎI

ΠpY, p “ Hq “ t3u (4.11)

ΠpJpp “ Lq, p “ Lq “ 3 `
8

10
“ 3.8 (4.12)

For a given Z Ď I, we have

RegpZ, p “ Hq “ 7.5 ´ ΠpZ, p “ Hq

RegpZ, p “ Lq “ 3.8 ´ ΠpZ, p “ Lq

When Z “ t1, 2, 3u

RegpZ, p “ Hq “ 7.5 ´ ΠpZ, p “ Hq “ 7.5 ´ 7.5 “ 0

RegpZ, p “ Lq “ 3.8 ´ ΠpZ, p “ Lq “ 3.8 ´ 1.8 “ 2
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The maximum regret of Z “ t1, 2, 3u is 2 units.

When Z “ t2, 3u

RegpZ, p “ Hq “ 7.5 ´ ΠpZ, p “ Hq “ 7.5 ´ p2 `
3

5
q ´ p3 `

4

6
q “ 1.233

RegpZ, p “ Lq “ 3.8 ´ ΠpZ, p “ Lq “ 3.8 ´ p2 `
8

10
q “ 1,

The maximum regret of Z “ t2, 3u is 1.233 units.

When Z “ t3u

RegpZ, p “ Hq “ 7.5 ´ ΠpZ, p “ Hq “ 7.5 ´ 3.8 “ 3.7

RegpZ, p “ Lq “ 3.8 ´ ΠpZ, p “ Lq “ 3.8 ´ 3.8 “ 0

The maximum regret of Z “ t3u is 3.7 unit.

When Z “ t2, 3u, we obtain the lowest maximum regret of 1.233 units. Thus,

the solution to the OOSS problem instance in the illustration in §4.1 is Z˚ “ t2, 3u.

Thus, if the auctioneer (decision maker) only considered a state space with a

polynomially-bounded size, the problem of computing the optimal offer set Z˚ is

solvable in polynomial time, as demonstrated in this example.

4.6 Conclusions and Future Research

We examined the problem of optimizing offer sets for sealed-bid multi-item simulta-

neous auction settings. The importance of this problem arises from the fact that the

participation decisions of the bidders, which we referred to as participation patterns,

is unknown to the auctioneer for any subset of the item set she puts up for sale.

The results of described here apply to several business settings that involve

the simultaneous sealed-bid auctions of multiple items. These include auctions for

resource tracts and also online auctions.

In this regard, we used a minimax regret criterion to account for the uncertainty
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and solve the problem of identifying the optimal offer set. A key modeling construct

we made use was that, given a subset of items put up for sale, each participation

pattern corresponded to a value of expected revenue. As a result, we were able to

rank-order the states of the system using the values of the expected revenue, where

each value of expected revenue corresponded to a state.

Our results show that when the bidders’ item valuations are additive and when

the bidders’ valuations for an item are independently and identically distributed,

the problem of identifying the max-regret minimizing subset of items can be solved

in polynomial time if the state space considered is polynomially bounded.

To the best of our knowledge, a problem of this nature has not been examined in

literature before. Our work is the first to have examined a problem of this nature.

Given the value of the transactions involved in the business settings where our results

apply, we believe brought to light a major gap in literature that is of relevance to

practice. This leaves room for several streams of literature in future. Some potential

extensions are as follows:

1. We examined a single period problem of optimizing offer sets. However, in

many settings in practice, auctions are conducted periodically such as the US

oil and natural gas auctions (Hendricks et. al. 2014). In such settings, the

problem of optimizing the offer set for the current period will depend on the

expected revenues from the future period. This has some overlaps with the

multi-period asset-selling problem. Our belief is that this could lead to an

explosion of the state space size required for each period.

2. We examined a setting where bidder valuations for an item are additive. One

could consider a setting where items are complements or substitutes. We point

out, though, that in such settings, the notion of a second-price simultaneous

sealed-bid auction is ill-defined since this auction format does not consider

overlaps in bundles. Thus, one may consider examining the problem under

other auction settings with different rules. The common denominator with

our setting is the uncertainty in participation patterns that the auctioneer
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faces when she puts up an item for sale.

3. A third possibility is that of bundling the items before putting them up for

sale under a simultaneous second-price sealed bid auction. In such cases,

computing the optimal bundling would be an interesting problem to examine.
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Notes

9To see how this comes about, note that if P1, P2, ¨ ¨ ¨ , Pn are n IID random variables uniformly

distributed in ra, bs, then the expected value of the second-highest random variable is a ` n´1
n`1b

10There are two levels to the ‘expectation’ operator: The first one is the auctioneer’s expected

revenue for a given participation pattern, and the second one is the expectation computed around

the uncertain participation patterns.
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Chapter 5

Auction Mechanisms for

Social-Welfare-Maximizing

Allocations with Pairwise-Additive

Negative Value Externalities

5.1 Introduction

Online advertising service providers (or platforms) typically use auctions to sell ad-

vertising rights to advertisers. Well-known examples are Google’s sponsored search

advertising and Facebook’s sponsored advertisements. Platforms auction display

positions (or slots) on their webpages to advertisers who, in turn, place their ad-

vertisements in these slots. The value of an advertisement slot on a webpage to

an advertiser is influenced by the allocation of the other advertisement slots on the

same webpage to other advertisers. Such influences are known as “externalities”

(Constantin et. al. 2011, Bhargava et. al. 2019, Sayedi et. al. 2018). The impact

of these externalities is often negative, and has prompted a rise in the demand for

exclusivity in advertising (Sayedi et. al. 2018, Bhargava et. al. 2019). Advertisers

may be willing to pay more for slot allocations where the impact of such negative
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externalities is minimal (Bhargava et. al. 2019). The authors present a simple

argument for this phenomenon: advertisers value exclusive allocations more than

shared allocations, and are willing to pay more for such exclusive allocations. Thus,

when a set of indivisible items11 (advertisement slots) are allocated to bidders12 (ad-

vertisers), the value of each item to a bidder depends on how the other items are

allocated to the other bidders.

Typically, negative allocative externalities are categorized as follows: piq quantity

externalities, where the magnitude of the externalities is observable to the auction-

eer, and piiq value externalities, which are private to a bidder and not observable

to the auctioneer or to the other bidders (see Constantin et. al. 2011, and other

references therein for more details). Our work focuses on the latter type of allocative

externalities, i.e., negative value externalities.

Here, I consider the auctioneer’s13 problem of piq allocating a finite number of

heterogeneous and indivisible items to a set of bidders, where piiq an item can only

be assigned to one bidder, when piiiq the bidders’ valuation functions account for

negative value externalities, and pivq the allocations need to maximize social welfare.

In particular, I on focus auction designs (direct and indirect mechanisms) that result

in such allocations.

In this regard, I define a notion of an equilibrium outcome (defined by an allo-

cation and a set of item-prices), applicable to market design considering allocative

externalities. This notion of equilibrium is similar to a Walrasian equilibrium (Mas-

Collel et. al. 1995), but can be extended to settings where the bidders’ functions

consider allocative externalities. If item prices in an iterative auction are modified to

lead to an equilibrium allocation, no bidder is better off with an allocation different

from the equilibrium allocation. I show that, in general, for a given set of bidder

valuation functions, an equilibrium with prices set at the item level does not exist.

In this regard, I present results on the conditions on the bidders’ valuation functions

under which an equilibrium defined by item-level prices exists.

As our main contribution, I study a class of valuation functions, that I call Pair-
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wise Additive Negative Value Externalities (PANE), wherein a bidder’s valuation of

an item has two parts: piq a portion independent of all other allocations, and piiq

the negative externality, by which the item’s value to the bidder decreases, when

rival bidders are assigned other items. To each bidder, the magnitude of the total

negative externality associated with an item is the sum of the externalities imposed

by the assignments of the other items to the other bidders.

The auctioneer’s goal is find an allocation that maximizes the social welfare under

such a valuation function. To this end, an auctioneer may consider using a direct

mechanism or an indirect mechanism to achieve the goal. A Vickrey-Clarke-Groves

(VCG) mechanism is a direct mechanism that can be used to achieve a social-

welfare-maximizing allocation. By design, the bidders are incentivized to report

truthful bids in one shot, following which the auctioneer decides on an allocation that

maximizes social welfare. An indirect mechanism (such as an iterative auction) is

one where the auctioneer seeks information, other than bidder preferences for items,

that can be used to achieve a social-welfare-maximizing allocation. This information

is obtained by noting bidder behavior as a response to item prices. Typically, after

the auctioneer sets and announces item prices, the bidders report their interests

in the items (or item bundles) in response to these prices. The auctioneer notes

the responses from the bidders and modifies item (or bundle) prices accordingly to

achieve an item allocation that maximizes social welfare.

Given the bidders’ truthful valuation functions, the practical implementability

of the VCG mechanism (direct mechanism) to achieve social-welfare-maximizing al-

location, depends on whether the auctioneer’s ability to compute the social-welfare-

maximizing allocation quickly. Thus, it is important to know if the social-welfare-

maximizing allocation under PANE can be computed efficiently. The practical

implementability of an iterative auction (indirect mechanism) to achieve a social-

welfare-maximizing allocation depends on whether there exists an equilibrium with

simple pricing schemes (such as item-level pricing schemes) under the PANE valua-

tion function. That is, since indirect mechanisms note bidder behavior as a response
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to prices, it is important to know if the pricing schemes to needed to achieve a social-

welfare-maximizing allocation under PANE are simple for practical implementation

(such as item-level pricing schemes). This is because iterative auctions with item-

level prices need not necessarily lead to a social-welfare-maximizing allocation under

general valuation functions. In this chapter, we answer these key questions about

the PANE valuation function.

