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Abstract

Multivariate control charts are used for monitoring multiple series simultaneously,
for the purpose of detecting shifts in the mean vector in any direction. In the con-
text of disease outbreak detection, interest is in detecting only an increase in the
process means. Two practical approaches for deriving directional Hotelling charts
are Follmann’s correction and Testik and Runger’s quadratic programming. However,
there has not been an extensive comparison of their practical performance. More-
over, in practice many of the underlying method assumptions are often violated and
the theoretically-guaranteed performance might not hold. In this work we compare
the two directionally-sensitive approaches: a statistically-based approach and an op-
erations research solution. We evaluate Hotelling charts as well as two extensions to
multivariate EWMA charts. We examine practical performance aspects such as ro-
bustness to often impractical assumptions, the amount of data required for proper
performance, and computational aspects. We perform a large simulation study and
examine performance on authentic biosurveillance data.

keywords: Disease outbreak detection; Hotelling; Multiple Testing; Multivariate EWMA;
Sensitivity Analysis
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Introduction and Motivation

Motivating Application: Biosurveillance

Modern biosurveillance involves monitoring of a wide-range of pre-diagnostic and diagnostic
data for the purpose of enhancing the ability of the public health infrastructure to detect,
investigate, and respond to disease outbreaks. Statistical control charts have been a central
tool in classic disease surveillance and have also migrated into modern biosurveillance. A
major feature of biosurveillance data is multiplicity in several dimensions. The multiplic-
ity of data sources (e.g., over-the-counter medication sales, nurse hotlines, and emergency
department visits), multiple locations (e.g., multiple hospitals is a certain region), a vari-
ety of diseases of interest, multiple time series from a single source (e.g., medications for
treating different symptoms), etc. In this work we focus on multiple time series arriving
from a single data source, or from multiple data sources. A central question that arises is
whether to monitor each series separately and then to combine the results in some fashion,
or instead to monitor the series in a multivariate fashion. Current temporal monitoring in
biosurveillance systems is done univariately, by applying univariate control charts to each
series separately. This multiple testing can result in a very high false alert rate, leading
many users to ignore alerts altogether. An alternative is to use multivariate control charts,
which have traditionally been used in industry for monitoring multiple series simultaneously.
This alternative to employ multiple univariate charts simultaneously helps avoid the multiple
testing phenomenon. Furthermore, multivariate control charts take advantage of the correla-
tion structure between individual series, thereby having a higher potential of detecting small
signals that are dispersed across series. However, several theoretical and practical issues
arise regarding the usefulness of multivariate control charts in biosurveillance. In particular,
the characteristics of biosurveillance data and the conditions under which monitoring is per-
formed usually mean that standard assumptions are not met, thereby rendering theoretical
derivations questionable. This paper tackles the challenge of directional-sensitive monitor-
ing in practice, in terms of the sensitivity and robustness of several multivariate monitoring
methods for detecting outbreak signatures in multivariate biosurveillance-type data.

Fricker et al and Runger and Testik1,2, 3 offer comparisons between different implementa-
tions of multivariate CUSUM charts, Hotelling and multivariate CUSUM charts, and between
multivariate CUSUM and multivariate EWMA (MEWMA) charts. They evaluate perfor-
mance on simulated multivariate normal data with a seasonal sinusoidal cycle and a random
fluctuation, as well as on authentic data. Our paper differs from the two papers above in
that we examine the robustness of such methods to various assumption violations as well as
to practical data conditions.

The novelty of this work is by isolating the properties of authentic data streams that
violate the basic assumptions of the multivariate monitoring methods, and evaluating the
sensitivity and robustness of the methods to these violations. Our paper focuses on the eval-
uation of computationally-feasible, model-based methods for monitoring multivariate data
in a directionally-sensitive way. The main contribution is the evaluation of these methods in
light of actual data characteristics and application conditions in disease outbreak detection,
which often violate the assumptions of these methods. In addition, we assess the effects
of practical factors such as the number of series, the amount of training data, the level of
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cross-correlation, and data quality issues on performance.
This paper aims to fill the gap between methodology and practice, by assessing the

feasibility and usefulness of methodologically-based tools for application in biosurveillance.
Closing the gap between methodological research and practical application is extremely
important in biosurveillance, where currently implemented systems are over-simplistic and
where there is a reluctance to use “overly complicated” methods by public health users.
One facet of this issue is the univariate monitoring used, and the familiarity with standard
univariate control charts. In light of this environment, we chose to investigate the use of two
relatively straightforward multivariate, directionally-sensitive extensions of known univariate
charts (namely, Shewhart charts). We also extended them to MEWMA charts in the process,
because those are also practically acceptable, and methodologically more appropriate in our
setting. Our focus is on the conditions under which these different methods will be applied,
and their practical limitations.

