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Abstract 

 

Critical Success Factors Impacting Intelligent Process Automation— 

A Data-first Machine Learning Approach 

 

By: Baruri Venkata Kodanda Pani 

 

 

Intelligent process automation (IPA) refers to a combination of emerging technologies that include 
artificial intelligence, machine learning (ML), and robotic process automation to automate and 
optimize business processes. IPA facilitates significant business process automation, which, in 
turn, enhances business value and leads to digital transformation for an organization. In this study, 
I seek to identify the success factors impacting IPA-led digital transformation.  

I argue that is necessary to explain the complex patterns of factors that are critical for IPA 
success through a multilevel and multi-method investigation. Accordingly, I follow a three-stage 
research methodology, consisting of abduction through in-depth key informant interviews, 
decision-tree induction, and theory abduction to examine potential success factors that lie across 
four theoretical levels of analyses. The data set derived from a sample of 176 IPA projects from 
the financial services domain, implemented by a multibillion-dollar global IT service company, 
forms the basis for this data-first ML investigation.  

I draw on several theoretical perspectives and qualitative interviews to identify predictors 
of IPA success from multiple levels, such as domain, business process, technology, and 
governance. Firstly, I utilize decision-tree induction to examine three dependent variables 
corresponding to different dimensions of IPA success—Full Time Equivalent Reduction, Process 
Efficiency Improvement, and Process Accuracy Improvement. I choose these three dimensions 
based on the literature review and elite informant interviews. 

Secondly, I combine these three dependent variables into a formative construct, which I 
term IPA Success Index that holistically captures the extent of IPA success. Decision-tree induction 
is also served as the methodology to examine the predictors of the IPA Success Index. Apart from 
the findings of these examinations, this study generates domain-specific rules, offers theoretical 
insights, and develops generalizable theoretical propositions. 

Thirdly, I investigate in-depth the relationships between the key success factor(s), 
identified in the first two studies, and IPA success using econometric analysis. This analysis helps 
validate the configurational causality obtained through the abduction–induction–abduction theory 
development framework with the potential outcome view of causality. 

In this dissertation, I contribute sixteen rules, six insights and six propositions that unveil 
the critical success factors for IPA implementation success, which are validated by econometric 
results. The identified success factors, the IPA Success Index, and theoretical propositions from 
my dissertation contribute toward the growing literature on intelligent information systems within 
the larger stream of IT business value research. Managers and organizations across the globe shall 
benefit from these studies, thus allowing them to maximize the benefits of IPA-led digital 
transformation.  
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1 INTRODUCTION 

ntelligent process automation (IPA) has a significant impact on digital transformation by 

accelerating and enhancing the digital transformation journey. IPA is a combination of 

technologies including artificial intelligence (AI), machine learning (ML), and robotic 

process automation (RPA) used for automating and optimizing business processes. This 

technology transforms traditional manual processes and thus enables businesses to automate 

repetitive and time-consuming tasks, freeing up employees to focus on higher value work. 

1.1 Intelligent Process Automation and Digital Transformation 

Some of the ways IPA impacts digital transformation are given as follows: 

1) Increased efficiency and productivity: By automating repetitive and time-consuming tasks, 

IPA has increased efficiency and productivity in businesses. This enables businesses to 

focus on more important tasks that require human expertise and creativity, leading to 

better customer experiences and business outcomes. 

2) Improved accuracy and quality: With the use of AI and ML, IPA has helped improve the 

accuracy and quality of business processes. This has reduced errors and improved the 

quality of the final data (output) used in decision-making. 

3) Enhanced decision-making: IPA has helped businesses to make better and faster decisions 

by providing real-time insights and analytics. This has enabled businesses to identify 

patterns and trends and to make data-driven decisions and thus to better outcomes and 

higher levels of satisfaction. 

4) Reduced costs: IPA has helped reduce costs by automating repetitive tasks that were 

previously performed manually. This has resulted in lower labor costs and reduced errors, 

which, in turn, have led to better cost management. 

I 



Critical Success Factors Impacting Intelligent Process Automation 

Page 14 of 172 

5) Improved scalability: IPA has made it easier for businesses to scale up their operations. By 

automating processes, businesses can handle more work without having to hire more 

employees, leading to better scalability and growth. 

An example of IPA-led digital transformation could be seen in the finance department of 

large organizations. The finance department traditionally handles a high volume of data-processing 

tasks, which are time-consuming, repetitive, and prone to human errors. By implementing IPA, 

the finance department can automate many of such tasks and free up time for its employees to 

focus on higher value-added activities. 

In this scenario, IPA could be used to automate tasks such as invoice processing, payment 

processing, and financial data entry. AI and ML algorithms could be used to analyze data and 

identify patterns, leading to more accurate financial forecasting and risk management. By 

implementing IPA, the finance department can reduce errors, improve efficiency, and reduce costs, 

while also improving overall financial performance. 

Overall, IPA has been a game changer for digital transformation, enabling businesses to 

achieve their goals faster and more efficiently. 

1.2 Growth of IPA 

The intelligent process automation (IPA) market has been growing rapidly in recent years 

and is expected to continue to grow in the coming years. According to a report by Grand View 

Research, the global IPA market size was estimated at USD 10.3 billion in 2020 and is expected to 

grow at a compound annual growth rate (CAGR) of 13.4% from 2021 to 2028. 

The market is driven by several factors including the need for businesses to improve 

efficiency, reduce costs, and enhance customer experience. The COVID-19 pandemic has also 
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accelerated the adoption of IPA as businesses have had to rapidly adapt to remote work and 

digitize their operations. 

In terms of technology, robotic process automation (RPA) is the largest segment of the 

IPA market, accounting for more than half of the market share. However, the use of artificial 

intelligence (AI) and machine learning (ML) in IPA is also growing rapidly and is expected to 

become increasingly important in the coming years. 

In terms of region, North America is expected to be the largest market for IPA, followed 

by Europe and Asia Pacific. It is reported that the widespread presence of IT and telecom 

companies, as well as the increasing adoption of automation solutions, in healthcare and financial 

services sectors are driving the growth of the IPA market in North America. 

In terms of industry, the banking, financial services, and insurance (BFSI) sector is the 

largest consumer of IPA solutions due to the high volume of repetitive and rule-based processes 

in the industry. However, other industries such as healthcare, manufacturing, and retail are also 

expected to see significant growth in the adoption of IPA solutions. 

1.3 Recent Trends in Intelligent Process Automation  

Intelligent process automation (IPA) is a rapidly evolving field, and several trends shape 

its development. Some of the key trends in IPA are as follows: 

1) Increased adoption of AI and machine learning: AI and machine learning have become 

more prevalent in IPA and are used to create more sophisticated automation solutions. 

These technologies enable IPA to learn from data, adapt to changing conditions, and make 

more intelligent decisions. 

2) Greater focus on hyperautomation: Hyperautomation is the use of multiple automation 

technologies, including RPA, AI, and machine learning, to automate complex processes 
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end-to-end. Hyperautomation enables businesses to achieve greater efficiency and agility, 

and better outcomes. 

3) Growing use of low-code and no-code platforms: Low-code and no-code platforms are 

becoming more popular in IPA, enabling businesses to create automation solutions 

without needing extensive coding knowledge. These platforms enable easier and faster 

development and deployment of automation solutions. 

4) Integration with other technologies: IPA is integrated with other technologies, such as the 

Internet of Things (IoT), blockchain, and cloud computing. This integration enables 

businesses to create more advanced automation solutions that are more scalable, flexible, 

and secure. 

5) Emphasis on governance and compliance: As IPA has become more prevalent, there is a 

growing emphasis on governance and compliance. Businesses are required to ensure that 

their automation solutions are secure, compliant with regulations, and aligned with 

business objectives. 

6) Focus on human-machine collaboration: IPA is not about replacing humans, but rather 

augmenting their capabilities. There is a growing focus on human-machine collaboration, 

where automation solutions work alongside humans to improve efficiency, productivity, 

and quality. 

Overall, these trends shape the development of IPA and help businesses achieve 

greater efficiency, agility, and innovation. 
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1.4 How IPA Implementation Is Different from Other Software Development 

Both software development and intelligent process automation (IPA) are important 

approaches to automating business processes and improving operational efficiency, but they differ 

in several keyways. 

Software development typically involves building custom software solutions from scratch 

to meet specific business needs. This can be a time-consuming and resource-intensive process, but 

it can result in highly customized and tailored solutions that meet the exact requirements of a 

business. The development process typically involves a team of developers and other IT 

professionals who work together to design, develop, and test the software. For example, 

developing a new mobile app for a business may involve designing a user interface, coding the app 

functionality, testing it for bugs, and maintaining it over time. 

By contrast, IPA involves using software tools and technologies to automate existing 

business processes, without the need for custom development. IPA solutions typically rely on pre-

built software components, such as robotic process automation (RPA) bots, artificial intelligence 

(AI) algorithms, and machine learning models, that can be configured and integrated into existing 

systems to automate specific tasks or workflows. For example, an organization might use IPA to 

automate their customer service processes by implementing a chatbot that can handle routine 

inquiries and escalate more complex issues to human agents. 
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While software development can provide highly tailored and customized solutions, it can 

be time-consuming and expensive. IPA, on the other hand, can be faster and less expensive to 

implement, but may not be as customizable or flexible as custom software solutions. 