I formulate the problem of computing a social-welfare-maximizing allocation un-

der PANE as a quadratic binary integer program (QIP), which is a nonconvex op-

timization problem. General instances of such formulations are known to be NP-

Hard (Zheng et. al. 2012, Pardalos et. al. 1991). However, my formulation

demonstrates specific structural properties that allow us to solve the maximization

problem efficiently and develop structural insights into auction designs that ensure

social-welfare-maximizing allocations while maintaining computational tractability.

I show that the continuous relaxation of the social-welfare maximization problem

yields integral solutions. Additionally, we show that strong duality holds true for the

relaxed problem that helps solve the problem in polynomial time using an equiv-

alent semidefinite formulation. Thus, the optimal solution to the social welfare

maximization problem can be obtained in polynomial time by solving the relaxed

social welfare maximization problem. Consequently, the computations on alloca-

tions and payments required for the VCG mechanism (the direct mechanism) can

be performed efficiently. This result is of useful for online platforms that require

quick computation of optimal allocations and payments.

My structural results on integrality and strong duality imply the existence of

anonymous and simple equilibrium item prices. In other words, I show that the

equilibrium prices for this class of valuation functions do not depend on the identity

of the bidder (anonymous). Also, the prices are only associated with individual items

and not bundles of items (simple)14. This allows us to show that under PANE, there

exists an equilibrium allocation with prices that are set at the item-level, i.e., every

(indivisible) item is allocated to one bidder and each bidder’s surplus (the difference
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between a bidder’s value for a subset of items and price of the subset of items) is

maximized.

Building on the strong duality result and on the fact that an equilibrium with

item-level prices exists, I show that a subgradient algorithm (Fisher 2004) for solv-

ing QIP converges to the social-welfare-maximizing allocation. The subgradient

algorithm may be interpreted as an auction where prices of items are decided based

on the interest for the items at a given set of prices. I refer to this format as a

subgradient auction or a guided-price auction. This is interesting because, unlike

in the case of a simultaneous sale of multiple items with no externalities, it is not

immediately obvious how an auction format that guides prices can bring about a

social-welfare-maximizing allocation. Essentially, our auction format converges to

the social-welfare-maximizing allocation by guiding item price movements based on

the interest for the items. The advantages of such an auction format are that piq

the winners reveal less information, piiq it creates a perception of fairness because

the low information revelation requirements mean that the auctioneer cannot ma-

nipulate the bidders, and piiiq the burden of computation and the communication of

valuations is low, since the bidders only need to respond to the current prices of the

items (Cramton 1998, de Vries et. al. 2007). This auction format thus serves as an

indirect mechanism that terminates at an allocation that maximizes social welfare.

It is noteworthy that this auction format makes use of simple and anonymous prices.

I summarize my contribution as follows: piq I introduce a notion of equilibrium for

settings with allocative externalities, piiq I present a general condition on the bidders’

valuation functions for which simple and anonymous prices are sufficient to support

a social-welfare-maximizing allocation, piiiq I identify a class of linearly constrained

binary quadratic programs whose continuous relaxations yield binary solutions, pivq I

identify a class of linearly constrained continuous nonconvex quadratic optimization

problems where strong duality holds, enabling polynomial time solvability of such a

class of optimization problems, and pvq I identify a class of valuation functions with

negative externalities where the social-welfare-maximizing allocation can be achieved
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through a known auction format using simple and anonymous pricing structures.

The rest of the chapter is organized as follows: In §5.2, I discuss literature on

auction design with allocative externalities in the single and multi-item settings. I

also discuss literature on the connection between duality theory of mathematical

programming and multi-item auction design. In §5.3, I formally present the model

assumptions, describe a notion of equilibrium for settings with allocative exter-

nalities, and formally describe the Pairwise-Additive Negative Value Externalities

(PANE) valuation function. In §5.4, I present our key technical results on social

welfare maximization under PANE. In §5.5, I present a subgradient algorithm to

solve the social welfare maximization problem under PANE and show how the sub-

gradient algorithm can be represented as a multi-round guided-price auction. In

§5.6, I present some numerical demonstrations of strong duality of the relaxation of

the social-welfare maximization problem under PANE, and also present illustrations

on how the guided-price auction works under PANE. Finally, in §5.7, I summarize

the chapter and present directions for future work.

5.2 Literature Review

I begin by highlighting the literature related to single-item auctions and externali-

ties, followed by literature related to multi-item auction design under externalities.

Finally, I also highlight literature related to the association between dual prices and

auction theory.

Externalities in single-item auctions. One of the earliest works on auctions

with negative allocative externalities is that of Jehiel et. al. (1996). In this

paper, the authors illustrate how the presence of allocative externalities can affect

the auctioneer’s surplus in a general business context. They consider a single-item

auction for their analysis. Belloni et. al. (2017) study the problem for designing the

optimal mechanism for a single-item setting with private externalities. They discuss

the dependence of the auctioneer’s revenue on the magnitude of the externalities.

An insight from these papers is that bidders may find it rational to pay even if they
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don’t receive the item since the outcome of the item going into the hands of a rival

is a suboptimal outcome.

Externalities in multi-item auctions. There are several papers associated with

advertisement slot auctions or online auctions in general. Krysta et. al. (2010)

present a framework for the analysis of multi-item auctions with allocative exter-

nalities and show some results on the computational complexity of the allocation

problem in general settings. Cheung et. al. (2015) discuss combinatorial auc-

tions with externalities and present approximation algorithms for the problem of

maximizing social welfare. Deng et. al. (2011) show that in a multi-item setting

with allocative externalities, there may exist allocative equilibria in which no bidder

gets any item with the auctioneer making a positive surplus. Ghosh and Mahdian

(2008) examine the problem of winner determination in a general valuation setting,

and show how the computational complexity of the problem makes approximation

hard. Ghosh and Sayedi (2010) discuss the issues of externalities in online advertis-

ing, and propose a bidding language that allows bidders to express their valuations

for the items along with the externalities. The authors the analyse allocative effi-

ciency of a GSP15-like mechanism and a VCG-like mechanism they propose for use

with this bidding language. Gomes et. al. (2009) conduct an empirical analysis

of the magnitude of the externalities induced by competing advertisement links in

advertisement slot auctions. Their results show that the impact of externalities is

statistically significant. Zhang et. al. (2018) study the problem of computing a

social-welfare-maximizing allocation of items in a setting with identity-based nega-

tive externalities where there is a single item with unlimited supply. In their model

of externalities, a bidder’s private valuation from winning decreases as the number

of rivals increases.

Duality and auction theory. Bikhchandani et. al. (2002) present a detailed

analysis of the connections between linear programming, duality theory, and auction

theory in the context of multi-item auctions. In particular, they interpret the duals

of the social-welfare-maximizing problem as prices of the items on sale. They show
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that a set of prices resulting in a social-welfare-maximizing allocation always exist,

and show how the complexity of the bidders’ valuation functions for the items results

in non-linear (complex) prices for items. The doctoral dissertation of Parkes (2001)

presents a detailed analysis of the connection between duality theory and the social

welfare maximization problem. Candogan et. al. (2015) show how a social welfare

maximization problem, in settings where the magnitude of item valuations and com-

plementarities (or substitutabilities) can be represented in the form of a tree, can

be solved as a linear program. The authors show the connection between the duals

of this linear program and the payments associated with social-welfare-maximizing

allocation.

5.3 Model and Preliminaries

Let B represent the set of bidders and L the set of heterogeneous, indivisible items.

The bidders in B seek to acquire some or all the items in L. Let BL be the Cartesian

product of B and L. The allocation decision vector, x ” ⟨xai , pi, aq P BL⟩, is such

that each component xai P t0, 1u for all pi, aq P BL is defined as follows.

xai “

$

’

&

’

%

0 : if item a P L is not assigned to bidder i,

1 : if item a P L is assigned to bidder i.
(5.1)

x is a feasible allocation of items if
ÿ

iPB

xai “ 1 for all a P L, i.e., each item a P L is

assigned to exactly one bidder i P B.

Let vipxq represent the valuation function corresponding to a feasible allocation

x and Sipxq is the set of items bidder i receives under allocation x. We assume that

vipxq is privately known to bidder i for all i P B and vip¨q : r0, 1s|BL| Ñ ℜ for all

i P B where ℜ is the set of real numbers. I also assume that vip¨q is differentiable

everywhere for all i P B. The social welfare of the bidders for any allocation x is

defined as
ÿ

iPB

vipxq.
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5.3.1 Social Welfare Maximization Under Negative Value

Externalities

Negative value externalities are said to exist in an allocation x when the following

conditions are satisfied (Constantin et. al. 2011): piq bidder i’s private value for an

item a depends also on the allocation of the other items b P L, b ‰ a to the other

bidders j P B, j ‰ i, and piiq information on the magnitude of this dependence is

private. This is in contrast to quantity externalities, which are observable to the

auctioneer (Constantin et. al. 2011). The general social welfare maximization

problem (GSWMP) under negative value externalities is shown in (5.2) – (5.4). The

GSWMP aims to find a feasible allocation that maximizes the sum of the bidders’

valuations from the allocation.