Directional Monitoring

Three popular univariate control charts are the Shewhart chart, the Cumulative Sum (CuSum)
chart, and the Exponentially-Weighted Moving Average (EWMA) chart. Multivariate ex-
tensions exist for each of these: The Hotelling T 2 chart, the MCuSum and the MEWMA,
respectively (see e.g. application to biosurveillance4,5, 6, 7, 8, 9). These multivariate charts are
aimed at detecting a change in one or more of the process means in any direction. However,
in many applications the interest is in detecting only an increase (or decrease) in one or more
of the means. This is the case in biosurveillance, where series of daily diagnostic and pre-
diagnostic counts are monitored for detecting a disease outbreak. The hypothesis is that an
epidemic will manifest in the series as an increase in daily counts. In the univariate case there
are simple corrections of the bi-directional charts to accommodate a one-directional change.
In the multivariate case correcting for directional sensitivity is more complicated. One ap-
proach has been to empirically adjust the threshold of ordinary multivariate charts to achieve
a given false alarm rate and then to evaluate its true alerting properties.2 In this paper, we
focus on two approaches that are useful for practical implementation: Follman10 provides a
correction for the ordinary Hotelling chart6 and Testik and Runger11 present a quadratic-
programming approach to estimate the in-control mean vector. These two methods take two
different approaches to yield directionally-sensitive Hotelling charts: The former is a statisti-
cal approach, while the latter is an operations-research approach. We describe each of these
methods in detail and generalize them to obtain directionally-sensitive MEWMA charts.
Using a large array of simulated data, we compare the performance of the directionally-
sensitive Hotelling and MEWMA charts as a function of the number of monitored series,
the cross-correlation structure, and the amount of training data required for estimating the
covariance matrix. We then evaluate the robustness of the charts to underlying assumptions
of normality and independence. Lastly, the four charts are applied to a set of authentic
biosurveillance data. We summarize with conclusions and future research directions.
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Multivariate Control Charts

We use the following notation throughout the paper. Let X t = {X1
t , . . . , X

p
t } be a p-

dimensional multivariate normal vector with mean µ = {µ1, . . . , µp} and covariance matrix
Σ. We assume that at every time point t, a single observation is drawn from each of p series.

In the next sections, we describe the Hotelling control chart, followed by modifications
by Follmann10 and by Testik and Runger11 for directional-sensitivity. We then expand their
methods to obtain directionally-sensitive MEWMA charts.

Hotelling’s T 2 Control Chart

The multivariate extension of the ordinary Shewhart chart is the χ2 chart, where the moni-
toring statistic is6

χ2
t = (X t − µ)

′
Σ−1(X t − µ). (1)

This is the squared statistical distance (also known as Mahalanobis distance) of the obser-
vation on day t from the in-control mean vector. Under the null no-shift hypothesis the
statistic follows a χ2(p) distribution. The alarm threshold is therefore χ2

α(p), where χ
2
α(p) is

the α quantile of the χ2(p) distribution.
When Σ is unknown, it is estimated from data of length tr (referred to as training data).

The estimated covariance matrix is denoted by S. The statistic, known as the Hotelling T 2

statistic, is given by12

T 2
t = (X t − µ)

′
S−1(X t − µ). (2)

Under the null hypothesis of no shift, T 2 ∼ p(tr+1)(tr−1)
tr(tr−p)

F (p, tr − p). The alerting threshold

for the Hotelling T 2 statistic is therefore

p(tr + 1)(tr − 1)

tr(tr − p)
Fα(p, tr − p), (3)

where Fα(p, tr − p) is the α quantile from the F (p, tr − p) distribution.

Multivariate EWMA

The standard univariate EWMA chart is based on the statistic

Zt = λXt + (1− λ)Zt−1, (4)

where 0 < λ ≤ 1 is the smoothing parameter (typically chosen in the range [0.1,0.3]). Under
the null hypothesis of no shift, this statistic follows a normal distribution with mean µ
and asymptotic variance ssEWMA = (λ/(2 − λ))s2, where s is the standard deviation of Xt

estimated from historical data. The alerting thresholds are therefore µ± k× ssEWMA, where
the constant k is commonly set to 3.

A multivariate extension of EWMA (MEWMA) is based on first creating an EWMA
vector from each of the univariate p series7

Zt = ΛX t + (1− Λ)Zt−1, (5)
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where Zt is the EWMA p-dimensional vector at time t, X t is the p-dimensional observation
vector, and Λ is a diagonal matrix with smoothing parameters λ1, . . . , λp on the diagonal.
The monitoring statistic is then

Y t = Z
′

tΣ
−1
Z Zt. (6)

Lowry7 showed that for a sufficiently large t (i.e., after a start up period) and for λ1 = · · · =
λp = λ the covariance matrix, ΣZ , is given by

ΣZ =
λ

2− λ
Σ. (7)

The alerting threshold is still χ2
α(p).