Both software development and IPA can be used to automate business processes and 

improve operational efficiency. The choice between the two approaches will depend on a range of 

factors including the specific needs and requirements of the business, the complexity of the 

processes to be automated, and the resources available for development and implementation. 

There have been many studies on the success factors of IT development projects. While 

the factors can vary depending on the specific study and context, some of the most identified 

success factors such as clear and well-defined project goals, effective project management, 

stakeholder engagement and support, skilled project team, adequate resources, agile project 

management approach, and effective quality control. 

Intelligent process automation (IPA) is a relatively new technology, and there is limited 

research on the success factors specific to IPA projects. However, based on the available research 

and industry best practices, some key success factors of IPA projects are given in the following 

text. 

1.5 Success and Failures of IPA Implementations 

The intelligent process automation (IPA) market size is expected to grow significantly in the 

coming years. According to a report by Markets and Markets, the IPA market size was estimated 

at USD 10.0 billion in 2020 and is projected to reach USD 16.3 billion by 2025, with a compound 

annual growth rate (CAGR) of 10.2% during the forecast period. Considering the huge adoption 

of IPA raises the question of how successful these implementations are. The success percentage 

of IPA implementation can vary depending on several factors including the complexity of the 
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processes being automated, the level of stakeholder engagement, and the quality of project 

planning and management.  

However, industry studies have also shown that IPA implementation failure rates can be relatively 

high. For example, a 2021 study by Gartner found that by 2024, 50% of IPA implementations will 

fail to deliver sustained business value due to a variety of reasons, including a lack of expertise in 

process identification and automation, poor bot design and development, and inadequate change 

management and governance practices. 

Another survey by Forrester Research in 2019 found that 30% of IPA projects stalled at the proof-

of-concept stage, and only 16% of respondents reported achieving significant benefits from their 

IPA projects. 

These figures indicate that IPA implementation can be challenging and that organizations must 

carefully plan and manage their IPA projects to avoid failure. It is essential to have a clear business 

case for automation, engage stakeholders early in the process, standardize processes, ensure data 

quality, plan for scalability and governance, and actively monitor bot performance to ensure that 

the automation is delivering the expected benefits. Additionally, organizations should focus on 

continuous improvement and actively address issues as they arise to ensure the success of their 

IPA implementations. 

1.6 Purpose of this Dissertation Research 

To improve the success percentage of IPA implementations, as discussed in section 1.5, examining 

the critical success factors of IPA implementation will be a huge advantage for organizations 

embarking on IPA journey, practitioners, and researchers in the field of information technology. 

In my dissertation research, I studied the live data of 176 IPA project implementations in banking 

and financial services. 
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This research extensively examined the success factors from the point of view of IPA. IPA 

is an important part of digital transformation (DT) for any organization, and it is prudent for the 

management to understand and strategize IPA implementations in such a way that they are 

successful in terms of selecting a right business process for automation, empowering business 

users with a right automation approach, identifying human interventions, etc. For example, 

designing completely attended IPA bots is suitable for simple repetitive tasks, while complex tasks 

may need a combination of bots and humans to run the business process effectively. There is a 

debate as to how the automation approach should be, i.e., top-down, or bottom-up. 

The previously discussed factors pose a very important research area and have led to this 

research study on “Identify the success factors of Intelligent Process Automation” and 

answers the following two very important questions: 

Question 1: What are the critical success factors that predict the success and failure 

of intelligent process automation implementation? 

Question 2: What is the order of importance of the critical success factors that 

predict the success or failure of intelligent process automation? 

These fundamental, yet complex, questions have strong theoretical and managerial 

implications, especially for firms that drive digital transformation through IPA. Although the 

research has examined several success factors for IT software development, there is limited 

empirical research on IPA. This necessitates a multi-level theoretical investigation as success of 

IPA is dependent on various constructs across multiple levels of analysis: IPA outcomes, how the 

IPA is governed, process-level constructs, technology considerations and complexity involved, and 

research approach. 

Since IPA success factors encompass multiple levels, and each level often has (multiple) constructs, 

a multi-level approach is necessary to investigate the influence of the constructs and their emergent 
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interactions across multiple levels (Paruchuri et al., 2018), while also requiring the integration of 

multiple theories as a single, homogeneous theory cannot be applied across levels (Hitt et al., 2007).  

Furthermore, IPA success factors are not a single decision but encompass patterns of 

decision sequences. This decision journey, namely, the partial orderings of its constituent decision 

point, and decision forks are as critical as the final decision outcome itself. 

This research has attempted to address this research gap by leveraging a multi-level, multi-

theoretic approach that broadens notions of emergence in decision-making logics (Markus et al., 

2002) by incorporating recent guidance on multi-level theorizing. A unique sample data set using 

an inductive data-driven analytics methodological approach was analyzed. Decision tree induction 

was used to identify patterns in the data and as a vital input in the abduction process, which 

generalizes the patterns to the most plausible explanation. In this study, the sample was 176 live 

IPA implementations in the banking and financial services sector across the globe executed by 200 

global IT service providers. A three-stage research design of abduction-induction-abduction was 

applied, where the data derived from the live implementations were abducted and introduced into 

decision trees to derive the rules and abduct away from the rules to present insights and 

propositions. 

By leveraging eleven predictors across governance, process, technology, and complexity-

level perspectives, the impact of the predictors on the overall success or outcomes of intelligent 

process automation (IPA) was investigated. Thus, a key strength of this research design and study 

is that data are derived from real-time live implementations of 176 projects in the banking and 

financial services domain and it addresses heterogeneity as the data cover IPA implementations 

across the globe. 

The question investigated in this study is important for IT managers and key executives to 

understand the factors that would impact the overall success of IPA implementations and hence 

design the overall program. 
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Decision trees can shine the light on the flow of the decision-making process and model 

the IPA success factors from the implementations studied in the banking and financial services 

along with their cumulative experiences. 

In this study, decision trees were grown using C4.5 decision tree classification algorithm 

induction (Quinlan, 1986b, Quinlan, 1990) and were aggressively pruned to discover the 

underlying tacit structure of the data. Only few previous studies have utilized this methodology 

(Brézillon et al., 2002, Tessmer, 1994). 

I then abduct away to discover theory, to articulate insights and generic propositions from the 

rules derived from decision tress for identifying factors impacting IPA success. In the abduction 

process, data were interpreted to discover combinations of features for which there is no 

appropriate explanation. This sequence of induction and abduction is appropriate as success 

factors of IPA implementation and combination of decision sequences it encompasses cannot be 

theorized ex-ante. 

1.7 Key Findings 

In this study, sixteen rules were derived for four IPA outcomes of success, and by 

abducting, six significant insights and six propositions were found. The predictors of successful 

IPA implementation were present at all theoretical levels, and there were dominant predictors for 

high and low success of IPA implementation. It was observed that there were only a few tacit 

combinations that result in successful IPA implementations. By observing the overall IPA 

implementation success, critical success factors that would impact the success of IPA 

implementations such as FTE reduction, process efficiency, and process accuracy were identified. 
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1.8 Contributions and Implications 

In this study, predictors or critical success factors of IPA implementation were identified. 

Through the insights and propositions of this study, some dominant predictors that impact all the 

outcomes of successful IPA implantation were found. Furthermore, first- and second-level 

predictors of successful IPA implementation were determined. In some cases, specific 

combinations of predictors together impacting a specific outcome of IPA success were found, for 

example, process efficiency. In this study, decision trees help enlighten first principles, or “the 

essence of things,” thereby representing a major contribution to theory. Progressive theory 

development through abduction reveals the intricate combinations of predictors and clarifies the 

influence of combinations of predictors on the outcome of interest.  

This study offers a nuanced view into the decision-making process for IPA practitioners 

regarding the predictors or critical factors impacting both high and low IPA implementation 

success. It also offers organizing principles for their implementations by highlighting the most 

efficient path for increasing participation in their platforms and thus improving the probability of 

successful IPA implementation through rules, insights, and propositions. These practice 

implications also extend to other contexts of automation implementations such as low/code in 

other for healthcare, retail, and other sectors. 

1.9 Conclusion 

This chapter provides an introduction about the definition, growth, recent trends of 

intelligent process automation (IPA) and how it is different from other software development 

projects; discusses the success and failure of IPA implementation and what is the purpose of this 

dissertation; and finally discusses the reason as to why this topic and important research questions 

were selected. 
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The rest of this article is organized as follows: The second chapter will present a systematic 

literature review process, where the key factors pertaining to theory base, hypothesis, research 

methods, findings, and limitations of IPA lead digital transformation were extracted. Then, it will 

present the results of literature review of eight studies, followed by the antecedents of IPA led 

digital transformation and key thematic issues. 

The third chapter will explain the research context and also the three-stage research 

methodology of abduction through hunches, induction through decision trees, and abduction 

thorough the examination of various outcome variables of IPA. Moreover, it will discuss how data 

are derived from the observed live implementations of IPA projects and elite informant interviews. 

Finally, the chapter will explain how twelve important predictors and three outcomes were derived 

from the observed data of 176 live IPA projects. 

The fourth chapter will explain in detail theoretical levels (i.e., governance, process, 

technology, and complexity) and eleven predictors under the four theoretical levels in terms of 

their definitions and how they impact an IPA implementation. 