GSWMP: max Hpxq “
ÿ

iPB

«

vipxq

ff

, (5.2)

subject to
ÿ

iPB

xai “ 1 @ a P L, (5.3)

xai P t0, 1u @ pi, aq P BL. (5.4)

The objective (5.2) maximizes the social welfare of the bidders. Constraint (5.3)

ensures that an item is only assigned to one bidder. Constraint (5.4) ensures that

x “ ⟨xai , pi, aq P BL⟩ has binary-valued components at optimality because the items

being auctioned are assumed to be indivisible. It is noteworthy that GSWMP always

has an optimal solution. This is because the feasible region (5.3) – (5.4) is a non-

empty, compact, polyhedral set.

As mentioned in §5.1, one of my goals is to design an indirect iterative auction

mechanism that yields a social-welfare-maximizing allocation upon termination. In

designing such an auction mechanism, it is desirable that piq the item prices be

defined at the item level, piiq the item prices not be different for different bidders,

i.e., the price vector p be of the form p “ ⟨pa, a P L⟩, and piiiq bidder i desires

no allocation different from x, where allocation x solves GSWMP. Characteristic
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piiiq disincentivizes after-sale arbitrage amongst the bidders, while characteristics

piq and piiq simplify implementation in practice because prices are at the item-

level and are independent of bidder characteristics. Essentially, item-level prices are

straightforward to explain to bidders: every item has a price and the price of a set of

items (bundle) is simply the sum of the individual item prices. More complex pricing

schemes16 would piq involve pricing bundles (as opposed to individual items), or piiq

setting prices based on the bidders’ identity, or piiiq a combination of both. This

implies that piq the auctioneer would require an exponentially sized price vector,

making computation and communication of such prices tedious in practice, and piiq

the auctioneer would need to charge different bidders unequal prices for the same

items (or bundles), which may be difficult to justify in practice. For these reasons, it

is in the auctioneer’s interest that the pricing structure be kept simple. We formally

define the desired structure p ” ⟨pa, a P L⟩ in Definition 5.1.

Definition 5.1 Simple and anonymous prices. We refer to a vector of

prices as simple and anonymous if these prices are defined for each item, rather

than a bundle of items, and are not dependent on the identity of the bidders.

Under simple and anonymous prices p, if bidder i is assigned items in the set Sipxq,

the price he pays for the bundle Sipxq is the sum of the prices of the items the set

contains, i.e., he pays
ÿ

aPSipxq

pa. His surplus is, therefore,

ripx;pq “

«

vipxq ´
ÿ

aPSipxq

pa

ff

.

Iterative auctions using simple and anonymous item prices can be made to terminate

at allocation x, if x is such that XiPBSipxq “ H (Candogan et. al. 2015). Then, at

the termination of the iterative auction, the vector of item prices p and an allocation

x constitute an equilibrium. We formalize this equilibrium notion in Definition 5.2.

Definition 5.2 Equilibrium with simple and anonymous prices (ESAP).

An allocation and price tuple px,pq is an equilibrium with simple and anonymous
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pricing (ESAP) if allocation x and prices p maximizes bidder i’s surplus, i.e.,

ripx;pq ě ripx
1;p1q, @ x1 ‰ x, @ p1 ‰ p. If px,pq is ESAP, we refer to x as

ESAP allocation and to p as ESAP prices.

Intuitively, Definition 5.2 describes a feasible allocation and a set of item prices

where no bidder has the incentive to change his allocation, i.e. it disallows after-

sale arbitrage opportunities. An immediate question is: Is an optimal solution to

GSWMP supported by ESAP prices? Notice that ESAP may not always exist for

such functions. However, if ESAP exists, it is possible to design iterative auction

formats that guide item prices to ESAP prices and results in a feasible allocation

that maximizes the bidders’ surpluses, i.e., ESAP allocations. Consequently, the

social welfare is maximized too. In this regard, it is necessary to understand the

conditions on H pxq “
ÿ

iPB

vi pxq when ESAP exists. To do so, we consider the follow-

ing optimization problem, (5.5) – (5.8), obtained by relaxing the binary constraints

(5.4) in GSWMP.

max
x

Hpxq “
ÿ

iPB

«

vipxq

ff

, (5.5)

subject to
ÿ

iPB

xai “ 1 @ a P L, ¨ ¨ ¨ ppaq (5.6)

xai ď 1 @ pi, aq P BL, ¨ ¨ ¨ pρai q (5.7)

xai ě 0 @ pi, aq P BL. (5.8)

Here, p “ ⟨pa, a P L⟩ and ρ “ ⟨ρai , pi, aq P BL⟩ are the Lagrange (dual) multipliers

associated with constraints (5.6) and (5.7). A feasible solution to optimization

problem (5.5) – (5.8) always exists since the constraint set (5.6) – (5.8) represents a

non-empty, compact, polyhedron. Note that constraint (5.7) is redundant. However,

we retain this constraint in the formulation as it lends economic interpretation to

the corresponding dual variables at dual optimality. This will be made clear shortly.

Let xgopt be the optimal solution to this optimization problem. Let pgopt and ρgopt

be the optimal values of the dual of this optimization problem. Let Gppgopt, ρgoptq

be the optimal objective value of the dual of this optimization problem. Note that
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Gppgopt, ρgoptq “
ÿ

aPL

pa,gopt `
ÿ

pi,aqPBL

ρa,gopti . Theorem 5.1 describes the conditions on

Hpxq “
ř

iPB vipxq for which ESAP exists.

Theorem 5.1 Given the social welfare function Hpxq, an ESAP exists if and only

if xgopt is integral and Hpxgoptq “ Gpxgopt,pgoptq.

Proof of Theorem 5.1.

The first order conditions of optimality given below are satisfied when x “ xgopt,p “

pgopt, and ρ “ ρgopt:

BHpxq

Bxai

ˇ

ˇ

ˇ

ˇ

ˇ

x“xgopt

´ pa,gopt ´ ρa,gopti ď 0 @ pi, aq P BL, (5.9)

ÿ

iPB

xgopti “ 1 @ a P L, (5.10)

ρa,gopti p1 ´ xa,gopti q “ 0 @ pi, aq P BL, (5.11)

ρa,gopti ě 0 @ pi, aq P BL. (5.12)

The dual formulation of (5.5) – (5.8) is as follows:

min
ÿ

aPL

pa `
ÿ

pi,aqPBL

ρai , (5.13)

subject to
BHpxq

Bxai

ˇ

ˇ

ˇ

ˇ

ˇ

x“xgopt

´ pa ´ ρai ď 0 @ pi, aq P BL, (5.14)

ρai p1 ´ xa,gopti q “ 0 @ pi, aq P BL, (5.15)

ρai ě 0 @ pi, aq P BL. (5.16)

p ùñ q Suppose xgopt is integral and Hpxgoptq “ Gppgopt, ρgoptq. We now show that

the values of pgopt and ρgopt satisfying (5.9) – (5.12) and xopt correspond to an ESAP.

SinceHpxoptq “ Gppgopt, ρgoptq and xgopt is integral, we have that ρa,gopti “
BHpxq

Bxai

ˇ

ˇ

x“xgopt´

pa,gopt if xa,gopti “ 1, and ρa,gopti “ 0 if xa,gopti “ 0. The set Sipx
goptq “ ta : xa,gopti “
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1, a P Lu for all i P B. Thus,

ÿ

aPSipxgoptq

ρa,gopti “ vipx
gopt

q ´
ÿ

aPSipxgoptq

pa,gopt,

since
ÿ

aPSipxgoptq

BHxq

Bxai

ˇ

ˇ

ˇ

ˇ

ˇ

x“xgopt

“ vipx
gopt

q.

Now, ripx
gopt;pgoptq “ vipx

goptq ´
ř

iPB p
a,gopt is bidder i’s maximum surplus,

since in the dual formulation, we minimize ρai pi, aq P BL with lower bounds on

ρai , pi, aq P BL, and we have that pa,gopt ą 0 for all a P L, where

pa,gopt “ second-highestkPB

BHpxq

Bxak

ˇ

ˇ

ˇ

ˇ

ˇ

x“xgopt

, @ a P L

and xgopt is feasible by definition. Thus, pxopt,poptq is ESAP.

p ðù q Suppose ESAP exists. We now show that xgopt is integral and Hpxgoptq “

Gppgopt, ρgoptq.

With this supposition, xgopt is integral, since xgopt must be an undivided allocation

of items and is such that
ř

iPB x
a,gopt
i “ 1 for all a P L, and pxgopt,pgoptq is such that

bidder i’s surplus is maximized (from Definition 5.2), i.e.,

vipx
gopt

q ´
ÿ

aPSipxgoptq

pa,gopt “ max
x

”

vipxq ´
ÿ

aPSipxq

pa,gopt
ı

,

where

pa,gopt “ second-highestkPB

BHpxq

Bxak

ˇ

ˇ

ˇ

ˇ

ˇ

x“xgopt

, @ a P L.

Thus, xgopt is integral. Now,

Gppgopt, ρgoptq “ min
ÿ

aPL

pa `
ÿ

pi,aqPBL

ρai ,
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subject to
BHpxq

Bxai

ˇ

ˇ

ˇ

x“xgopt
´ pa ´ ρai ď 0 @ pi, aq P BL,

ρai p1 ´ xa,gopti q “ 0 @ pi, aq P BL,

ρai ě 0 @ pi, aq P BL.

The constraints follow from the first order conditions of optimality when x “ xgopt.

This is, therefore, a linear program. We have that

ρa,gopti “ maxt0,
BHpxq

Bxai

ˇ

ˇ

x“xgopt ´ pa,goptu

and

pa,gopt “ second-highestkPB

BHpxq

Bxak

ˇ

ˇ

ˇ

ˇ

ˇ

x“xgopt

, @ a P L.