Note that for small t, the (k, l)th element in the covariance matrix ΣZ is given by

Cov(Zk, Zl)t = λkλl
1− (1− λk)

t(1− λl)
t

λk + λl − λkλl

σk,l, (8)

where σk,l = Cov(Xk, Xl). If λ1 = · · · = λp, then (8) reduces to

λ

2− λ

(
1− (1− λ)2t

)
Σ. (9)

Directionally-Sensitive Multivariate Control Charts

In order to use multivariate control charts for detecting a parameter shift in one direction
(an increase or decrease), there have been several approaches. One approach is to modify
the non-directional multivariate monitoring statistic, as suggested by Follmann.10 Another
approach is to construct likelihood-ratio statistics for the alternative hypothesis. Most of
the derivations along these lines are theoretical in nature and are hard to implement for
more than 2 series. However, Testik and Runger,11 taking an operations research approach,
proposed an alternative formulation which can be implemented in practice for many series.
We next describe these two approaches and extend them to obtain directionally-sensitive
MEWMA charts.

Follmann’s Approach

Follmann10 introduced a correction to the standard Hotelling statistic that adjusts it for
directional sensitivity. The corrected statistic is given by

χ2
t+ = (X t − µ)′Σ−1(X t − µ). (10)

Note that χ2
t+ in Follmann’s notation is equivalent to the ordinary χ2

t statistic. The ‘+’ sign
indicates that we are interested in mean increases only. The vector X t in the equation is the
sample mean vector at time t. An alert is triggered when {χ2

t+ > χ2
2α(p) and

∑p
j=1(X

j
t −

µj) > 0}. This means that we require the sum of the elements of the mean vector at time t
to exceed the series mean in order to alert.
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Follmann proves that the procedure has type I error rate equal to 2α whether or not the
covariance is known, and uses simulations to illustrate its power and to compare it to more
complicated likelihood ratio tests.

Alber et al13 show that the test statistic in (10) is not invariant to scale transformations.
They propose a simple fix where instead of Σ the correlation matrix is used.

Extending Follmann’s Method to MEWMA charts

We extend the method proposed by Follmann in order to convert the ordinary MEWMA
chart to a directionally-sensitive MEWMA chart. This is done by replacing Σ with ΣZ in
equation (10) (or equivalently, the original correlation matrix R with RZ), and X t by Zt. In
other words, the alerting statistic is given by

χ2
t+ = Z ′

tΣ
−1
Z Zt, (11)

and an alert is triggered when {χ2
t+ > χ2

2α(p) and
∑p

j=1

(
Zj

t − µj
)
> 0}.

Additionally, if an alert is triggered on day τ , we allow an option of restarting the
control chart by setting Xτ = µ. The action of restarting reduces the “ringing effect” of
the algorithm, by removing the sequence of alerts that follow an initial alert when there is a
gradual increase in the vector mean.

A method similar to that of Follmann’s was proposed by Joner et al14 and Fricker et al.3

The authors propose the following statistic, which is the maximum between the Lawry et
al7 MEWMA statistic and 0:

Zt = max{λ(Xt − µ0) + (1− λ)Zt−1, 0}. (12)

The method is evaluated using simulated multivariate normal data, with simulated Poisson
outbreaks. However, we do not include this method in the current sensitivity analysis.

Testik and Runger’s Quadratic Programming Approach

A different approach for obtaining directional sensitivity is based on deriving the monitoring
statistic from the likelihood ratio, which is equal to the maximum likelihood under the
alternative hypothesis of a directional shift (either positive or negative) divided by the null
likelihood. Nüesch15 showed that (twice the) log-likelihood ratio is

2l(µ) = µ̂Σ−1µ̂, (13)

where µ̂ is the maximum likelihood estimator. The monitoring statistic χ2
t = X

′

tΣ
−1X t

is therefore proportional to the likelihood ratio under the alternative hypothesis. Nüesch
proposed l(µ̂) as an alternative monitoring statistic, where µ̂ maximizes the log likelihood.
Testik and Runger11 (abbreviated TR) showed that this can be formulated as an easily
solvable quadratic programming problem if the data are first standardized

X̃ t = Σ−1/2X t, (14)

µ̃ = Σ−1/2µ. (15)
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Nüesch also proved that the corresponding threshold is given by

P (χ2 > c2) =

p∑
i=1

w(i)P (χ2
i > c2), (16)

where w(i) is the probability that µ̂ has exactly i nonzero elements. χ2
i is a chi-squared

random variable with i degrees of freedom, and c2 is a constant threshold value.
The problem has been to compute the weights ω(1), . . . , ω(p). While theoretical deriva-

tions exist, they are typically hard to implement beyond p ≥ 3. TR11 obtained the weights
empirically, by simulating p-dimensional multivariate normal data with µ = µ̂ and Σ and
estimating the weights from the simulated data. It is important to note, however, that this
approach assumes a known covariance matrix. The problem, in terms of µ̃, is then

µ̂
t
= argmin

µ̃≥0
(X̃ t − µ̃)

′
(X̃ t − µ̃). (17)

Extending TR’s Method to MEWMA charts

We extend the method by TR11 to obtain a directionally-sensitive MEWMA chart. This is
achieved by replacing Σ with ΣZ and X t by Zt in equations (14) and (15). In other words,
our standardized data and means are

Z̃t = Σ
−1/2
Z Zt, (18)

µ̃ = Σ
−1/2
Z µ, (19)

and the problem in terms of µz is therefore

µ̂
t
= argmin

µ̃≥0
(Z̃t − µ̃)

′
(Z̃t − µ̃). (20)

In this formulation we do not implement a restart condition for computational reasons.
According to TR’s approach the entire series is transformed prior to the monitoring action.
A restart action would therefore require a re-transformation of the data after each alert,
thereby increasing the run time by a factor equal to the number of alerts. An alternative
on-the-fly implementation would apply the transformation on a daily basis (rather than in
retrospect). This would not allow using the simple matrix operations for obtaining µ̂

t
, but

it would easily incorporate the restart condition.