The fifth chapter will explain the measures for this research study. First, it will detail the 

four outcomes of interest (i.e., key outcomes for a success or failure of an IPA project), namely, 

average handling time, FTE reduction, process efficiency, and process accuracy in terms of their 

definitions based on prior research and how the success is classified as high, medium, and low. 

Subsequently, it will explain the mechanism to classify, and code eleven predictors defined under 

the four theoretical levels impacting the outcomes of IPA success. 

The sixth chapter will explain the induction mechanism using decision trees; describe how 

the computational experiments were performed; and describe the selection of a best representative 

tree after tree pruning based on three key heuristics, namely, parsimony, consistency, and 

prediction accuracy, which were examined independently based on the best representative tree; 

and present key findings and rules for each of the three outcomes: FTE reduction, process 
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efficiency, and process accuracy. In addition, the chapter will present eleven rules representing 

critical success factors impacting the success or failure of the IPA implementation. 

The seventh chapter will explain the difference between formative and reflective constructs 

and why the formative construct is justified, where a formative analysis was performed using 

principal component analysis (PCA) to arrive at one composite measure for IPA success from the 

three outcomes that were discussed in the sixth chapter. Following this, the IPA success composite 

measure was derived for each of the 176 IPA implementations by using the same process of 

decision tree induction and the same eleven predictors and by selecting the best representative tree 

using the three key heuristics to derive five rules for the critical success factors impacting the 

success or failure of an IPA implementation. 

The eighth chapter will compare and contrast the rules derived from decision tree 

induction discussed in the sixth and seventh chapters to show the commonalities between the 

predictors impacting the outcomes of IPA implementation and observation and propositions for 

critical success factors of intelligent process automation (IPA). 

The ninth chapter will explains the validation analysis through econometrics, where the 

direct effects of the top three predictors derived from decision tree induction and their 

combination effects were measured using pre-post analysis to statistically and empirically support 

the rules and propositions, i.e., impact of the important predictors before and after automation. 

The tenth chapter will discuss the theoretical implications and contributions from the rules 

and propositions, managerial implications, strengths and limitations of the research, and the scope 

for future research and concluding remarks. 

Figure 1 depicts the research roadmap for developing the thesis. 
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Figure 1: Research Roadmap 
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2 REVIEW OF LITERATURE 

ultiple streams of theory inform this dissertation. In this study, the topic of 

interest is the theory of critical success factors that impact the intelligent process 

automation (IPA), a tool of digital transformation, and how it leads to digital 

transformation. This section presents a review of the extant literature by showcasing the major 

research themes in this area. First, the literature review process is explained, followed by the results 

of the literature review. Second, the conceptualization of the IPA-led digital transformation is 

described. Third, the antecedents and key thematic issues around IPA are outlined. 

2.1 Systematic Literature Review Process 

To meet the goals of this study, a comprehensive literature review has been performed, 

which involves various steps. The aim is to build theory, which improves the literature quality by 

synthesizing the concepts, rather than just reporting summary of various papers (Watson and 

Webster, 2020), which is relatively easy to understand. The synthesis of literature usually requires 

integrating concepts of interlinked topics for overall understanding of the intended paper or 

subject. The primary goal of literature review in the context of this study is to synthesize key 

themes, hypotheses, theory base, debates, and gaps in the extant literature (Templier and Pare, 

2018, Vom Brocke et al., 2015).  

In this review, I combine descriptive review and narrative review approaches as 

recommended by several literature review experts (Paré et al., 2015, Watson and Webster, 2020). 

A descriptive review approach is applied to a specific research area to unravel “any trends with 

respect to prior hypotheses, explainable patterns, theory base, research methodologies, or critical 

findings, while a narrative literature review approach combines and summarizes the extant 

literature to provide a holistic knowledge on a specific area of interest (Templier and Pare, 2018) 

M 
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To conduct the literature review, AIS Senior Scholars’ basket of eight journals were 

searched for articles published in the past twenty years. These journals are widely accepted as 

publishing high-quality research articles in the field of information systems. The basket of eight 

journals that were searched are MIS Quarterly, Information Systems Research, Journal of Information 

Technology, Journal of Management Information Systems, Journal of Strategic Information Systems, Journal of the 

Association for Information Systems, and European Journal of information systems, in addition to three other 

premier journals—“Organization Science”, “Management Science,” and “Strategic Management 

Journal,” which have published significant knowledge about the focus area with respect to 

information systems. These journals constitute the premier journals of the reference fields of 

strategy and management.  

 

Figure 2: Literature Review Process 

The elements considered for the literature search in this study were consistent with those 

previous scholars have used with respect to three broad focus areas: 1) digital transformation, 2) 

IT strategy in the context of intelligent automation and robotic process automation, and 3) where decision 

tree induction (used for theory induction and abduction) was used for theory induction through 

machine learning as a data-first approach. Accordingly, the following set of words were used to 

search for relevant research studies in the identified journals: [Digital Transformation, Intelligent 

Process Automation, Robotic Process Automation, Artificial Intelligence, Decision Trees etc.]. 

These terms were used both individually and in combination to get the relevant articles 

specific to the context of this study. After narrowing down the papers, the hypothesis, theory base, 
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findings, and the limitations were generated for each element to gather information and present 

key thematic issues of this study. Figure 2 depicts the entire literature review process.  

2.2 Framing literature Review in the Context of Intelligent Process Automation 

Table 1 shows journal-wise break-up of articles reviewed in the context of intelligent 

process automation.  

 

Table 1: Summary of results on intelligent process automation and digital transformation 

Description Count 

Basket of eight (N=50)  
European Journal of Information Systems (EJIS) 7 
Information Systems Research (ISR)  6 
Journal of Strategic Information Systems (JSIS) 3 
Journal of the AIS (JAIS) 6 
Management Information Systems Quarterly (MISQ)  14 
Journal of Management Information Systems (JMIS) 2 
Information Systems Journal (ISJ) 2 
Journal of Information Technology (JIT) 10 

Other Significant Publications (N= 6)  
Management Science 2 
Organization Science 2 
Strategic Management Journal 2 

2.3 Conceptualizing Digital Transformation 

Digital transformation presents tremendous opportunities to organizations, information 

systems scholars, and practitioners. Although the extant literature has contributed to the 

understanding of digital transformation, there are still gaps in understanding of digital 

transformation initiatives. Organizations should understand that there is a difference between IT 

transformation and digital transformation because there is much investment that is being made 

into technology, business, and policy. There are many classical models of transformation, which 

would seem to undermine how digital transformation is different from IT-enabled transformation 
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(Henfridsson and Lyytinen, 2010). Many scholars attempted to explain the difference between IT 

and digital transformation; for example, (Vial, 2021) explained that the momentum for digital 

transformation would be larger, comprising “society and industry trends,” whereas the momentum 

for IT transformation is more of managerial decisions. (Hartl and Hess, 2017) explained that the 

digital transformation is more complete and faster than IT transformation. Both these distinctions 

between digital transformation and IT transformation are related and are unclear as they cannot 

be proven empirically. 

Digital transformation refers to the integration of digital technology into all areas of an organization, 

leading to fundamental changes to how the organization operates and delivers value to customers. 

It can enable organizations to become more efficient, agile, and customer centric. Thus, digital 

transformation impacts the core identity of firms. Research has examined how digital 

transformation impacts the organizational identity.  

Organizational identity refers to the collective sense of purpose and shared values that 

define an organization and distinguish it from others. It is shaped by several factors including 

history, culture, brand, and mission. The process of digital transformation can have a significant 

impact on an organization’s identity. For example, the adoption of new technologies may require 

an organization to change its culture and ways of working, which can, in turn, affect its sense of 

purpose and values. On the other hand, a strong organizational identity can help guide and inform 

the digital transformation process, ensuring that it aligns with the organization’s core values and 

purpose. 

It is important for organizations to consider the impact of digital transformation on their 

identity and to develop strategies for maintaining and reinforcing their identity throughout the 

process. This may involve engaging employees and stakeholders in the transformation process and 

ensuring that the organization’s brand and values are consistently communicated and reinforced. 
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Organizational identity could be an effective and powerful way to conceptualize various 

transformations (Wessel et al., 2021). There are several examples that emphasize the significance 

of links between the organizational identity and value propositions. For example, Netflix 

transformed from a supplier of rental movies into a streaming platform, whereas Uber is a digital 

native that has transformed the whole car rental into a technology platform. There is a similarity 

between digital transformation and IT transformation in terms of technology effect on both 

organizational and environmental contexts. However, digital transformation is more about value-

defining work in the organization, whereas IT transformation is all about value-supporting. 

Moreover, digital transformation creates a new identity for an organization, whereas IT 

transformation enhances the existing identity. 

The extant literature emphasizes several impacts of digital transformation. (Baiyere et al., 

2020) explained how digital transformation and business process management are often closely 

linked as digital technology can play a crucial role in supporting and enabling business process 

management initiatives. For example, digital tools and systems can help organizations automate 

and digitize their processes, reducing manual effort and increasing accuracy and speed. 

Similarly, (Wimelius et al., 2021) explained a paradoxical perspective of technology renewal 

in digital transformation and highlighted the need for organizations to balance the need for 

innovation and change with the need for stability and continuity, and to navigate the challenges 

and risks associated with digital transformation.  