Here, for all a P L, we have that ρa,gopti ą 0 only for one i in the set B, and xa,gopti “ 1

for this pi, aq. Thus,

ÿ

aPSipxgoptq

ρa,gopti “
ÿ

aPSipxgoptq

BHpxq

Bxai

ˇ

ˇ

x“xgopt ´
ÿ

aPSipxgoptq

pa,gopt

“ vipx
gopt

q ´
ÿ

aPSipxgoptq

pa,gopt.

Summing across all bidders,

ÿ

iPB

ÿ

aPSipxgoptq

ρa,gopti “
ÿ

iPB

vipx
gopt

q ´
ÿ

iPB

ÿ

aPSipxgoptq

pa,gopt

“
ÿ

iPB

vipx
gopt

q ´
ÿ

aPL

pa,gopt

ùñ
ÿ

pi,aqPBL

ρa,gopti “
ÿ

iPB

vipx
gopt

q ´
ÿ

aPL

pa,gopt

ùñ
ÿ

pi,aqPBL

ρa,gopti `
ÿ

aPL

pa,gopt “
ÿ

iPB

vipx
gopt

q
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Therefore, we have that

Gppgopt, ρgoptq “
ÿ

aPL

pa,gopt `
ÿ

pi,aqPBL

ρa,gopti “
ÿ

iPB

vipx
gopt

q “ Hpxgoptq

Thus, we prove Theorem 5.1. ˝

If xgopt is integral, xgopt also solves GSWMP, since xgopt is feasible to GSWMP.

Thus, when xgopt is integral, the optimal solution to the dual, i.e.,
〈
ρa,gopti , pi, aq P BL

〉
and ⟨pa,gopt, a P L⟩ has the following economic interpretation: the quantity

ÿ

aPSipxgoptq

ρa,gopti

represents bidder i’s surplus from allocation xgopt, i.e., ripx
gopt;pgoptq “

ÿ

aPSipxgoptq

ρa,gopti ,

and the quantity pa,gopt represents the item prices. Since the dual of (5.5) – (5.8)

has multiple optima, the value of pa,gopt, a P L can be chosen in such a way it

that can be made as low as possible without affecting the item allocation xgopt.

Therefore, the components ⟨pa,gopt, a P L⟩ of the optimal dual solution to (5.5) –

(5.8) represent the prices of the items needed to support an allocation xgopt that

maximizes the bidders’ social welfare. On the other hand, if xgopt is not integral,

the solution ⟨pa,gopt, a P L⟩ do not represent prices that support a social-welfare-

maximizing allocation, since xgopt is not feasible to the social welfare maximization

problem GSWMP. Thus, Theorem 5.1 summarizes the necessary and sufficient con-

ditions for ESAP to exist.

5.3.2 Pairwise-Additive Negative Value Externalities (PANE)

In this subsection, we define the PANE valuation function and describe how it

models negative externalities in our context. Let x be an allocation. Under PANE,

bidder i’s valuation vipxq for allocation x is as follows:

vipxq ”
ÿ

aPL

uai x
a
i ´

ÿ

aPL

ÿ

pj,bqPBL
j‰i
b‰a

wabij x
a
i x

b
j. (5.17)
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Here, the term uai , where u
a
i ą 0, pi, aq @ P BL, is bidder i’s private value for item a

if no other bidder j ‰ i, j P B is assigned any other item. Bidder i’s value for item

a reduces by an amount wabij , where w
ab
ij ě 0, if bidder j ‰ b is assigned item b ‰ a.

Here, we assume that wabij “ 0 if i “ j or if a “ b. This is because a bidder does not

impose an externality on himself. Further, since an item can only be assigned to

one bidder, we assume that waaij “ 0. Essentially, wabij captures the pairwise-additive

negative value externalities that bidder i faces for item a when bidder j ‰ i is

assigned item b ‰ a. As mentioned earlier, wabij , pi, aq P BL, pj, bq P BL are private

information for bidder i. Under PANE, xai “ 1 if a P Sipxq and xai “ 0 if a R Sipxq,

and xbj “ 1 for all pj, bq P BL, j ‰ i, b ‰ a if b P Sjpxq and xbj “ 0 if b R Sjpxq.

We now illustrate how PANE may be interpreted in practice: For example,

assigning wabij a large value, say M where M ąą uai , is equivalent to bidder i having

the following preference: bidder i values item a only if bidder j is not assigned item

b. Therefore, if wabij ą uai for any j ‰ i and b ‰ a, it means that bidder i does not

consider item a valuable if item b is assigned to bidder j. If wabij ą uai for more than

one j where j ‰ i, it implies that bidder i does not consider item a valuable if any

of such j’s receive the item. If, for some allocation x, we have

uai ´
ÿ

pj,bqPBL
j‰i
b‰a

wabij x
b
j ą 0,

it means that bidder i considers item a valuable, but at a lower value than uai .

If wabij “ 0, bidder i’s value for item a is indifferent to the assignment of item b

to bidder j. Notice that the externality parameter wabij is both item-specific and

bidder-specific.

In the context of online advertisement slots. Bidder i can specify a set of

bidders B0 he does not want taking a specific set of slots L0 by setting wabij “ M for

all j P B0 Ď B and a P L0 Ď L for some or all a P L. If slot a is located above slot b,

and if bidder i values slot a at a positive value only if a bidder j P B is not assigned

slot b, wabij “ M . If bidder i values a slot a positively only when no other bidder j P B
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is assigned a slot, say c, that is higher than a, then wacij “ M for all j P B, j ‰ i.

These are examples of preferences where a bidder does not want to share the same

webpage with other advertisers. On the other hand, setting values of wabij ă M

implies that bidder i is open to sharing a webpage with other advertisers, although

he would not value his slots as much as he would have without such an allocation.

Thus, the PANE valuation function captures some common forms of valuations in

the presence of allocation externalities discussed in the literature (Bhargava et. al.

2019, Constantin et. al. 2011, Sayedi et. al. 2018).

Next, we discuss whether ESAP exists under PANE.

5.4 PANE and Solving for the Social-Welfare-Maximizing

Allocation

In this section, we discuss structural results related to PANE and show that ESAP

exists under the PANE valuation. This result has implications for the design of iter-

ative auctions that terminate at a social-welfare-maximizing allocation with simple

and anonymous prices. As explained in §5.1, iterative auctions modify prices based

on the interest shown by the bidders for the items for a given set of prices. If the

prices of the items are simple and anonymous, the process of modifying the item

prices across iterations will not be computationally difficult for the auctioneer, since

she only has to modify |L| prices every iteration. This is in contrast to modifying an

exponential number of prices, which would be the case if the price structure needed

to achieve a social-welfare-maximizing allocation was neither simple nor anonymous.

In §5.4.1, we begin by describing the social welfare maximization problem under

PANE. This problem, that we call QIP, is an instance of GSWMP where Hpxq is

the PANE valuation function. Specifically, we show that the optimization problem

obtained by relaxing the binary constraints on the variables x, that we call QP,

continues to yield integral optimal solutions (integrality property). Next, we show

that problem QP satisfies the strong duality property, i.e., no gap exists between the
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primal and dual objective values at optimality. Finally, we show that Theorem 5.1

immediately follows by which we establish the existence of ESAP under PANE. The

results established in §5.4.1 are also of interest from a computational tractability

standpoint. In §5.4.2, we establish that the computational complexity of PANE is

bounded polynomially. This is a result of interest since a direct mechanism in the

form of a VCG mechanism can achieve a social-welfare-maximizing allocation.

5.4.1 Integrality Property and Strong Duality

We first examine the problem of finding a social-welfare-maximizing allocation of

items to bidders. Note that wabij “ 0 if i “ j or a “ b. We call this problem QIP:

QIP: max
x

ÿ

pi,aqPBL

uai x
a
i ´

ÿ

pi,aqPBL

ÿ

pj,bqPBL
j‰i
b‰a

wabij x
a
i x

b
j, (5.18)

subject to
ÿ

iPB

xai “ 1 @ a P L, (5.19)

xai P t0, 1u @ pi, aq P BL. (5.20)

Problem QIP finds the allocation that maximizes social welfare resulting from the

allocation.

The integrality property. Consider the continuous relaxation of QIP, denoted

as QP.

QP: max
x

ÿ

pi,aqPBL

uai x
a
i ´

ÿ

pi,aqPBL

ÿ

pj,bqPBL
j‰i
b‰a

wabij x
a
i x

b
j, (5.21)

subject to
ÿ

iPB

xai “ 1 @a P L, ¨ ¨ ¨ ppaq (5.22)

xai ď 1 @ pi, aq P BL, ¨ ¨ ¨ pρai q (5.23)

xai ě 0 @ pi, aq P BL. (5.24)
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For notational ease, we use the following matrices to represent the problem param-

eters.

1. u is a column vector of dimensions |BL| ˆ 1 whose pi, aqth component is uai .

2. W is a matrix of dimension |BL| ˆ |BL| whose rpi, aq, pj, bqsth component is

wabij .

3. A is the coefficient matrix of constraint (5.22)

4. x is a column vector of dimensions |BL| ˆ 1 whose pi, aqth component is xai .

5. p is a column vector of dimension |L| ˆ 1 whose ath component is pa.

6. ρ is a column vector of dimensions |BL| ˆ 1 whose pi, aqth component is ρai .

In problem QP, pa, a P L and ρai , pi, aq P BL denote the multipliers asso-

ciated with the constraints (5.22) and (5.23). We keep constraint (5.23) despite

its redundancy because it allows for an economic interpretation of its multipliers

ρai , pi, aq P BL. In general, the objective function (5.21) of QP is neither convex nor

concave because the matrix W may be indefinite. In Theorem 5.2, we show that

the QP yields integral solutions.