Performance and Robustness Comparison

We set out to evaluate and compare the four different directionally-sensitive multivariate con-
trol charts: Hotelling and MEWMA using Follmann’s method, and Hotelling and MEWMA
using Testik and Runger’s method. We compare their actual in-control performance as a
function of the number of monitored series (p), the covariance structure (Σ) and their ro-
bustness to assumption violations that are likely to occur in practice. We first describe the
simulation setup, and then examine the different factors and their effect on performance.
Finally, we examine performance in the presence of a mean increase. We consider shifts
of different magnitude, shape, and their presence in subsets of the series. We also discuss
outbreak detection in the presence of mean decreases.
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Simulation Setup

We generate multivariate normal data and vary the level of correlation between series (ρ =
0.1, 0.3, . . . , 0.9) and the number of dimensions (p = 2, 3, . . . , 20). The length of each series
is set to T = 1000 time points. To compute a false alert rate, the number of false alerts is
divided by T . The desired false alert rate is set to α = 0.05. The threshold is computed
according to equations 11 (Follmann) and 16 (TR). For each combination of ρ and p, 100
replications (i.e., 100 time series, each of length T = 1000) are generated. This creates a
distribution of false alert rates for each combination. We then examine the sensitivity and
the robustness of the control charts as we change the simulation setting.

We use R2.4.0 (http://cran.r-project.org/) to implement our simulation.

Impact of cross-correlation and number of series

We start by evaluating the actual false alert rates of the different charts by assuming that
Σ is known and given by 

1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ ... ρ
ρ ρ ρ 1


where ρ ∈ {0.1, 0.2, ..., 0.5}. For the MEWMA charts we set λ1 = . . . = λp = λ ∈ {0.3, 0.5}.
Figures 1-2 compare the distribution of false alerts (FA) as a function of the number of series
p (on the y-axes) and correlation ρ (across panels) for the four methods. In all cases the
charts were set to an FA of α = 0.05. The results are provided as side-by-side boxplots,
with the mean FA represented as a solid dot; the whiskers extending to the 5% and 95%
percentiles; and outliers represented as hollow dots. For all four methods, independently of
ρ, p or λ, the FA rate has mean of 0.05 (as desired) with standard deviation of less than 0.01.

[Figure 1 about here.]

[Figure 2 about here.]

Overall we see that all charts produce false alerts that are centered around FA = 0.05.
The inter-quartile range is approximately (0.04,0.06) for all methods, although the MEWMA
charts have a slightly larger variance when λ is small (λ = 0.3). Note that the number of
series does not appear to affect the false alert rate. This is not surprising as the thresholds in
all four methods are a function of p. Another interesting observation is that the distribution
is very stable across the different correlation levels for all charts. Based on these results, in
our next experiments we set ρ = 0.5 and for MEWMA charts we set λ = 0.3 (a popular
choice in practice.)

Robustness to assumptions

Next, we study the robustness of the four charts to assumption violations. We examine the
length of training data required to estimate an unknown covariance matrix. We then relax
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the assumption of normality of the underlying observations and examine the behavior of
the charts when the series are autocorrelated and when the data come from a multivariate
Poisson distribution (a common scenario with count data).

Unknown covariance matrix

In this setting we vary the cross-correlation in the range ρ ∈ (0.1, 0.5, 0.9). We assume
that the covariance structure is unknown and is approximated from a training data (tr) of
varying length (using the Pearson method). We examine the false alert rate of the charts as
a function of the length of the training data.

Unlike bidirectional monitoring methods, in which the F distribution is used when Σ is
unknown,12 the use of the F distribution in Follmann’s and TR’s methods is inadequate:
In Follmann’s method, recall that the χ2 statistic has a threshold of 2α rather than α (see
Equation 10). Therefore, replacing the χ2 statistic with an F statistic requires an additional
modification to the alerting threshold, which is not straightforward (see Equation 3). In TR’s
method, the threshold is computed empirically. Theoretically, we could simply replace the
χ2 distribution in equation 16 with F distribution. However, we find that the χ2 formulation
results in a much lower false alert rate compared to the F distribution. We therefore use a
χ2 test in our simulation study.

Figures 3-5 compare the false alert rate of the four methods. The training data length
varies from tr = 100 time points (left panel) to tr = 500 time plots (right panel). We
see that Follmann’s Hotelling chart has a slightly lower average false alert rate than TR’s
Hotelling. This improved performance is more significant when the training period is short
(e.g., tr < 300) and the number of series is high, yet the variance is higher. Follmann’s
MEWMA, on the other hand, has both a lower average false alarm rate and lower variance.