(Tan et al., 2020) presented a very interesting view of the digital transformation of the K-

pop industry, which has had a profound impact on its operations, marketing, and revenue 

generation, helping it to achieve significant growth and global recognition. It provides a compelling 

case study for organizations looking to transform their business ecosystems through the 

integration of digital technology. 
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Research on digital transformation also suggests several frameworks. (Gurbaxani and 

Dunkle, 2019a) recommended a framework for executives to assess their company’s progress on 

six dimensions critical to successful digital transformation. Similarly, (Hess et al., 2016) proposed 

a conceptual framework for formulating a digital transformation strategy and key dimensions in 

terms of right questions to ask and provide managers with a comprehensive and structured 

approach to digital transformation. 

There are also several challenges organizations encounter while implementing digital 

transformation. (Datta et al., 2020) clearly explained the challenges in terms of sociocultural 

disruption, digital literacy, and bureaucratic friction. 

Overall, digital transformation refers to the integration of digital technology into all areas 

of an organization, fundamentally changing the way it operates and delivers value to customers. It 

is a strategic process that enables organizations to take advantage of the opportunities created by 

digital technology, such as increased efficiency, enhanced customer experience, and new business 

models. 

Conceptualizing digital transformation involves considering the following key elements: 

1. Technology: The use of digital technologies such as cloud computing, big data, artificial 

intelligence, and Internet of Things (IoT) to support and drive digital transformation. 

2. Business processes: Rethinking and redesigning of business processes to optimize 

operations, reduce costs, and improve customer experience. 

3. Culture and leadership: The alignment of organizational culture, leadership, and 

governance with the goals and objectives of digital transformation. 

4. Data and analytics: The use of data and analytics to inform decision-making and optimize 

operations. 

5. Customer engagement: The integration of digital technologies to enhance customer 

engagement and build stronger relationships with customers. 
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6. Innovation: The creation of new products, services, and business models enabled by digital 

technology. 

Conceptualizing digital transformation involves considering the interplay between these 

elements and how they can be leveraged to drive strategic change and create value for the 

organization and its stakeholders. It also requires a holistic and integrated approach, considering 

the needs of all stakeholders and the impact of digital transformation on the wider business 

ecosystem. 

2.4 Conceptualizing Intelligent Process Automation 

Intelligent process automation (IPA) is a set of technologies and approaches that leverage 

artificial intelligence (AI) and machine learning (ML) to automate business processes. The goal of 

IPA is to automate repetitive, manual tasks and make work more efficient, accurate, and scalable. 

Some common applications of IPA include chatbots for customer service, intelligent data 

capture and classification, predictive analytics, and robotic process automation (RPA). IPA can 

also be used to automate complex decision-making tasks and workflows, such as underwriting in 

the insurance industry or fraud detection in the financial services industry. 

IPA combines the traditional benefits of process automation with the power of AI to 

create smarter, more flexible systems that can adapt to changing business needs. This can lead to 

improved accuracy, reduced cycle times, and increased efficiency (Carden et al., 2019) in areas such 

as customer service, finance, and human resources. 

Denagama Vitharanage et al. (2020)) clearly illustrated “improvement in accuracy” as the 

most anticipated benefit of implementing IPA along with customer satisfaction. 

It is important to note that while IPA can bring significant benefits, it is not a silver bullet 

solution and must be carefully integrated into an organization’s existing processes and systems. 
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Effective implementation of IPA requires a well-defined strategy, clear business goals, and an 

understanding of the limitations and risks associated with the technology. 

Asatiani and Penttinen (2016)) explained the challenges of IPA for Finnish financial firm 

OpusCapita in terms of how business processes are analyzed and assessed to arrive at a business 

case.  

Overall, IPA represents a significant step forward in the evolution of process automation 

and has the potential to revolutionize the way work is done in many industries. 

2.5 Intelligent Process Automation-Led Digital Transformation 

IPA uses algorithms and software robots to mimic human-like decision-making and 

actions, thus enabling businesses to automate tasks that are repetitive, time-consuming, and prone 

to error. 

Digital transformation, on the other hand, refers to the integration of digital technology 

into all areas of a business, resulting in fundamental changes to how the business operates and 

delivers value to customers. IPA plays a crucial role in digital transformation by enabling 

organizations to automate manual and time-consuming tasks, freeing up employees to focus on 

higher value activities, and delivering consistent, accurate, and scalable results. 

For instance, organizations can use IPA to automate HR processes such as employee 

onboarding, payroll processing, and benefit administration, leading to improved efficiency and a 

better employee experience. IPA can also be used to automate customer service processes such as 

responding to customer queries and complaints, leading to faster and more efficient resolution 

times. 
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Table 2: IPA-led digital transformation – Exemplars 

  

IPA success story 1: Credit limit 
extension 

A bank received hundreds of credit limit extension 
requests daily. IPA and AI helped them achieve 100% 
accuracy and improve productivity by 91.67% in the limit 
extension of cash credit and overdraft facility. The process 
improvement had a high impact on the bank and end-
customer credibility. 

IPA success story 2: Bank 
account opening process 
automation 

Due to the rapidly increasing number of customers, a bank 
wanted to automate their entire bank account opening 
process. RPA and OCR enable the bank to register a 
growth in the number of accounts opened per day from 
3000 to 15000 with the same workforce and reduce 
processing time from 12 min to 3 min per case. 

IPA success story 3: Auto-
classification and auto-
indexation of documents 

For a US-based bank, which had acquired six banks, the 
number of documents in the document management 
system had increased manifold. RPA and AI/ML enabled 
the bank to auto-index and auto-classify ~35 million 
unstructured pages into 200+ categories. 

 

In conclusion, IPA is a key technology that enables organizations to transform their 

operations and drive digital transformation by automating repetitive and manual tasks, freeing up 

employees to focus on higher value activities, and delivering consistent, accurate, and scalable 

results. 

 

2.6 Antecedents of Digital Transformation and Intelligent Process Automation 

The antecedents of digital transformation and intelligent process automation (IPA) can be 

traced back to several technological advancements and shifts in business practices. Some of the 

key antecedents as follows: 

1. Increase in the Internet and cloud computing: The widespread availability of high-

speed Internet and cloud computing has enabled organizations to access and store vast 
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amounts of data and information, which can be used to drive digital transformation 

initiatives. 

2. Advances in artificial intelligence and machine learning: The advancements in AI and 

machine learning have made it possible to automate complex and time-consuming 

tasks, paving the way for the development of IPA. 

3. Growth of mobile and Internet-connected devices: The proliferation of mobile devices 

and Internet of Things (IoT) has created a massive amount of data and made it possible 

to collect real-time information from various sources, providing organizations with 

new insights and opportunities for growth. 

4. Need for agility and innovation: Organizations are under increasing pressure to 

respond to rapidly changing customer needs and market conditions. Automation and 

digital transformation enable organizations to be more agile and innovative, helping 

them to stay ahead of the competition. 

5. Increasing focus on customer experience: With the increase in e-commerce and digital 

channels, customers have more options and higher expectations for the services and 

products they receive. Automation and digital transformation enable organizations to 

improve the customer experience and meet these increased expectations. 

 

These antecedents have created the conditions for organizations to adopt digital 

transformation and IPA, leading to improved efficiency, cost savings, and enhanced customer 

experiences. 

2.7 Key Thematic Issues 

Although numerous studies in digital transformation-led intelligent process automation 

(IPA) offer significant insights into its conceptualization, they are mostly aimed at developing 
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theory and not enough testing. Three themes emerge from the current review of the extant 

literature (see Appendix C for a list of indicative papers). First, prior research has focused heavily 

on guidelines, action principles, governance, and frameworks (Lacity et al., 2021, Kedziora and 

Penttinen, 2021, Lyytinen et al., 2021). For example, (Lacity et al., 2021) formalized an action 

principles approach for investigating and influencing the adoption of emerging information 

systems phenomena, particularly for new technologies such as IPA; it provides a six-step process 

of strategy, sourcing, program management, process selection, tool selection, and stakeholder buy-

in as guidelines for IPA adoption. Kedziora and Penttinen (2021) explained governance models in 

Nordea Bank for the adoption of IPA and outlined several governance-related issues and decision 

points that must be addressed in connection with any deployment of intelligent process 

automation. Thus, studies have focused mainly on the general guidelines for RPA adoption 

through case study approaches and prior literature reviews but have not utilized actual data, which 

are the results of real-time IPA implementation. Therefore, in this study, 176 real-time IPA 

implementations that were executed in large banking and financial services domain across the 

globe. 

The second issue to note is that intelligent process automation (IPA) is a recent 

phenomenon, and the success factors of intelligent automation have been used in multiple 

contexts, with considerable variation. (Oshri and Plugge, 2022) emphasized on process feasibility, 

service quality, and customer satisfaction. (Bygstad and Øvrelid, 2020) explained that deployment 

of lightweight IT in onsite configuration, loosely coupled with the infrastructure activities, allows 

for fast process innovation while leveraging the slow and nonlinear evolution of infrastructure. 