Theorem 5.2 (Integrality property of QP) The solutions to problem QP are inte-

gral, i.e., the values of xai , pi, aq P BL at optimality of QP are either 0 or 1.

Proof of Theorem 5.2. The proof of this theorem has already been presented in

the proof of Theorem 3.1.

From a technical standpoint, the fact that wabij “ 0 when i “ j or a “ b plays a

role in the integrality property of QP. If wabij ą 0 when i “ j or a “ b, the integrality

property of QP may not hold in general. Next, we establish strong duality for QP.

Strong duality. The Lagrangean relaxation of QP, QP-Lpx;p, ρq, is as below.

QP-Lpx;p, ρq “
ÿ

pi,aqPBL

uai x
a
i´

ÿ

pi,aqPBL

ÿ

pj,bqPBL
j‰i
b‰a

wabij x
a
i x

b
j`

ÿ

aPL

pa
”

1´
ÿ

iPB

xai

ı

`
ÿ

pi,aqPBL

ρai

”

1´xai

ı

.

(5.25)
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In matrix notation, QP-Lpx;p, ρq can be written as

QP-Lpx;p, ρq “ pT1 ` ρT1 ` uTx ´ pTAx ´ ρTx ´ xTWx, (5.26)

where 1 is a column vector all of whose components are 1. Here, x ě 0, since we are

only considering the non-negative orthant. The first-order conditions for optimality

of QP (labelled FOOC) are as follows.

FOOC: uai ´
ÿ

pj,bqPBL
j‰i
b‰a

wabij x
b
j ´ pa ´ ρai ď 0 @ pi, aq P BL, (5.27)

´
ÿ

iPB

xai ` 1 “ 0 @ a P L, (5.28)

ρai ě 0 @ pi, aq P BL, (5.29)

ρai p1 ´ xai q “ 0 @ pi, aq P BL. (5.30)

Conditions (5.27), (5.28), and (5.29) are obtained by taking partial derivatives of

QP-Lpx;p, ρq with respect to (w.r.t) to the components of x,p, ρ. Condition (5.29)

is the condition for dual feasibility, and conditions (5.30) are the complementary

slackness conditions. Let Ω be the set of values for x that satisfy FOOC.

Theorem 5.3 (Strong duality) Let x˚ be the optimal solution to QP. Let pp˚, ρ˚q

represent the optimal solution to the dual of QP. Let QP-P(x˚) represent the optimal

value of QP at x˚. Let QP-D represent the optimal value of the dual of QP evaluated

at pp˚, ρ˚q. Then QP-Ppx˚q “ QP-Dpp˚, ρ˚q.

Proof of Theorem 5.3.

Consider a locally-optimal solution x̄ P Ω. Given x̄, let the solution to variables p

and ρ from solving FOOC be ppx̄q and ρpx̄q. If x̄ “ x˚, we have that ppx̄ “ x˚q “ p˚

and ρpx̄ “ x˚q “ ρ˚. We show this below. The values of ppx̄q and ρpx̄q can be

obtained as a solution to the following linear programming problem (it is a linear
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program since x̄ is fixed):

min
pa,ρai
iPB
aPL

ÿ

aPL

pa `
ÿ

pi,aqPBL

ρai , (5.31)

subject to uai ´
ÿ

pj,bqPBL

wabij x̄
b
j ď pa ` ρai @ pi, aq P BL, (5.32)

´
ÿ

iPB

x̄ai ` 1 “ 0 @ a P L, (5.33)

ρai ě 0 @ pi, aq P BL, (5.34)

ρai p1 ´ x̄ai q “ 0 @ pi, aq P BL. (5.35)

The solution ppx̄q and ρpx̄q are as follows:

ρai px̄q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

uai ´
ř

pj,bqPBLw
ab
ij x̄

b
j ´ pa˚px̄q, if i “ argmaxkPB u

a
k ´

ř

pk,bqPBLw
ab
ik x̄

b
k ´ pa˚px̄q, and

maxkPB u
a
k ´

ř

pk,bqPBLw
ab
ik x̄

b
k ´ pa˚px̄q ą 0,

0 otherwise,

for all pi, aq P BL and

pa˚
px̄q “ second-highest kPB

”

uak ´
ÿ

pk,bqPBL

wabik x̄
b
k

ı

,

for all a P L. We point out that the solutions to ppx̄q and ρpx̄q are infinite in number.

We only present one of these solutions. A key point to note here is that for each

a P L, ρakpx̄q ą 0 only for one k P B. Let B˚px̄q “ tk : k P B, ρakpx̄q ą 0 @a P Lu.

Thus, from the condition ρai p1 ´ x̄ai q “ 0 for all pi, aq P L, we have that x̄ak “ 1 if

ρak ą 0. Consider the expression

ÿ

aPL

pa˚
px̄q `

ÿ

pi,aqPBL

ρai px̄q. (5.36)
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We have that

ÿ

aPL

pa˚
px̄q `

ÿ

pi,aqPBL

ρai px̄q “
ÿ

aPL

pa˚
px̄q `

ÿ

aPL

ÿ

iPB˚px̄q

ρai px̄q `
ÿ

aPL

ÿ

iPB´B˚px̄q

ρai px̄q

“
ÿ

aPL

ÿ

iPB˚px̄q

”

uai ´
ÿ

pj,bqPB˚px̄q

wabij x̄
b˚
j

ı

` 0

“
ÿ

aPL

ÿ

iPB˚px̄q

”

uai ´
ÿ

pj,bqPB˚px̄q

wabij x̄
b˚
j

ı

x̄a˚
i .

since x̄ai “ 1 if pi, aq P B˚px̄q. Now, consider the solution y˚ where

y˚
“ argmax

x̄PΩ

«

ÿ

aPL

pa˚
px̄q`

ÿ

pi,aqPBL

ρai px̄q

ff

“ argmax
x̄PΩ

ÿ

aPL

ÿ

iPB˚px̄q

”

uai´
ÿ

pj,bqPB˚px̄q

wabij x̄
b˚
j

ı

x̄a˚
i .

(5.37)

Thus, solving the maximization problem (5.37) is the same as solving problem QP

to global optimality. When x̄ “ y˚, we have that

ÿ

aPL

pa˚
py˚

q `
ÿ

aPL

ÿ

iPB

ρai py
˚
q “

ÿ

aPL

pa˚
py˚

q `
ÿ

aPL

ÿ

iPB˚py˚q

ρai py
˚
q `

ÿ

aPL

ÿ

iPB´B˚py˚q

ρai py
˚
q

“
ÿ

aPL

ÿ

iPB˚py˚q

”

uai ´
ÿ

pj,bqPB˚py˚qL

wabij y
b˚
j

ı

` 0

“
ÿ

aPL

ÿ

iPB˚py˚q

”

uai ´
ÿ

pj,bqPB˚py˚qL

wabij y
b˚
j

ı

ya˚
i “ QP-Ppx˚

q,

since ya˚
i “ 1 for all i P B˚py˚q and for all a P L. Thus, y˚ is a global maximizer of

QP.

Let the dual variables associated with constraints (5.22) and (5.23) be qa, a P L and

ϕai , pi, aq P BL. The expression for QP-Lpx;q, ϕq can be written as

QP-Lpx;q, ϕq “ ϕT1 ` qT1 `

”

uT ´ qTA ´ ϕT ´ xTW
ı

x. (5.38)

Here 1 is a column vector each of whose components is 1. Let x “ y˚ (note that y˚
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is the global optimizer of QP as defined in (5.37)). Finding the value of the variables

q and ϕ such that QP-Lpx “ y˚;q, ϕq is minimized requires that

uT ´ qTA ´ ϕT ´ y˚TW ď 0T , ϕ ě 0,

where 0 is a column vector each of whose components is 0. The values of q˚ and ϕ˚

can be computed by solving the following optimization problem:

pq˚, ϕ˚
q “ argmin

q,ϕ
QP-Lpy˚;q, ϕq (5.39)

subject to uT ´ qTA ´ ϕT ´ y˚TW ď 0T , (5.40)

ϕ ě 0. (5.41)

Thus, the dual of QP can be formulated as

min
q;ϕ

qT1 ` ϕT1 (5.42)

subject to uT ´ qTA ´ ϕT ´ y˚TW ď 0T , (5.43)

ϕ ě 0. (5.44)

The solution q˚ and ϕ˚ is as follows:

ϕa˚
i “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

uai ´
ř

pj,bqPBLw
ab
ij y

b˚
j ´ qa˚, if i “ argmaxkPB u

a
k ´

ř

pk,bqPBLw
ab
iky

b˚
k ´ qa˚, and

maxkPB u
a
k ´

ř

pk,bqPBLw
ab
iky

b˚
k ´ qa˚ ą 0,

0 otherwise.

for all pi, aq P BL and

qa˚
“ second-highest kPB

”

uak ´
ÿ

pk,bqPBL

wabiky
b˚
k

ı

.
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Let P ˚ “ tk : k P B, ϕa˚
k ą 0 @a P Lu. We point out that there are alternate optima

yielding the same objective function value. To see how pq˚, ϕ˚q is the solution,

we substitute pq˚, ϕ˚q in the objective expression (5.42) and obtain the following

expression:

ÿ

aPL

ÿ

iPB

”

uai ´
ÿ

pj,bqPBL

wabij y
b˚
j

ı

ya˚
i

“
ÿ

aPL

ÿ

iPP˚

”

uai ´
ÿ

pj,bqPP˚L

wabij y
b˚
j

ı

ya˚
i `

ÿ

aPL

ÿ

iPB´P˚

”

uai ´
ÿ

pj,bqPB´P˚L

wabij y
b˚
j

ı

ya˚
i

“
ÿ

aPL

ÿ

iPP˚

”

uai ´
ÿ

pj,bqPP˚L

wabij y
b˚
j

ı

` 0

(since ya˚
i “ 0 if pi, aq P B ´ P ˚, and ya˚

i “ 1 if pi, aq P P ˚).