Overall, we observe that for p ≤ 5 the average false alert rate is centered around the
desired threshold of FA = 0.05, independent of the training data length. This implies that
100 data points are sufficient to estimate the covariance matrix accurately. However, for
p > 5 the performance depends on the length of the training data. When tr = 100 the false
alert rate increases exponentially in the number of series. When tr = 200 the rate increases
linearly in the number of series. The average false alert rate converges to 0.05 only when the
training data include at least 300 time points (almost one year of data, for daily series!).

Our results coincide with previous literature findings. Jensen et al16 reviewed the effect
of parameter estimation on control charts performance. They found that when using uni-
variate EMWA charts, the smaller the value of λ, the larger the required sample size for
ensuring performance similar to that of a chart based on known parameters. Jones et al17

recommended using 100 samples of size n = 5 for λ = 0.5 and 400 samples of size n = 5
for λ = 0.1. For Hotelling charts, Nedumaran and Pignatiello18 recommended using sample
sizes of at least 200 when the number of observations is n = 5 and the dimension is p = 3.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]
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Autocorrelated series

In this setting we examine the impact of autocorrelation on the false alert rate of the different
charts. It has been shown that biosurveillance daily time series tend to be autocorrelated.19,20

While the literature includes methods for monitoring univariate, autocorrelated Poisson
counts,21,22 we are not aware of extensions to the multivariate case. We use the method
in23 to generate autocorrelated data with order 1 (AR(1)). We set the cross-correlation to
ρ = 0.5 and vary the autocorrelation coefficient in the range θ ∈ {0.05, 0.15, ..., 0.35}.

To understand the impact of autocorrelated series on chart performance, we first assume
a known Σ. Figure 6 compares the four charts. The false alert rate of the Hotelling variants
appears similar for both methods and centered around the desired threshold of FA = 0.05.
In contrast, in the MEWMA charts the false alert rate increases significantly as θ increases,
and more so for TR’s method. We observe, for example, that even when the number of series
is p = 2 and the cross-correlation is θ = 0.35, Follmann’s false alert rate is approximately
0.18 and TR’s is 0.2. For p = 10 series the corresponding rates are 0.4 and 0.65.

To reduce false alerts, we next examine a version of Follmann’s MEWMA where the
univariate EWMA statistics are restarted after alerts (i.e., if an alert is set on day t, we
set Zt = µ). As mentioned earlier, for computational reasons, we did not implement TR’s
method with restarting. Figure 7 shows that the false alert decreases by a factor of 4,
compared to the MEWMA without restart (Figure 6, 3rd panel).

[Figure 6 about here.]

[Figure 7 about here.]

Multivariate Poisson Data

We now relax the normal distribution assumption, as it is often violated in authentic data.
Instead, we generate multivariate Poisson data (using the method by Yahav and Shmeuli24)
with varying arrival rate λ ∈ {1, 5, 10, 20}. Biosurveillance data are typically daily count
data. In some instances the counts are sufficiently high to justify normal-based control
charts, while in other cases the counts might be too low. In low count situations a reason-
able approximation that has been used in practice is a Poisson distribution.25,14 Methods
to handle such data for the univariate case is studied and analysed in several papers.26,27

Examples are daily counts of cough complaints in a small hospital, or daily counts of school
absences in a local high school. Using a multivariate Poisson structure enables us to evaluate
the performance of the control charts in low-count data.

We evaluate and compare the methods when Σ is known (Figure 8) and observe that
MEWMA outperforms Hotelling in terms of FA rate. The difference in performance is
more pronounced as λ decreases, and when the number of series is large (roughly p ≥ 5).
Both Follmann and TR methods have equivalent performance. Similar to the findings in
Stoumbos and Sullivan,28 we find that MEWMA charts are more robust to non-normality
than Hotelling charts. As the authors suggest, the robustness property might later cause a
decreased rate of true alerts for detecting spike outbreaks.

[Figure 8 about here.]
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Out of Control Performance

In this section we evaluate the performance of the four control charts in the presence of
unexpected anomalies. Since the exact shape and magnitude of a disease outbreak mani-
festation in pre-diagnostic data is unknown, we consider two shapes that represent abrupt
and incremental signatures of varying magnitudes. In particular, we consider one day spikes
and multi-day lognormal increases. For each control chart we examine the rate of which it
identifies true outbreaks (the ratio of detections, denoted TA), the time to detection (the
number of time points until the first true alert), and the false alert rate.

Injecting Outbreaks

We consider iid normal data with correlation ρ = 0.5 and estimate the correlation matrix
from a history of tr = 500 time points that do not contain outbreak signatures. We vary
the number of series in the set p ∈ {4, 8, 12, 16} and inject outbreak signatures into subsets
of the p series of size s ∈ {25%, 50%, 75%, 100%} × p.