However, there is no clear articulation of success factors and benefit articulation. Therefore, the 

current study aims to quantitatively prove the success factors to be considered for IPA-led digital 

transformation by proving them empirically through machine learning and econometric research 

techniques and thereby establishing causality.  



Critical Success Factors Impacting Intelligent Process Automation 

Page 38 of 172 

2.8 Conclusion 

This chapter has detailed the literature review process and results, followed by key concepts 

of intelligent process automation (IPA) and digital transformation and how one leads to another, 

and key thematic issues identified from the literature review. The next chapter will describe the 

process of abduction derived from the 176 live implementations of IPA projects and elite 

informant interviews to arrive at the major predictors under the theoretical levels of governance, 

business process, technology, and complexity. 
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3 RESEARCH DESIGN 

his study follows a three-stage research methodology consisting of abduction, 

induction, and abduction to generate multi-level theory for holistic understanding of 

phenomena through emergent combinations and sensemaking process (Figure 3). 

 

 

Figure 3: Research Methodology 

 

 In the first stage of this research methodology, as depicted in Figure 3, is abduction, 

hunches were generated and evaluated both at individual and collective levels (Sætre and Van de 

Ven, 2021). Abduction is often used in exploratory research or in cases where existing theories do 

not fully explain a particular phenomenon to develop new theories or hypotheses. This process 

may involve identifying patterns, anomalies, or inconsistencies in data and to create starting points 

for generating possible explanations. Abduction was proposed by Charles Sanders Peirce (Osei‐

Bryson and Ngwenyama 2011).  

T 
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Let us see an example of abduction to generate hunches in the field of psychology: A 

researcher might observe that a certain group of people with a particular set of characteristics tend 

to exhibit a specific behavior. Based on this observation, the researcher might generate a 

hypothesis that explains why this behavior is occurring, even though they may not have all the 

evidence to support it. 

For instance, a psychologist who is studying anxiety may observe that people who have a 

history of trauma tend to exhibit higher levels of anxiety. Based on this observation, the researcher 

might generate a hypothesis that there is a relationship between trauma and anxiety, suggesting 

that anxiety serves as a coping mechanism for the trauma, even though there is insufficient 

evidence to support this hypothesis. 

In this study, I conducted qualitative interviews with experts or elite informants in the field 

of intelligent process automation, including executives (head of IPA practice), program managers, 

process excellence consultants, programmers, and business analysts. Following are the high-level 

questions that were posed to the elite informants: 

• What is your role in the IPA project? 

• How do you define the success of an IPA project? 

• What outcomes of success in IPA projects are measured? 

• What do you think are the predictors or critical success factors of IPA 

implementation? 

From stage 1, I identified the inputs that were used for the tree; in this case, I identified 

eleven independent variables and three dependent variables. 

The second stage of the proposed methodology, as shown in Figure 3, called induction. 

Induction is a type of reasoning used in research that involves starting with specific observations 

or data and working toward a general theory or hypothesis. In other words, induction involves 
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using observed data to develop a general understanding of a phenomenon, rather than starting 

with a pre-existing theory or hypothesis. 

Induction is often used in exploratory research, where the goal is to generate innovative 

ideas or theories that can help explain the observed data or phenomenon. This process may involve 

identifying patterns or trends in data and using these to generate new hypotheses or theories. In 

this study, the data of 176 intelligent process automation projects with eleven independent 

variables and four dependent variables were induced into decision trees. Decision tree induction 

is a machine learning technique that involves constructing a decision tree from a set of training 

data. A decision tree is a graphical representation of a series of decisions and their possible 

outcomes, like a flowchart. 

 In decision tree induction, training data are used to build a decision tree that can then be 

used to make predictions or decisions based on new data. The decision tree is constructed by 

recursively partitioning the data based on the values of different features or variables and using 

these partitions to create decision nodes in the tree. 

At each decision node, the algorithm selects a feature or variable that splits the data into 

two or more subsets based on the values of that feature. This process is repeated for each subset 

until a stopping criterion is met, such as reaching a maximum depth or a minimum number of 

samples in a node. 

Once the decision tree is built, it can be used to predict the outcome of new data by 

following the path through the tree based on the values of the features in the new data. Each path 

leads to a leaf node, which corresponds to a specific outcome (I considered 3 outcomes) based on 

the literature review and elite informant interviews. 

Decision tree induction is a powerful and widely used machine learning technique, 

particularly in classification problems where the goal is to predict the class of a given sample. It is 
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relatively easy to interpret and visualize the decision tree, which can clarify the relationships 

between different features and the predicted outcomes. 

Let us see an example of decision tree induction in the field of medicine: A researcher 

might be interested in developing a decision tree to predict the risk of heart disease based on 

various risk factors such as age, blood pressure, cholesterol levels, and family history of heart 

disease. 

However, decision trees can also be prone to overfitting and can be sensitive to the specific 

ordering of features used in tree construction; to avoid this, I used tree pruning techniques to find 

the best representative tree with higher prediction accuracy. In stage 2, I identified the best 

representative trees for each of the three dependent variables (FTE reduction process efficiency 

and accuracy) and the impacting independent variables. 

The third stage of the proposed research methodology, as shown in Figure 3, is again 

abduction; however, in this stage, I specifically studied the sensemaking process (Osei‐Bryson and 

Ngwenyama 2011).  

In this study, sensemaking refers to the process of interpreting and making sense of 

complex or ambiguous data to generate insights and understanding. This process in this study 

involves analyzing qualitative data such as the decision trees derived in stage 2 comprising elite 

informant interviews, prior literature review, and expert opinions and is based on study of 176 

real-time intelligent process automation projects. This allows narrowing down the data to identify 

12 independent variables or predictors used to induce the decision trees and explain the hidden 

phenomenon impacting the 3 dependent variables or outcomes.  

Sensemaking can be particularly useful in research that involves complex or ambiguous 

phenomena, where existing theories or explanations may not fully capture the nuances of the data. 

It can also be useful in research that involves multiple perspectives or viewpoints, where the 
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sensemaking process can help identify commonalities or differences between different participants 

or groups. 

Let us see an example of sensemaking in the field of social sciences: A researcher might be 

interested in understanding the factors that contribute to job satisfaction among employees in a 

particular industry. The researcher could collect data through surveys or interviews with employees 

and use sensemaking techniques to analyze the data. 

In stage 3, I will be able to identify context-specific rules and propositions using the derived 

results of decision trees.  

 

Figure 4: Data, Coding, and Classification 

 

Figure 4 describes the process where 176 intelligent process automation implementations 

in the banking and financial services sector were studied. The raw data were derived from the initial 

requirements (including process steps and rules of automation), design (value stream mapping), 
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project closure (mapping of initial requirements to the outcomes of automation implementation), 

benefit analysis (important metrics and their performance), and final case studies. 
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4 ABDUCTION OF PREDICTORS OF IPA SUCCESS 

hrough abduction, multiple theories were introduced to unfold different predictors at 

each level. These levels and predictors are derived from elite informant interviews, 

which comprised IPA practitioners, technology leaders, program managers, and 

business owners. Then, these predictors were categorized into four distinct levels, which have an 

impact on intelligent process automation success based on the data obtained from the 176 IPA 

implementations and elite informant interviews. 

4.1 Governance-Level Predictors 

Intelligent process automation (IPA) is a powerful tool for streamlining business processes 

and increasing efficiency. However, the implementation of IPA must be governed by appropriate 

guidelines (Hofmann et al., 2020, Kedziora and Penttinen, 2021) to ensure that it is used effectively. 

From the data and as explained by (Kedziora and Penttinen, 2021), there are different governance 

decisions that need to be considered before organizations embark on an IPA journey. Three 

predictors considered under governance levels are automation approach, automation execution, 

and build vs buy decision. 

4.1.1 Automation Approach 

When implementing intelligent process automation, one of the most important predictors 

under the governance level is automation Approach. In the context of this study, the automation 

approach is defined as the process of identifying automation opportunities and prioritize and 

develop automation and implementation strategies, which is an important aspect of IPA 

T 
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governance. The automation approach can be classified into two ways—top-down and bottom-

up. 

Top-down intelligent process automation (IPA) is an approach of automating business 

processes starting from the highest level of the process and then breaking it down into smaller 

tasks that can be automated using software robots or bots (Cooper et al., 2019, Kedziora et al., 

2021, Naqvi and Munoz, 2020). Some of the earlier studies have discussed the importance of the 

top-down approach. 

Bottom-up intelligent process automation (IPA) is an approach that involves starting 

from the task level and gradually building up to automate the entire process.  

Bottom-up IPA can be a more gradual approach to automation as it allows organizations 

to start with small tasks and gradually build up to automate entire processes. This approach can 

also be useful when automating processes that are complex or involve many manual tasks 

(Viehhauser, 2020, Syed et al., 2020). 

4.1.2 Automation Execution 

In most organizations, the execution of IPA is carried out by a team that includes a 

combination of or individual business users (“citizens”) and technical experts. The specific roles 

and responsibilities within this team may vary depending on the organization and the nature of the 

IPA initiative. Automation execution is an important predictor of IPA success and is part of the 

governance level as it must be decided before starting the IPA journey. In general, the execution 

of the process can be triggered in two ways: citizen automation and technology-driven 

automation. 