“
ÿ

aPL

ÿ

iPP˚

”

uai ´
ÿ

pj,bqPP˚

wabij y
b˚
j

ı

ya˚
i .

(since ya˚
i “ 1 if i P P ˚).

Notice that

ÿ

aPL

ÿ

iPP˚

”

uai ´
ÿ

pj,bqPP˚

wabij y
b˚
j

ı

ya˚
i “ max

x̄PΩ

«

ÿ

aPL

pa˚
px̄q `

ÿ

pi,aqPBL

ρai px̄q

ff

“ QP-Ppx˚
q.

Thus, we have that qa˚ “ papy˚q “ papx˚q and ϕa˚
i “ ρai py

˚q “ ρai px
˚q. Therefore,

ÿ

aPL

qa˚
`

ÿ

pi,aqPBL

ϕa˚
i “ QP-Dpp˚, ρ˚

q “ max
x̄PΩ

«

ÿ

aPL

pa˚
px̄q`

ÿ

pi,aqPBL

ρai px̄q

ff

“ QP-Ppx˚
q.

Thus, we prove Theorem 5.3. These results also prove Corollary 5.1. ˝

In general, the duality gap for nonconvex quadratic optimization problems is

non-zero (Boyd et. al. 1996, 2004). However, formulation QP is different in
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that regard because semi-assignment constraints (5.22) play an important role in

ensuring that the duality gap is zero at optimality. In particular, constraints (5.22)

are separable in a, a P L. As we establish later, this structural property of strong

duality property has important implications for computational tractability. It is also

noteworthy that QP demonstrates total dual integrality if the entries of matrices u

and W are integral. We summarize this result in Corollary 5.1.

Corollary 5.1 (Corollary to Theorem 5.3: Dual integrality) If the components of

u and W are integer-valued, the optimal dual solution of problem QP, i.e., the

components of p˚ and ρ˚, are integer-valued.

Thus, Theorems 5.2 and 5.3 show the existence of simple and anonymous market-

clearing price vectors ⟨pa, a P L⟩ that result in an undivided allocation x where

every bidder i makes a surplus of ρai ě 0, a P L. Formally, we state the existence of

ESAP under PANE in Theorem 5.4.

Theorem 5.4 If the bidders’ valuation functions are PANE, ESAP exists.

Theorems 5.2 and 5.3 are of interest from a computational tractability standpoint.

Optimizing functions that are neither convex nor concave is known to be NP-Hard

(Zheng et. al. 2012, Pardalos et. al. 1991, Boyd et. al. 1996). To this end,

in §5.4.2, we show that the problem QIP can be solved in polynomial time. Thus,

we have a class of quadratic binary optimization problems that can be solved in

polynomial time.

5.4.2 Computational Complexity of QIP

In this section, we show that problem QIP can be solved in polynomial time. The-

orem 5.5 formalizes this result. As we shall show, this has implications on the

practicality of using a VCG auction as a direct mechanism.

Theorem 5.5 QIP can be solved in polynomial time.
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Proof of Theorem 5.5.

The key to this result is Theorem 5.3. The relaxation of problem QIP in matrix

form can be written as follows with a minimization objective:

min xTWx ´ uTx, (5.45)

subject to Ax “ 1 ¨ ¨ ¨ pλq, (5.46)

x ě 0 ¨ ¨ ¨ pψq. (5.47)

Here λ “ ⟨λa, a P L⟩ and ψ “ ⟨ψai , pi, aq P BL⟩ are multipliers associated with con-

straints (5.46) and (5.47) respectively. Note that xTWx “ TrpWxxT q, where

TrpWxxT q is the trace of the matrix WxxT . Thus, we rewrite the above optimiza-

tion problem as follows:

min TrpWXq ´ uTx, (5.48)

subject to Ax “ 1, (5.49)

X “ xxT , (5.50)

x ě 0, (5.51)

whereX is a symmetric matrix of dimensions p|B||L|qˆp|B||L|q. Let the rpi, aq, pj, bqsth

component of X be Xab
ij . We now relax the constraint X “ xxT to obtain the fol-

lowing optimization problem:

min TrpWXq ´ uTx, (5.52)

subject to Ax “ 1, (5.53)

X ě xxT , (5.54)

x ě 0. (5.55)
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The constraint X ě xxT means that X ´ xxT is positive semidefinite. Problem

(5.52) – (5.55) is a semidefinite relaxation of problem (5.48) – (5.51). The dual

of problem (5.45) – (5.47) is as shown in (5.42) – (5.43). The formulation (5.42)

– (5.43) can be reduced to a semidefinite programming problem, say DSDP , using

Shor’s scheme shown below. This formulation is based on the formulation on Page

231 of Zheng et. al. (2012).

DSDP : max τ, (5.56)

subject to

»

—

–

0 1
2
uT

1
2
u W

fi

ffi

fl

´τ

»

—

–

1 0

0 0

fi

ffi

fl

`
ÿ

aPL

λa

»

—

–

´1 Aa

ATa 0

fi

ffi

fl

`
ÿ

pi,aqPBL

ψai

»

—

–

0 bT

b 0

fi

ffi

fl

ě 0.

(5.57)

τ P ℜ, λa P ℜ @a P L, ψai ě 0 @pi, aq P BL, (5.58)

where Aa is the ath row of matrix A and is of dimensions 1 ˆ |BL|, b is a column

vector of 0s, except for the pi, aqth component which is 1, with dimensions |BL| ˆ 1,

0 is a square matrix of 0s whose dimensions are |BL| ˆ |BL|, and α ě 0 means that

matrix α is positive semidefinite. The dual of DSDP is, in fact, problem (5.52) –

(5.55). We refer readers to Page 61 in Boyd et. al. (1996) or Page 231 of Zheng

et. al. (2012) for this. It is also true that, at optimality, the objective value of

problem (5.52) – (5.55) equals the objective value of DSDP . For this assertion, we

refer readers to Page 61 of Boyd et. al. (1996).

Now, the optimal objective value of DSDP is equal to the optimal objective value

of problem (5.42) – (5.43). The optimal objective value of problem (5.42) – (5.43) is

equal to the optimal objective value of problem QP by Theorem 5.3. From Theorem

5.2, the optimal solution and objective to QP is the same as that of QIP. Therefore,

problem (5.52) – (5.55) solves QIP.

Finally, we know that problem (5.52) – (5.55) can be solved in polynomial time

since it is a semidefinite programming problem (Boyd et. al. 1996). Therefore,

QIP can be solved in polynomial time. ˝

132



The proof of Theorem 5.2 relies on two important results: piq the optimal solution

to QP is identical to that of QIP, and piiq a semidefinite relaxation of QP, which

can be solved in polynomial time, can solve problem QIP (Boyd et. al. 1996).

The detailed proof is in the Appendix §??. The implication of Theorem 5.5 is that

the problem of finding the social-welfare-maximizing allocation of items to bidders

can be solved in polynomial time. Consequently, a direct mechanism with VCG

allocation and payments can implement the social-welfare-maximizing allocation.

We summarize this result in Corollary 5.2.

Corollary 5.2 (Corollary to Theorem 5.5) Under PANE, the allocation and pay-

ments of a VCG auction can be computed in polynomial time.

A VCG auction, by design, incentivizes bidders to report their valuations truthfully

(Nisan et. al. 2007, Nisan and Ronen 2007). The auctioneer can use these truthful

bids, i.e., u andW, to solve QP in polynomial time using semidefinite programming,

and obtain the optimal solution to QIP in the process. As a result, the computation

of the VCG payments and allocation can be performed in polynomial time. Thus,

a computationally efficient direct mechanism in the form of a VCG mechanism can

be used to achieve a social-welfare-maximizing allocation under PANE.

5.5 The Subgradient Algorithm and the Subgra-

dient Auction

In this section, we discuss the design of an iterative auction (an indirect mechanism)

to achieve social welfare maximization. As mentioned in §5.1, iterative auctions

may be preferred in practice because they do not require the bidders to reveal their

private information completely. Also, iterative auctions are “decentralized” in the

sense that the burden of computation of item allocation is delegated to the bidders:

The bidders only have to compute their best responses to the current item prices

in every round, while the auction design guides the movement of the prices in a

manner that the final allocation achieves the auctioneer’s goal (which, in our case,
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is maximizing social welfare). When the bidders’ valuation function is PANE, the

existence of ESAP shows that simple and anonymous prices are sufficient to guide

the auction to a social-welfare-maximizing allocation. Thus, the iterative auction

we discuss here only uses simple and anonymous prices.