Spikes. In the first experiment we inject spikes (i.e., single-day outbreak signatures) into
the data. The magnitude of the spike varies in the range o ∈ {0.5, 1, 1.5, ..., 4} × σ⃗, where σ⃗
is the series standard deviation. This means that the spike size is proportional to the series
standard deviation (in our experiments we set σ⃗ = 1). In each experiment 20 spikes are
injected into a subset of series at different time points, and the resulting true and false alert
rates are computed.

Figures 9-10 show the true alert rate (TA) of the control charts when spikes of different
magnitudes are injected into all p series. Figures 11-12 present the same for spikes injected
into 25% of the series. For the MEWMA chart we evaluate the TA with and without
restarting after an alert. As expected, the TA rate is higher for the Hotelling charts. Also,
it appears that TR’s method outperforms Follmann’s in terms of true detections in both
Hotelling and MEWMA charts. The difference in performance is more noticeable when the
subset is small.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

To further analyze the true alert rate and its determinants, we examine the relationship
between true and false alerts while controlling for other factors (outbreak size o, subset size
s and number of series p). We use a linear regression model to explore the magnitude of the
cross effect between false and true alert, as shown by eq. 21. While the relationship between
the alert factors are not necessarily linear, the simplicity of this analysis enables us to clearly
illustrate the increase of false alerts in the presence of true alerts.

TA = β0 + β1 · FA+ β2 · s+ β3 · p+ β4 · o+ ϵ. (21)
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Table 1 shows the output of the estimated model (p-values of the estimates are given in
parentheses, coefficients significant at 5% are in bold). We find that controlling for all
factors, TR’s Hotelling chart performs on average 30% better than Follamnn’s in terms of
percentage of true alert for every additional 1% in false alert rate. The performance is
equal only when the subset size is close to 100%. Similar results are observed for MWEMA
without restart. Another observation is the strong correlation between TA and FA in the
MEWMA control charts. Controlling for all other factors, a 1% increase in FA rate results
in an average 5.35% (Follmann) and 4.24% (TR) increase in TA. MEWMA with restart, on
the other hand, has the exact opposite relationship, presumably since the restarting action
erases the history and allows the control chart to re-accumulate small deviations from the
means.

Log-Normal Signatures. Next, we inject into the data multi-day stochastic gradual
increases taken from a lognormal distribution. As with the spikes, we vary the magnitude
of the signature and the fraction of ‘infected’ series. We inject a single signature in each
experiment and examine the number of time points until the first successful detection as well
as the true alert rate. Results are shown for subset size s = 25%p in Figures 13-14. Panels
correspond to different magnitudes (we plot partial magnitudes for brevity). Boxplots show
the distribution of time to detection (black dots are average time to detection), conational
on the outbreak being detected.

We observe that MEWMA charts perform better than Hotelling charts. This result is
expected, as MEWMA charts are designed to detect gradually increasing signals. We again
see that TR’s method outperforms Follmann’s both in terms of TA and time to detection.

[Figure 13 about here.]

[Figure 14 about here.]

Detection of mean increases in the presence of mean decreases

Although we are interested in detecting only increases in the process mean, it is possible
that due to data quality anomalies, one or more of the means will decrease (e.g., due to
reduced reporting or problems with data recording on a certain day). We therefore evaluate
the performance of the control charts when we inject both positive and negative spikes,
where negative spikes represent such anomalies. Recall, however, that for detecting disease
outbreaks rather than data quality anomalies, we are only interested in detecting mean
increases (i.e., positive spikes).

We consider a bivariate dataset (p = 2). In each experiment we inject 20 positive spikes
into the first series and 20 negative spikes into the second series. Positive and negative
spikes are injected on the same days. The magnitude of the spikes varies in the range
o ∈ {1, 2, 3} × σ⃗, where σ⃗ is the series standard deviation.

Figure 15 (top panels) depicts the resulting true alert detection rate of the four methods.
For comparison, we repeat the same experiments with positive spikes only (middle panels)
and with negative spikes only (injected into a single series, bottom panels). Note that ‘True
Alert’ (TA) in the bottom panels refers to the detection rate of decreases in the mean. We
see that, surprisingly, TR’s Hotelling and MEWMA charts detect mean decreases and alert
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as if they were also outbreaks (i.e., mean increases). The result is an ‘improved’ performance
when both positive and negative spikes are present, yet poor performance (increased false
detection) when only negative spikes are injected into the data.

[Figure 15 about here.]

As for Follmann’s charts, a simultaneous decrease and increase in the mean vector leads
to poor performance of Follmann’s Hotelling chart. This result is expected, as Follmann’s
method alerts when the summation of the series is greater than zero (see Equation (11)).
In contrast, although Follamnn’s MEWMA chart performs similar to the Hotelling chart, it
performs equally well in the presence and the absence of decreasing spikes.

Results for Authentic Data

We now examine the behavior of the four control charts when applied to authentic bio-
surveillance data. The data include series of daily counts of patients arriving at emergency
departments in a certain US city, between Feb-28-1994 and Dec-30-1997, broken down by
the type of “chief complaint”. The counts are grouped into 13 categories using the CDC’s
(Centers for Disease Control and Prevention) syndrome groupings. The data are shown in
Figure 16.

1

[Figure 16 about here.]