Citizen intelligent process automation (IPA) is a type of IPA that is designed to be 

used by nontechnical business users, or “citizens,” rather than dedicated IT or development teams. 
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Citizen IPA tools are designed to be easy to use and require little to no coding or programming 

knowledge (Kotsuka et al., 2019, Gorwa and Guilbeault, 2020). 

With citizen IPA, business users can automate routine tasks and processes on their own, 

without relying on IT or development teams. This can help reduce the burden on these teams and 

increase productivity within the organization. 

Citizen IPA has become increasingly popular in recent years as more organizations look to 

democratize automation and empower business users to take control of their own processes. 

However, it is important to note that citizen IPA tools are not a replacement for IT or development 

teams. Rather, they should be used in conjunction with these teams to ensure that the automation 

is scalable, secure, and aligned with the organization’s overall technology strategy. 

Technology-driven intelligent process automation (IPA) is typically referred to as 

“enterprise IPA” or “centralized IPA.” This is a type of intelligent process automation (IPA) that 

is implemented and managed by dedicated IT or development teams within an organization. 

Enterprise IPA is typically designed to automate more complex and mission-critical 

business processes that require a higher level of customization, security, and scalability. Unlike 

citizen IPA, which is often used to automate simple, routine tasks, enterprise IPA is used to 

automate more sophisticated and multi-step processes. 

Overall, enterprise IPA and citizen IPA represent two different approaches to automation 

that are both valuable. While citizen IPA is designed to empower nontechnical users to automate 

routine tasks and processes, enterprise IPA is designed to tackle more complex and critical 

business processes that require a higher level of technical expertise and customization. 
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4.1.3 Build vs Buy Decision 

When it comes to implementing intelligent process automation (IPA), organizations 

should decide whether to build their own IPA solution or purchase an off-the-shelf product from 

a vendor. This is known as the “build vs buy” decision. 

The decision of whether to build or buy IPA depends on a variety of factors including the 

organization’s needs, available resources, and the level of technical expertise within the 

organization. Some of the key considerations when making the build vs buy decision are cost, 

speed to market, return on investment, control on business processes, etc. (Viale and Zouari, 

2020). 

4.2 Process-Level Predictors 

It was observed from the data that there are several predictors that are part of the business 

process level. These predictors have a significant impact on IPA success depending on domain (in 

this case, banking and financial services) categories, business processes within the domain category, 

and their complexity. 

The three predictors under the process level are the business process domain, key process, 

and their complexity. 

4.2.1 Domain Category 

 Since the domain of study is restricted to banking and financial services, various 

subdomains were considered as predictors of intelligent process automation (IPA) success (Oshri 

and Plugge 2022). 
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4.2.2 Key Processes  

Key processes are the specific processes that are considered under the domain category to 

understand the insights based on the outcomes of IPA success (Thekkethil et al., 2021, Kajrolkar 

et al., 2021). 

4.2.3 Complexity 

 The complexity of a business process can vary depending on the nature and scope of the 

process being defined. Some factors that can contribute to the complexity of business process 

include process scope, process interdependencies, and data complexity (Jovanović et al., 2018). 

4.3 Technology-Level Predictors 

When implementing IPA, it is important to consider various technology-related factors to 

ensure the success of the project. Some technological considerations while implementing IPA are 

technology architecture (scalability), interoperability (integration with other systems), technology 

compatibility, security, performance, and monitoring. In this study, three important technology-

level predictors were considered: technology architecture, artificial intelligence, and interoperability 

(Auth et al., 2019, Penttinen et al., 2018, Tilson et al., 2010, Benbya et al., 2020, Torkhani et al., 

2019). 

4.3.1 Technology Architecture  

The intelligent process automation (IPA) architecture refers to the design and structure of 

software that enables automation of business processes. It can vary depending on the IPA tool 
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being used and the needs of the organization. It was observed from the study data that the 

technology architecture can be divided into two types: stand-alone and distributed. 

Stand-alone intelligent process automation (IPA) refers to an IPA implementation 

that is independent of other automation or IT systems within an organization. In this type of 

implementation, IPA software operates in isolation, without being integrated with other enterprise 

applications or systems (Taulli, 2020). 

Distributed intelligent process automation (dIPA) refers to an IPA architecture that 

allows software robots to be deployed across multiple locations or machines in a network, enabling 

the automation of business processes across distributed environments (Mendling et al., 2018) 

(Osmundsen et al., 2019, Seilonen et al., 2003, Mohanty and Vyas, 2018). 

The architecture provides scalability, reliability, and improved performance, making it an 

ideal solution for organizations looking to automate complex business processes across their 

distributed networks (Miers et al., 2019). 

4.3.2 Artificial Intelligence (AI) 

Artificial intelligence (AI) is increasingly being used in intelligent process automation (IPA) 

to enhance the automation of business processes. AI can enable IPA bots to analyze data, make 

decisions, and learn from data, leading to more intelligent automation of complex business 

processes. Ways that AI is being used in IPA include document processing using OCR and image 

processing (Chung and Lee, 2018, LASSO-RODRIGUEZ and WINKLER, 2020). 

4.3.3 Interoperability 

Interoperability in intelligent process automation (IPA) refers to the ability of different 

IPA systems to work together seamlessly, allowing them to share data and processes across 
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different platforms. Interoperability is becoming increasingly important as IPA systems become 

more widespread, and organizations seek to automate more complex business processes (Oshri 

and Plugge, 2022). 

4.4 Complexity-Level Predictors 

While intelligent process automation (IPA) is designed to automate routine, repetitive 

tasks, the implementation and maintenance of IPA systems can still involve complexity. Two 

predictors identified from studied data are coding feature and automation type (Agostinelli et al., 

2019, Axmann and Harmoko, 2020) at the complexity level, which will have a significant impact 

on the outcome of IPA implementation. 

4.4.1 Coding Feature  

The coding feature in IPA refers to visual workflows that allow users to drag and drop 

pre-built components to build automation processes. These visual workflows provide an intuitive 

interface that allows users to automate processes without writing any code.  

Some IPA platforms offer coding capabilities for more advanced users or for specific use 

cases. For example, some platforms allow developers to write custom code. This may be necessary 

for automating complex processes that cannot be easily accomplished with visual workflow tools 

(Luo et al., 2021, Agostinelli et al., 2020). 

In addition, some IPA platforms allow users to integrate with APIs or web services using 

code. This can enable users to connect with other software systems or automate web-based 

processes that require more advanced scripting. 
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4.4.2 Automation Type 

There are three main types of intelligent process automation (IPA), which are 

differentiated by the degree of human involvement in the automation process: 

1. Attended automation: Attended automation involves the use of software robots that 

collaborate with human employees to automate specific tasks. These robots are typically 

deployed on the user’s computer and are triggered by user actions, such as clicking on a 

button or completing a form. The robot can then take over specific tasks within the 

workflow, such as data entry, validation, or processing, and can be programmed to provide 

guidance and support to the user as needed. 

2. Unattended automation: Unattended automation involves the use of software robots that 

work independently of human employees to automate entire business processes. These 

robots are typically deployed on a server or virtual machine and are programmed to run at 

specific times or in response to specific events. Unattended automation is useful for 

automating routine, repetitive tasks that do not require human intervention. 

3. Hybrid automation: Hybrid automation is a combination of attended and unattended 

automation and is typically used for more complex business processes. Hybrid automation 

involves the use of software robots that can work both with and without human 

involvement and can switch between attended and unattended modes as needed. This 

allows organizations to automate more complex workflows that involve both routine, 

repetitive tasks and more complex decision-making processes. 

Overall, the choice of the automation type will depend on the specific use case and the 

degree of human involvement required in the automation process (Hofmann et al., 2020, Choi et 

al., 2021, Berente et al., 2021a). 
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Table 3 summarizes the predictors of IPA success from the process of abduction as 

described in stage 1 of the research methodology. 

 

Table 3: Theoretical Level and Predictors of IPA Success 

Theoretical 
level/predictor 

Definition 

Governance level 

Automation 
approach 

Process of identifying and defining automation opportunities and 
prioritizing and developing automation and implementation strategies 
for IPA. This indicates who is responsible for the automation approach 

Automation 
execution 

This indicates who executes/triggers IPA or who triggers automation 

Build vs buy This indicates whether to build IPA or to buy an off-the-shelf product 

Business process level 

Domain category Domain category of the business processes (i.e., retail, capital markets, 
and cards) 

Key processes Processes under the domain (e.g., KYC, onboarding, and cash 
management) 

Intricacy Number of steps involved in automation and systems in integration 

Technology Level 

Technology 
architecture 

The architecture chosen to implement IPA 

Artificial 
intelligence 

The level of AI required driving automation of processes 

Interoperability Ability of different IPA systems to work together seamlessly 

Complexity 

Coding feature Extent of coding required to automate a process through IPA 

Automation type The process type selected and designed for IPA implementation 

 

4.5 Conclusion  

This chapter defined how the studied data and elite informant interviews were used to 

arrive at the theoretical levels and predictors or critical success factors of IPA. Each of the 

predictor along with the prior references from literature reviews was defined. The next chapter 
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will describe the research design, by providing the context and explaining about the data sources 

and three-stage research methodology. 
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5 DATA AND MEASURES 

n this study, the research context was a Fortune 200 organization, from where the data set 

was derived. This chapter describes why banking and financial services was chosen as the 

context of the study and defines the four measures of outcome and the rationale behind 

coding of success for these measures, followed by measures of eleven predictors and the rationale 

for coding these predictors. 