We begin by describing a subgradient algorithm (Fisher 2004) as a solution

technique to QIP since this algorithm, as we shall show, can be interpreted as an

iterative auction. Problem QIP restated in matrix form is as follows:

max
x

uTx ´ xTWx (5.59)

subject to Ax “ 1, ¨ ¨ ¨ ppq (5.60)

x P t0, 1u
|BL|ˆ1. (5.61)

Relaxing constraint (5.60) using the multiplier p, we have the following:

Lpx;pq “ uTx ´ pTAx ´ xTWx ` pT1. (5.62)

We now have the following optimization problem:

min
p

max
x

Lpx;pq, (5.63)

subject to x P t0, 1u
|BL|ˆ1. (5.64)

Theorem 5.3 shows that the subgradient algorithm solves the optimization problem

(5.63) – (5.64) and will converge to a solution x˚ that maximizes QIP. At iteration

k, if the current value of the prices ppkq and the current optimal solution to the

inner optimization problem at ppkq is xpkq˚, ppkq is adjusted by setting ppk`1q “

ppkq ´ ∆pkqp1 ´ Axpkq˚q. With appropriate step sizes (each component of ∆pkq is

the step size), the algorithm converges to the optimal solution. Each component

of ∆pkq is strictly positive. If a component of 1 ´ Axpkq˚ is positive (a case of an

item being demanded by no one), then the corresponding component of ppk`1q is

134



lower than that of ppkq, thus signifying a price reduction. Likewise, if a component

of 1 ´ Axpkq˚ is negative (a case of an item being demanded by more than one

bidder), then the corresponding component of ppk`1q is greater than that of ppkq,

thus signifying a price increase. We refer readers to Fisher (2004) for details on

the subgradient algorithm. This algorithm can be quite slow in convergence (Fisher

2004).

The subgradient algorithm described above can be interpreted as a guided-price

auction17. This guided-price auction terminates with the social-welfare-maximizing

allocation. The subgradient algorithm converges if it is allowed to use as many

iterations as needed. For example, if each component of ∆pkq was 1
k
, the algorithm

would converge after a large number of iterations since lim
nÑ8

k“n
ÿ

k“1

1

k
Ñ 8. Thus, this

algorithm converges slowly if the prices are not updated appropriately.

The subgradient auction (or the guided-price auction). The auctioneer

begins by setting prices pa for all a P L. Following this, she notes the interest the

bidders have in the items at these prices. The expressions of interest of other bidders

is made public by the auctioneer. Let za˚
i “ 1 if bidder i is interested in item a, and

let za˚
i “ 0, if not, for all a P L. A bidder i is interested in item a priced at pa, a P L

if

uai ´ pa ´
ÿ

pj,bqPBL
j‰i
b‰a

wabij z
b˚
j ą 0, (5.65)

and is not interested in an item if not18. Following this, the auctioneer modifies the

prices of each of the items and notes the bidders’ interest again. This modification

may be an increase or a decrease. She repeats this process until the following

equation is satisfied,
ÿ

iPB

za˚
i “ 1 @ a P L,

i.e., only one bidder expresses interest in an item. At this point, the social-welfare

maximizing allocation is reached. This auction format is truthful because no bidder

would be willing to pay a price greater than his value for an item. This auction
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design is based on the subgradient algorithm. It terminates with a social-welfare-

maximizing allocation. Figure 5.1 presents the steps of the subgradient auction. It

starts with the auctioneer setting prices for all items. We discuss two illustrations

of the subgradient auction in §5.6.

Figure 5.1: A schematic representation of the subgradient auction.

5.6 Numerical Experiments and Illustrations

In this section, we present demonstrations of the strong duality result of Theorem

5.3. We do this by implementing the subgradient algorithm to solve the minimax

problem (5.63) – (5.64) and show that the optimal objective value of problem (5.63) –

(5.64) is equal to the optimal objective value of QIP. We also present two illustrations

of the subgradient auction. Both instances consider 3 items and 3 bidders, i.e.,

L “ ta, b, cu and B “ t1, 2, 3u.

5.6.1 Demonstrating Strong Duality

We present our implementation of the subgradient algorithm to demonstrate strong

duality in Algorithm 4 for four instances. The values of u and W are randomly-

generated integers for all four instances. We run the computations using Python
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with CPLEX 20.1 (via the DOCPLEX package on Python) on a MacBook Air 2015

on the macOS Catalina operating system with a 1.6 GHz Dual-Core Intel Core i5

processor and a 4 GB 1600 MHz DDR3 RAM. In every iteration, we solve the binary

quadratic optimization problem of Step 4 using CPLEX’s inbuilt solver for binary

quadratic programs19. The algorithm terminates after identifying an allocation x˚

and maximum social welfare Z˚ (both of which are defined in the algorithm).

Algorithm 4 The subgradient algorithm.

1. Initialize p “ ⟨M, a P L⟩ where M “ maxpi,aqPBL u
a
i

2. Initialize k “ 0, ∆ “ 1, x˚ “ 0

while 1 ´ Ax˚
‰ 0 do

3. k “ k ` 1

4. Find

Z˚
“ max

x

ÿ

pi,aqPBL

”

uai ´ pa
ı

xai ´
ÿ

pi,aqPBL

ÿ

pj,bqPBL
j‰i
b‰a

wabij x
a
i x

b
j

subject to xai P t0, 1u @ pi, aq P BL

5. Set Z˚ “ Z˚ `
ÿ

aPL

pa

6. Set pa “ maxt0, pa ´ ∆p1 ´ Ax˚qu, @ a P L

end

7. Return Z˚, x˚

Figure 5.2 depicts the progress of the subgradient algorithm over iterations for

four problem instances. For all of the instances, ∆ “ 1 for all iterations k. The

curves in the figures (marked with an O; colored red) represent the value of the

Lagrangean (5.63), i.e., Z˚ in Algorithm 4, across iterations. The flat line segment

at the bottom of the plots (marked with a ∆; colored blue) is the optimal objective

value of QIP. The figures show how the Lagrangean objective (5.63) decreases across

iterations, and intersects with the primal objective in the final iteration. Thus, these

figures demonstrate strong duality as the value of the Lagrangean objective (5.63)

converges to the optimal value of QP (and of QIP) in the final iteration.
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(a) |B| “ |L| “ 3 (b) |B| “ |L| “ 5

(c) |B| “ |L| “ 8 (d) |B| “ |L| “ 10

Figure 5.2: The subgradient algorithm across iterations.

It is possible that setting ∆ “ 1 for all k may cause the algorithm to cycle. It is,

thus, important that an appropriate ∆ be used for each iteration k. However, the

underlying principle of the subgradient algorithm (and the suubgradient auction)

continues to remain the same.

5.6.2 Illustrations of the Subgradient Auction

The problem instances generated for the two illustrations are as given in Tables 5.1

and 5.3 respectively. Tables 5.2 and 5.4 present the progression of the auction rounds

for the two instances respectively. In Table 5.2 and Table 5.4, the first column is the

‘Round Number’. It mentions the current round at which the subgradient auction

runs. The second column is ‘p’ that presents the current prices of the items in a
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round. The third column is ‘Undemanded’. The entries in this column are vectors

where the ath, a P L entry is defined as follows: If the ath entry is 1, no bidder

shows interest in the item. If the ath entry is zero, exactly one bidder shows interest

in item a. If the ath entry is negative, more than one bidder shows interest in item

a. The entries in the fourth column ‘Demand’ are vectors that depict the interest

shown by the bidders for an item at prices p: If the ith bidder shows interest in item

a, the pi, aqth entry in the vector is 1. Otherwise, it is zero.

uai a b c

1 8 8 5
2 5 6 7
3 8 9 7

(a) uai values.

wabij (1,a) (1,b) (1,c) (2,a) (2,b) (2,c) (3,a) (3,b) (3,c)

(1,a) 0 0 0 0 1 1 0 1 1
(1,b) 0 0 0 1 0 1 1 0 1
(1,c) 0 0 0 1 1 0 1 1 0
(2,a) 0 1 1 0 0 0 0 1 1
(2,b) 1 0 1 0 0 0 1 0 1
(2,c) 1 1 0 0 0 0 1 1 0
(3,a) 0 1 1 0 1 1 0 0 0
(3,b) 1 0 1 1 0 1 0 0 0
(3,c) 1 1 0 1 1 0 0 0 0

(b) wabij values.

Table 5.1: Illustration 1.

Round Number p Undemanded Demand

1 [10 10 10] [1 1 1] [0 0 0 0 0 0 0 0 0]
2 [9 9 9] [1 1 1] [0 0 0 0 0 0 0 0 0]
3 [8 8 8] [0 0 1] [0 0 0 0 0 0 1 1 0]
4 [8 8 7] [0 0 0] [0 0 0 0 0 0 1 1 1]

Table 5.2: The subgradient auction for illustration 1.

Illustration 1. In Table 5.2, the prices of all items start start at 10. At this price,

no bidder shows any interest in the items. As a result, all items are undemanded.

This is depicted by the vector r1 1 1s. Thus, the auctioneer reduces the price of each

item by 1 unit. However, the undemanded item vector continues to be r1 1 1s. As

a result, the auctioneer continues to lower the prices of each item by 1 unit. This

time, there is a demand for the first two items a and b, while item c is undemanded.

This is depicted by the vector r0 0 1s. As a result, the auctioneer reduces the price

of item c by 1 unit. As a result, in round 4, all of the items are demanded at prices

r8 8 7s. In this illustration, the allocation of the items was such that all of the items
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went to the same bidder. It can be verified easily from Table 5.1 that this is the

social-welfare-maximizing allocation.