Authentic data such as these typically contain several explainable patterns like seasonality
and day of week effects, which clearly violate the assumption of classic control charts. We
therefore first preprocess the series to remove these patterns. There are different methods for
performing this step.23,19 Here we use Holt-Winter’s exponential smoothing to remove day-
of-week effects, seasonality, and autocorrelation. We obtain a series of forecast errors19 that
better adhere to control chart assumptions. One of the main challenges with authentic pre-
diagnostic data is that they are unlabeled, such that outbreak periods are usually unknown.
For purposes of evaluation we therefore assume that the authentic data do not contain any
signatures of unusual diseases, and the only signatures are those that we inject artificially.
This assumption is reasonable when the goal is to detect disease outbreaks that we know are
not present in the data (such as an outbreak following a bioterrorist attack or a pandemic
such as avian flu or SARS). The assumption is not reasonable if the goal is to detect an event
such as the onset of Influenza which recurs annually. In our case we are indeed interested in
detecting unknown disease outbreaks and hence the assumption is reasonable.

We compute the FA rate by applying the four control charts to the preprocessed data.
To evaluate TA rate and time to detection, we inject 32 spikes of magnitude o, where
o ∼ u[1, 4]× σ⃗ into a random subset of the 13 series. The covariance structure is estimated
from the first year of data (365 time points). Applying each control chart to the data with

1We thank Dr. Howard Burkom of the Johns Hopkins University’s Applied Physics Laboratory, for
making this aggregated dataset, previously authorized by ESSENCE data providers for public use at the
2005 Syndromic Surveillance Conference Workshop, available to us.
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injected signatures we compute their FA and TA rates. The results are shown in Table 2.
There are two main observations: (1) Follmann’s MEWMA chart with restart alerts the
least, whether or not there are outbreak signatures, and (2) TR’s Hotelling chart is most
sensitive: it has the highest TA rate, but also the second highest FA rate. The highest FA
rate is obtained with TR’s MEWMA, but this is likely due to the lack of restart after an
alert. Note also that the FA rate computed before and after the signature injections are
similar.

To further explore these two results and the relationship between TR’s Hotelling and
Follmann’s MEWMA (with restart), we examine their performance across a range of FA
rates ([0, 0.2]). For a higher sensitivity comparison, we examine only outbreaks of smaller
magnitude (o ∼ u[0.5, 2.5] × σ⃗). Results are shown in Figure 17. We see that the low FA
rate is controlled by Follmann’s MEWMA chart and the high TA rate is controlled by TR’s
Hotelling chart. These results are in line with those obtained from the simulated data. The
conclusion is therefore that the choice of chart should be driven by the tradeoff between true
and false alerts required by the user.

[Figure 17 about here.]

Finally, to evaluate the advantages of each of the four multivariate control charts we
compare them against univariate monitoring where univariate Shewhart charts are applied
simultaneously to each of the p = 13 series. The rule for alerting is when at least one of
the charts alerts. We vary the actual FA rate of the multiple-univariate charts between
[0, 0.6] and observe the TA rate. Results are shown in Figure 18. We can see that all of the
multivariate charts are Pareto efficient compared to the multiple-univariate Shewhart.

[Figure 18 about here.]

Conclusions and Future Directions

We present and evaluate four tools for monitoring multivariate time series for the purpose of
detecting anomalies that manifest in a certain direction. The directionally-sensitive multi-
variate control charts are Follmann’s Hotelling, TR’s Hotelling, Follmann’s MEWMA (with
and without restart) and TR’s MEWMA. All charts have underlying assumptions such as
normality, independence, and knowledge of the covariance structure, which rarely hold in
practice. We therefore evaluate and compare their performance when each of the assump-
tions is violated. We also examine practical issues such as length of the training set, the
number of monitored series, the effect of data quality issues such as mean decreases, and the
subset of series in which the outbreak signature appears. All these are manipulated using
simulation, where we can assess the impact of each factor separately. Finally, we apply the
charts to authentic data (with and without injected outbreak signatures) and compare their
TA and FA rates.

Note that control charts are often applied to raw data rather than pre-processed data in
practice. Yet raw data usually violate the normality assumption and also exhibit high levels
of autocorrelation. In that case the more robust method (Follmann’s) would be preferable.
However, clearly the correct approach is to first pre-process the data.
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The analysis in this paper is aimed at providing guidelines to biosurveillance systems
where multiple time series are monitored. For a given dataset, and based on its characteristics
(cross correlation, autocorrelation, etc.) and features (number of series, length of training
data, etc.), we can evaluate the performance of each of the multivariate charts in terms of
expected false and true alert rates and time to detection. These, in turn, can be used to
choose one chart according to costs associated with missed and false alerts. To allow wide
implementation of the tools and their incorporation in existing systems, and to be able to
compare existing tools to the proposed multivariate charts, we make our code available online
(http://www.rhsmith.umd.edu/faculty/phd/inbal).

There are several directions for extending this work. First, our simulated data are gen-
erated from a mean and covariance structure that do not change over time. In practice,
however, data characteristics are subject to changes. To overcome this problem, one can
consider estimating the mean and covariance structure repeatedly over time, using a moving
window. Our framework is helpful in determining the length of this window.