5.1 Research Context 

The data were collected from a Fortune 200 US multi-national information technology 

services and consulting company. The company has an intelligent process automation practice 

worth over $200 million, which has been ranked a leader in the 2022 Everest Group Peak Matrix 

for intelligent automation providers. The IPA group within the company engaged in delivering 

more than 2,000 projects between 2019 and 2021 across various domains such as banking and 

financial services, media and communications, retail, healthcare, and life sciences, where intelligent 

process automation was implemented. 

5.2 Data 

In total, 700 projects were considered for the study, but due to numerous subdomains, 

complexity of processes, and commonality of processes across geographic locations, the analysis 

was limited to 176 IPA implementation projects in the banking and financial services domain 

to identify the success factors of intelligent process automation. These elite informant interviews 

were restricted to the intelligent process implementations from the banking and financial services 

domain to prevent interdomain heterogeneity and to control the interdomain variance.  

I 
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Various business processes can be automated using intelligent process automation across 

subdomains such as “retail banking,” “wealth management,” “asset management,” “finance and 

accounts,” and “insurance.” The business processes that were considered under banking and 

financial services include 27% of asset management, 20% of wealth management, 27% of retail 

banking, 13% F&A, and 12% of insurance, where intelligent process automation has been 

implemented. These statistics were in accordance with the number of overall processes across 

subdomains. 

Of the total number of projects studied, 27% of the projects considered were of high 

complexity, 39% of were of medium complex, and 33% were of low complex. These make the 

data homogeneous and avoid selection bias. Thus, focusing on banking and financial services 

serves as a key sampling criterion in this study. 

In total, more than 100 documents were studied, and five elite informant interviews were 

conducted for this study. 

The combination of elite informant interviews and the data derived from the 176 intelligent 

process automation interviews were further classified and coded to arrive at eleven independent 

variables and three dependent variables.  

5.3 Measure of Outcome of Interest: IPA Success 

The purpose of this study was to inductively build a multi-level theory for identifying the 

factors impacting the success of intelligent process automation (IPA) by rigorously analyzing the 

implemented IPA projects. Several previous studies have focused on evaluating why some 

programs have achieved significant value, while others have fallen below expectations. However, 

the literature (Lacity et al., 2021) provides action principles to guide leaders through their intelligent 
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automation journey. The following three outcomes have been found to be critical for the 

successful implementation of intelligent process automation. 

Considering prior research, expert opinions, elite informant interviews, and ROI analysis 

of the 176 IPA implementations in stage 1, as shown in Figure 3, three outcome variables, namely, 

“full-time equivalent (FTE) reduction, “process efficiency,” and “accuracy” (Asatiani and Penttinen, 2016, 

Benbya et al., 2021), were found to be the most significant to measure the success factors of 

intelligent process automation (IPA). 

Based on the expert opinions and elite informant interviews of several technologists who 

specializes in intelligent process automation (IPA), literature review, and the analysis of the 176 

IPA projects, the following success predictors for intelligent process automation were identified, 

and this is the result of stage 1 of the research process, as depicted in Figure 3. 

5.3.1 Full-Time Equivalent (FTE) Reduction  

In the context of intelligent process automation (IPA), FTE reduction refers to the number 

of full-time employees that can be replaced by software robots that automate repetitive and rules-

based tasks (Asatiani and Penttinen, 2016, Lacity and Willcocks, 2021, Willcocks et al., 2017, 

Wewerka and Reichert, 2020). 

IPA is designed to streamline business processes and reduce the time and effort required 

to complete tasks. By automating tasks that were previously performed by human workers, IPA 

can significantly reduce the number of FTEs required to complete a task or process. This is 

because IPA can work continuously, without breaks or downtime, and can perform tasks at a much 

faster rate than humans. 
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FTE reduction value when automating a process through IPA is assigned as “high” when 

FTE reduction is more than 70%, “medium” when between 50% and 70%, and “low” when lower 

than 50%. The higher the FTE reduction, the higher the success probability of intelligent process automation. 

5.3.2 Average Handling Time (AHT)  

Average handling time (AHT) is a metric used to measure the time taken to complete a 

particular task or process. In the context of intelligent process automation, AHT refers to the time 

taken for a software robot to complete a task or process. 

AHT is an important metric for organizations that are using IPA to automate their 

processes because it helps measure the efficiency and effectiveness of their automation efforts. By 

reducing AHT, organizations can improve their operational efficiency, reduce costs, and increase 

customer satisfaction. 

AHT is highly co-related with FTE reduction and is categorized as “high,” “medium,” and 

“low.” The lower the AHT, the higher the success of intelligent process automation. 

5.3.3 Process Efficiency 

Process efficiency is critical for intelligent process automation as it enables organizations 

to reduce costs, improve productivity, and increase accuracy. In the context of IPA, process 

efficiency refers to the ability of software robots to perform tasks and processes quickly, accurately, 

and without errors. Process efficiency signifies an optimal (in most of the cases, the fastest or the 

cheapest) way of operating processes (Riemer and Peter, 2020, Carden et al., 2019, Berente et al., 

2021b, Asatiani et al., 2020) and can be measured by the amount of effort required to achieve a 

business outcome. Process efficiency is considered to be “high” when the automation is more than 
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90%, “medium” when between 70% and 90%, and “low” when less than 70%. The higher the process 

efficiency, the higher the success of intelligent process automation. 

5.3.4 Accuracy 

Accuracy is a critical factor for successful robotic process automation (RPA) 

implementation. Accuracy refers to the ability of software robots to perform tasks and processes 

with a high degree of precision and without errors. Inaccurate automation can lead to costly 

mistakes, lost time, and reduced efficiency. 

Accuracy is another parameter that indicates the extent to which a process is automated and 

how successful it is when the process is run several times (Asatiani et al., 2020, Riemer and Peter, 

2020, Benbya et al., 2020). Accuracy is considered to be “high” when it is above 95%, “medium” 

when between 80% and 95%, and “low” when less than 80%. The higher the accuracy, the higher the 

success of intelligent process automation. 

Other automation success variables that were studied were usability categorized as “high,” 

“medium,” and “low”; payback time categorized as “fast,” “medium,” and “slow”; and repeatability 

of the process categorized as “yes” and “no.” 

Table 4 depicts the measures of outcome of interest for IPA success. 

 

Table 4: Measures for Outcome of Interest 

Success predictors 
Predictor Category Rationale 
Full-time equivalent 
(FTE) reduction  

High >70% 
Medium 50% to 70% 
Low <50% 

Process efficiency High >90% 
Medium 70% to 90% 
Low <70% 

Accuracy High >95% 
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Medium 80% to 95% 
Low <80% 

 

 

5.4 Measures of Governance-Level Predictors 

Automation of any process depends on how it is governed; in other words, who are the 

key decision-makers and stakeholders who drive the intelligent automation initiatives. Automation 

of a business process needs a fair bit of governance to ensure the success even before organizations 

embark on the automation journey. 

5.4.1 Automation Approach 

Automation approach is defined in two ways: top-down and bottom-up. Top-down means that the 

automation mandate is part of the organization mandate of digitizing the enterprise and its 

business process (Cooper et al., 2019, Kedziora et al., 2021, Naqvi and Munoz, 2020), whereas 

bottom-up means low-level process automation implemented by business users implementing the 

tasks.  

5.4.2 Automation Execution 

Who executes the automation forms the part of automation execution. In general, the execution of a process 

can be triggered in two ways: citizen automation and technology-driven automation. 

When the business user does the execution, it is called “citizen automation” (Kotsuka et 

al., 2019, Gorwa and Guilbeault, 2020), and when the execution is done centrally through a product 

or technology group, it is known as “technology-driven automation.” 
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5.4.3 Build vs Buy 

A decision should be made on build vs buy, that is, whether to execute the automation 

through an internally developed tool or through a readily available product tool, or sometimes, a 

combination of both is used by customizing the product; hence, it categorized as “buy,” “build,” 

or “both.” 

 

Table 5: Measures of Governance-Level Predictors 

Governance-level predictors 
Predictor Category Rationale 
Automation approach Top-down Executive-driven 

Bottom-up Process owner-driven 
Automation execution Citizen bot Business-controlled 

Technology-driven Technology-controlled 
Build vs buy Buy Off-the-shelf product 

Build Bespoke development 
Both Combination 

 

5.5 Measures of Process-Level Predictors 

5.5.1 Domain Category 

The study of interest here is banking and financial services, and the aim of this study was 

to understand the IPA success for the processes under the BFS domain category such as “asset 

management,” “wealth management,” “retail banking,” “finance and accounts,” and “insurance” 

(Oshri and Plugge, 2022). 
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5.5.2 Key Processes 

The predictor key processes lists down an IPA implementation at a business process level 

under each domain category (Thekkethil et al., 2021, Kajrolkar et al., 2021). 