Illustration 2. The valuations and externalities for this illustration are as presented

in Table 5.3, and the progression of the subgradient auction rounds are as presented

in Table 5.4. The auctioneer sets the prices at 30 at the start of the auction, and

modifies the prices depending on the interest for each of the items. From round 6

to round 7, the auctioneer lowers the prices of items a and c by 1 unit each since

they remain undemanded at the prices r25 25 25s. From round 21 to round 22, the

auctioneer increases the price of item a by 2 units, since there is an excess demand

of 2 units for item a in round 21, as depicted by ‘-2’ in the vector r´2 1 1s. At the

same time, the auctioneer decreases the prices of items b and c by 1 unit each. This

is because they are undemanded as of round 21. Likewise, from round 26 to round

27, the auctioneer increases the price of item b by 1 unit because it is overdemanded

by 1 bidder. Finally, at prices r12 21 19s, there is no undemanded item, and the

assignments are such that items a and b go to bidder 1, and item c goes to bidder

2.

uai a b c

1 14 26 18
2 14 21 25
3 17 19 18

(a) uai values.

wabij (1,a) (1,b) (1,c) (2,a) (2,b) (2,c) (3,a) (3,b) (3,c)

(1,a) 0 0 0 0 1 1 0 2 1
(1,b) 0 0 0 2 0 1 2 0 2
(1,c) 0 0 0 2 1 0 1 1 0
(2,a) 0 1 1 0 0 0 0 1 1
(2,b) 1 0 2 0 0 0 2 0 2
(2,c) 1 1 0 0 0 0 2 1 0
(3,a) 0 2 2 0 1 2 0 0 0
(3,b) 1 0 2 1 0 1 0 0 0
(3,c) 1 1 0 1 1 0 0 0 0

(b) wabij values.

Table 5.3: Illustration 2.

We point out that changing prices in multiples of 1 unit between rounds may

lead to cycling. In general, this can be circumvented by changing the item prices as

a multiple of 1
k
, where k is the current round number. We point out that, given a

price-update structure, it need not be the case that the final item prices are ESAP,

although it is guaranteed that the final allocation is the social-welfare-maximizing
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Round Number p Undemanded Demand

1 [30 30 30] [1 1 1] [0 0 0 0 0 0 0 0 0]
2 [29 29 29] [1 1 1] [0 0 0 0 0 0 0 0 0]
...

...
...

...
5 [26 26 26] [1 1 1] [0 0 0 0 0 0 1 1 0]
6 [25 25 25] [1 0 1] [0 1 0 0 0 0 0 0 0]
7 [24 25 24] [1 0 1] [0 1 0 0 0 0 0 0 0]
...

...
...

...
9 [22 24 23] [1 0 0] [0 1 0 0 0 1 0 0 0]
...

...
...

...
21 [13 22 21] [-2 1 1] [1 0 0 1 0 0 1 0 0]
22 [15 21 20] [1 0 0] [0 1 0 0 0 1 0 0 0]
...

...
...

...
26 [14 20 19] [1 -1 0] [0 1 0 0 1 1 0 0 0]
27 [13 21 19] [1 0 0] [0 1 0 0 0 1 0 0 0]
28 [12 21 19] [0 0 0] [1 1 0 0 0 1 0 0 0]

Table 5.4: The subgradient auction for illustration 2.

allocation. This is because multiple item prices can give rise to the same allocation.

This follows from the fact that dual formulation of (5.5) – (5.8) has multiple optimal

solutions.

5.7 Conclusion and Future Research

We examine the auctioneer’s problem of designing auction mechanisms (direct and

indirect) that terminate in a social-welfare maximizing allocation for settings with

negative externalities. Specifically, we consider a class of valuation functions we

call the Pairwise Additive Negative Value Externalities (PANE). We formulate the

social-welfare maximization problem as a binary quadratic programming problem

with linear constraints. We show that the objective function is generally neither con-

vex nor concave. We also identify some important properties of this class of optimiza-

tion problems: piq The optimal solution to the social-welfare maximization problem

is binary even after the binary constraints are relaxed, piiq strong duality holds true

for this class of optimization problems, and piiiq this class of optimization problems

can be solved in polynomial time. Results piq and piiq are important for showing the

existence of simple and anonymous prices that support a social-welfare-maximizing
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allocation of items, thus aiding in the development of practically-implementable auc-

tion designs that terminate with a social-welfare-maximizing allocation. Result piiiq

shows that a VCG auction can be conducted in polynomial time, i.e., the allocation

and bidder payments can be computed in polynomial time. We note that the strong

duality result of Theorem 5.3 is driven primarily by the semi-assignment constraints

(5.22).

We show how the subgradient algorithm (Fisher 2004) can be used to solve the

social welfare maximization problem. For this, we make use of the fact that the

relaxation of the social-welfare maximization problem possesses strong duality, and

that this problem solves the social welfare maximization problem. We interpret the

subgradient algorithm as a guided-price auction, and present illustrations explaining

the auction process.

We also present numerical demonstrations of the strong duality property by

implementing the subgradient algorithm. A key step of the subgradient algorithm

is the updating of the item prices. It may be the case that the algorithm cycles

under some choices of price-updates although it is possible to circumvent this issue

by choosing an appropriate price-update structure. However, we do not look into

the question of recommending a price-update structure, as we focus primarily on

the design of the auction. The operating principle of the subgradient algorithm is

the same regardless of the price-update structure used, and we leave the question of

finding an appropriate price-update structure to future research. We also conjecture

that the subgradient algorithm (and the subgradient auction) would terminate with a

social-welfare-maximizing allocation for any function Hpxq “
ÿ

iPB

vipxq that satisfies

the conditions in Theorem 5.1. However, we leave a full analysis of this conjecture

to future research.

As contribution to literature on auction designs with allocative externalities,

we present a notion of equilibrium that is applicable in settings where allocative

externalities are present. In addition, we present conditions on the bidders’ valuation

functions for which simple and anonymous prices are sufficient to achieve a social-

142



welfare-maximizing allocation.

As part of future research, one can consider examining other kinds of valuation

functions that account for allocative externalities and analyze structural properties

of the social-welfare-maximization problem. Based on insights from such analyses,

one can consider appropriate auction designs. In particular, if for some classes

of valuation functions with allocative externalities, simple and anonymous prices

cannot result in a social-welfare-maximizing allocation, one can study the types of

higher order pricing schemes that support a social-welfare-maximizing allocation.

Our work provides the starting point for future research in these lines.
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Notes

11We use the terms slot and item interchangeably throughout the chapter.

12We use the terms advertisers, bidders, and agents interchangeably throughout the text.

13We use the pronoun ‘she’ to refer to the auctioneer, and the pronoun ‘he’ to refer to the

bidders.

14This terminology was earlier used in Candogan et. al. (2015). However, I formally define

these terms later for clarity.

15GSP stands for Generalized Second Price

16See Bikhchandani et. al. (2002) for discussions on complex pricing structures.

17We refer to this auction format as the guided-price auction or subgradient auction inter-

changably throughout this chapter.

18Alternatively, we say that bidder i demands item a if bidder i is interested in item a, and that

he does not demand item a if he is not interested in it.

19https://www.ibm.com/docs/en/icos/20.1.0?topic=parameters-optimality-target
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Chapter 6

Conclusions and Future Work

The theme of this thesis is on designing mechanisms for multi-item sales in contexts

that have not been studied in much detail in literature. It examines two kinds of

questions of interest to an auctioneer in relation to multi-item sales: piq revenue

enhancement and piiq identifying a social-welfare-maximizing allocation.

Chapters 3 and 4 examine the question of revenue enhancement in the context

of multi-item sales. Both chapters study supply control as a revenue-enhancement

lever. Chapters 3 looks at bundling as a lever, while Chapter 4 looks at identifying a

subset of items to put on offer as a lever. Chapter 5 looks at the problem of ideitifying

a social-welfare-maxmizing allocation in settings with allocative externalities.

The key contributions of Chapter 3 are about piq showing the existence of a truth-

ful mechanism where item-level bids are collected before the items are bundled, and

piiq presenting a formulation for computing such item bundlings that can be solved

using standard solvers for integer programming. The key contribution of Chapter 4

is to show how an optimal offer set can be computed in polynomial time if the state

space considered is polynomially bounded. The key contributions of Chapter 5 are

about piq identifying a class of binary quadratic optimization problems whose bi-

nary relaxation yields binary optimal solutions, piiq identifying a class of nonconvex

quadratic optimization problems with strong duality, and piiiq identifying a class of

nonconvex quadratic optimization problems that can be solved in polynomial time.

Chapter 3 discusses a revenue-enhancement mechanism where bidders’ bids are
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collected before an allocation rule is decided. In this regard, future research can

examine mechanism design problems for revenue-enhancement where bids are col-

lected before an allocation rule is decided. Such a means of revenue-enhancement

has not been explored in literature, and can potentially lead to better-capturing of

the bidders’ surpluses, leading to higher revenues for the auctioneer.

Chapter 4 discusses revenue-enhancement where the item set on offer could be

chosen to minimize the costs of participation uncertainty. A takeaway from this

chapter is that the bidders’ participation decisions are affected by the rules of the

sale mechanism. This requires designing approaches to compute an offer set as a

function of the rules of the sale mechanism. The question of optimizing offer sets

can be explored for other commonly-used sale mechanisms, particularly those for

combinatorial auctions.

Chapter 5 discusses the conditions for the existence of simple and anonymous

equilibria for general valuation functions, and shows that they exist under PANE.

Future research could explore other relevant forms of valuation functions, and exam-

ine whether equilibrium allocations are supported by simple and anonymous pricing

schemes. Alternatively, future research could explore more complex pricing schemes

to achieve social-welfare-maximizing allocations under other valuation functions.

Thus, my thesis has explored important questions around sale mechanisms for

multiple items in contexts that have not been explored in literature, and has sug-

gested a promising line of future work.
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