Secondly, in terms of performance evaluation, once we move from the synthetic envi-
ronment to authentic data, we no longer have replications of the series. This means that
we cannot assess the statistical significance of the difference between the performance of
the different charts (e.g., is TR’s Hotelling’s TA=0.88 significantly higher than Follmann’s
MEWMA TA=0.84?). Lotze et al23 propose an elegant approach for creating multiple re-
alizations of authentic data by ‘mimicking’ the statistical characteristics of an authentic
multivariate set of data. Comparing performance over a sample of mimics would then en-
able assessing statistical significance of differences in false and true alerts as well as time to
detection.

Finally, our focus was on comparing four multivariate monitoring tools, and we only
briefly touched upon the comparison with multiple-univariate monitoring. Yahav and Shmueli29

explore methods for combining univariate algorithms. A more thorough comparison is needed
in order to assess under what conditions multivariate monitoring should be preferred over
multiple univariate monitoring in practice.
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Figure 1: Distribution of false alert rate (FA) in directionally sensitive Hotelling charts as a
function of the number of series p and correlation ρ. The charts were all set to FA=0.05
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Figure 2: Distribution of false alert rate (FA) in directionally sensitive MEWMA as a function
of the number of series p and correlation ρ. The charts were all set to FA=0.05
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Figure 3: Distribution of false alert rate (FA) in directionally sensitive charts as a function
of training data length (tr), when ρ = 0.1
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Figure 4: Distribution of false alert rate (FA) in directionally sensitive charts as a function
of training data length (tr), when ρ = 0.5
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Figure 5: Distribution of false alert rate (FA) in directionally sensitive charts as a function
of training data length (tr), when ρ = 0.9
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Figure 6: Distribution of false alert rates (FA) in directionally-sensitive charts as a function
of the autocorrelation (θ), when the covariance matrix is known
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Figure 7: Distribution of false alert rates (FA) in Follmann’s directionally-sensitive MEWMA
chart with restarts, as a function of the autocorrelation (θ), when the covariance matrix is
known
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Figure 8: Distribution of false alert rates (FA) in directionally-sensitive charts for Poisson
counts, as a function of the Poisson parameter (λ), when the covariance matrix is known
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Figure 9: Distribution of true alert (TA) rate in directionally-sensitive Hotelling charts as a
function of spike magnitude
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Figure 10: Distribution of true alert (TA) rate in directionally-sensitive MEWMA charts as
a function of spike magnitude
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Figure 11: Distribution of true alert (TA) rate in directionally-sensitive Hotelling charts as
a function of spike magnitude when spike is injected into 25% of the series
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Figure 12: Distribution of true alert (TA) rate in directionally-sensitive MEWMA charts as
a function of spike magnitude when spike is injected into 25% of the series
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Figure 13: Distribution of true alert (TA) rate in directionally-sensitive Hotelling charts as
a function of outbreak magnitude when the outbreak is injected into 25% of the series
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Figure 14: Distribution of true alert (TA) rate in directionally-sensitive MEWMA charts as
a function of outbreak magnitude when the outbreak is injected into 25% of the series
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Figure 15: Distribution of true alert (TA) rate in directionally-sensitive charts, as a function
of spike magnitude in the presence of increasing and decreasing spikes (top), increasing spikes
only (middle) and decreasing spikes only (bottom)
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Figure 16: Authentic Data: Daily counts of chief complaints by patients arriving at emer-
gency departments in a US city
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Figure 17: True vs. false alert rates for TR’s Hotelling chart vs. Follmann’s MEWMA chart
with restarts
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Figure 18: True vs. false alert rates; comparing multivariate control charts with multiple-
univariate Shewhart charts
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Table 1: The relationship between TA and FA rates

Coef Follmann’s TR’s Follmann’s Follmann’s TR’s
Hotelling Hotelling MEWMA MEWMA with Restart MEWMA

β̂0 0.22 0.33 -0.31 -0.05 -0.21
(0) (0) (0) (0.27) (0)

β̂1 -0.62 -0.44 5.35 -3.78 4.24
(0.26) (0.39) (0) (0) (0)

β̂2 0.01 -0.14 0.01 -0.02 -0.11
(0.64) (0) (0.21) (0.19) (0)

β̂3 0.2 0.2 0.2 0.25 0.22
(0) (0) (0) (0) (0)

β̂4 0.01 0.01 0 0.01 0.01
(0) (0) (0) (0) (0)

Adj-R2 0.58 0.58 0.71 0.7 0.75
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Table 2: Performance of the control charts on authentic data
Method FA rate in the FA rate in the TA rate

absence of outbreaks presence of outbreaks
Hotelling, Follmann 0.16 0.15 0.80
Hotelling, Testik 0.16 0.20 0.88

MEWMA, Follmann 0.16 0.17 0.84
MEWMA with restart, Follmann 0.08 0.07 0.78

MEWMA, Testik 0.21 0.23 0.81
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