5.5.3 Complexity 

Each of the 176 key business processes analyzed were associated with varying degrees of 

complexity (Timbadia et al., 2020, Berente et al., 2021a, Asatiani and Penttinen, 2016, LASSO-

RODRIGUEZ and WINKLER, 2020) and categorized as high, medium, or low. This 

categorization was based on discussion with several industry experts and elite informant interviews 

from stage 1 of the research methodology, as depicted in Figure 3. A business process with more 

than one hundred steps/rules to be automated that is highly distributed/interoperable is assigned 

a high value, a business process with 50-100 steps/rules with a distributed/interoperable flow is 

assigned a medium value, and a business process with less than 50 steps with no interoperability is 

assigned a low value. 

 

Table 6: Measures of Process-Level Predictors 

Process-level predictors 
Predictor Category Rationale 
Domain category Right domain Retail, asset, etc. 
Key processes Right process Onboarding and accounting, etc. 
Intricacy High >100 steps 

Medium 50-100 steps 
Low <50 Steps 
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5.6 Measures of Technology-Level Predictors 

Implementation of IPA can be achieved using an off-the-shelf product, or it can be 

custom-built through bespoke development, or it can be a combination. Technology selection is an 

important criterion when analyzing the success of IPA. 

5.6.1 Architecture  

The technology architecture plays a key role based on the process to be automate and has 

an impact on the overall success. The architecture is categorized as “standalone” or “distributed.” 

Standalone automation primarily automates mundane and repetitive tasks done by humans but 

cannot automate end-to-end processes with assistance. Distributed automation is more holistic 

involving AI/ML and strong coding-based architectures to enable full automation across multiple 

business lines within an enterprise. Recent progress in artificial intelligence, machine learning, 

cryptography, and cloud-based distributed systems have provided new technologies for distributed 

intelligent process automation integrating several internal and external systems (Mendling et al., 

2018), thereby providing an control on end-to-end process view and automation (Osmundsen et 

al., 2019, Seilonen et al., 2003, Mohanty and Vyas, 2018). 

5.6.2 Artificial Intelligence (AI) 

Automation of a process can be done using readily available product RPA tools or in 

combination with artificial intelligence (Chung and Lee, 2018, LASSO-RODRIGUEZ and 

WINKLER, 2020) to improve the automation success, so AI plays a significant role in automation. 

In my data analysis it is categorized as high or low 
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5.6.3 Interoperability. 

Interoperability defines if process is cut across multiple systems to execute the activities/tasks 

while integrating with other systems (Oshri and Plugge, 2022). It is categorized as “yes” if there is 

an interaction and “no” if there is no interaction. 

 

Table 7: Measures of Technology-Level Predictors 

Technology-Level Predictors 
Predictor Category Rationale 
Architecture Standalone Task-level automation 

Distributed Process-level automation 
AI  Yes Uses AI/ML 

No Does not use AI 
Interoperability Yes Cuts across systems 

No Single system 

 

5.7 Measures of Complexity-Level Predictors 

While intelligent process automation (IPA) is designed to automate routine, repetitive 

tasks, the implementation and maintenance of IPA systems can still involve complexity and can 

be explained in terms of coding feature that is involved in automation and the type of automation. 

5.7.1 Coding Feature 

Automation complexity has several aspects, and the most important aspect is coding (Luo 

et al., 2021, Agostinelli et al., 2020). It is categorized into “strong,” “average,” and “low” coding; 
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for example, when there is low of bespoke code written to automate the process, it is categorized 

as strong coding. 

5.7.2 Automation Type 

The automation type depends on the extent of the manual intervention required when a 

process is automated. It is categorized as “unattended” when there is no manual intervention, 

“attended” when there are more steps of manual intervention than what robots accomplish, and 

“hybrid” when majority of automation is accomplished by robots and some critical tasks need 

human intervention to make the process successful (Hofmann et al., 2020, Choi et al., 2021, 

Berente et al., 2021a) 

 

Table 8: Measures of Complexity-Level Predictors 

Complexity-Level Predictors 

Predictor Category Rationale 

Coding Strong Product +custom Code 

Average Product +configuration 

Low Low code 

Automation type Unattended Completely automated 

Hybrid Humans + bots 

Attended Humans 

 

 

 

 

: 
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5.8 Descriptive Statistics 

The table below shows the frequency table for all the independent and dependent variables 

studied in this thesis. 

Table 9: Frequency table 

Variable Categories Frequency Percentage 

Complexity High 
Low 
Medium 

48 
57 
71 

27.27% 
32.39% 
40.34% 

Architecture Distributed 
Stand Alone 

49 
127 

27.84% 
72.16% 

AI/ML No 
Yes 

43 
133 

86.36% 
13.64% 

Interoperability No 
Yes 

43 
133 

24.43% 
75.57% 

Coding Feature Average Coding 
Low Coding 
Strong Coding 

55 
91 
30 

31.25% 
51.70% 
17.05% 

Automation Type Attended 
Hybrid 
Unattended 

29 
77 
70 

16.48% 
43.75% 
39.77% 

Automation 
Approach 

Bottom Up 
Top Down 

107 
69 

60.80% 
39.20% 

Automation 
Execution 

Citizen Bots 
Tech Driven Bots 

151 
25 

85.80% 
14.20% 

Build Vs Buy Build 
Buy 
Both 

16 
156 
4 

9.09 % 
88.64 % 
2.27 % 

Accuracy High 
Low 
Medium 

104 
67 
5 

59.09% 
38.07% 
2.84% 

Process Efficiency High 
Low 
Medium 

51 
63 
62 

28.98% 
35.80% 
35.23% 

FTE Reduction High 
Low 
Medium 

85 
50 
41 

48.30% 
28.41% 
23.30% 

 

Below is the correlation table for all the independent and dependent variables studied in 

this thesis. 
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Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1) FTE Reduction 1.000            
(2) Process 
Efficiency 

0.659* 1.000           

(3) Accuracy 0.447* 0.305* 1.000          
(4) Automation 
Approach 

0.337* 0.193* 0.417* 1.000         

(5) Automation 
Execution 

0.019 0.067 0.038 -.293* 1.000        

(6) Automation Type 0.550* 0.574* 0.434* 0.099 0.384* 1.000       
(7) Complexity -.157* -.199* -0.116 0.052 -.280* -.309* 1.000      
(8) Architecture 0.175* 0.295* 0.096 0.176* 0.256* 0.327* -.337* 1.000     
(9) AI/ML 0.063 -0.028 -0.070 0.251* -.645* -.362* 0.392* -.418* 1.000    
(10) Interoperability -0.146 -.197* 0.014 -.213* 0.034 -.167* 0.220* -.235* 0.072 1.000   
(11) Coding Feature -0.123 -.152* -0.142 -0.107 -.425* -.283* 0.527* -.437* 0.578* 0.142 1.000  
(12) Build Vs Buy 0.002 0.067 0.016 -.260* 0.801* 0.426* -.375* 0.345* -.821* -.018 -533* 1.000 

*** p<0.01, ** p<0.05, * p<0.1 

 

5.9 Conclusion  

This chapter has provided the research context on the source of data that are derived from 

live IPA implementations in the banking and financial services domain and elite informant 

interviews and described the data collection process to form the external validation or hunches to 

arrive at eleven independent variables and four dependent variables or outcomes of success for 

IPA implementation. Finally, the three-stage research methodology of abduction, induction, and 

abduction has been explained. The next chapter will define the measures encompassing the four 

outcome variables and eleven independent variables and assign or code the values for the data 

analysis. 

The chapter has discussed about the measures for outcome of interest, theoretical levels, 

and the eleven predictors under these levels. It also covered the mechanism of how they were 

assigned values and the rationale for classification of values used for the data analysis to identify 

the critical success factors of intelligent process automation (IPA). The next chapter will describe 

the decision tree induction process from the data abducted from the 176 live IPA implementations 

and the elite informant interviews. 
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6 INDUCTION OF DECISION TREES 

nsights into and patterns in data are derived using a data-first methodology of tree 

induction (Quinlan, 1986b, Quinlan, 1990). Decision tree induction is used to construct 

rules that demystify the information from a data set, the interpretation of which helps 

managers take informed and data-driven decisions (Boonstra, 2003) and helps construct the best 

representative structure to solve complex scenarios (Alter, 1978). This methodology helps in 

informed decision-making, which is critical to leaders and executives when embarking on 

transformational initiatives (Boonstra, 2003, Karhade et al., 2015)(Langley et al., 1995, Counihan 

et al., 2002, Alter, 1978)(Lin et al., 2017). 

This analytical approach involves a series of if-then statements derived from the tree 

structure, making it easy for stakeholders to understand factor-related outcomes. Decision trees 

clearly show the relationship between important predictors and outcomes based on the actual 

results, rather than an empirical forecast (Langley et al., 1995, Markus et al., 2002). Decision tree 

induction helps researchers derive a considerable number of hypotheses rapidly and generate 

meaningful insights (Osei‐Bryson and Ngwenyama, 2011). A few broad assumptions about the 

data and their distribution are applied to the decision tree algorithm (I discuss C4.5) to increase its 

applicability and generalization (Quinlan, 1986b)(Quinlan, 1990)). 

Organizational environments and decisions are supported by using the decision tree 

induction methodology based on what should happen, and not how they are forecasted to happen 

(Markus et al., 2002, March, 1994). The decision tree framework has applications (Drazin and Van 

de Ven, 1985, Pomerol et al., 2002)in numerous fields, particularly Fintech (Lagna and 

Ravishankar, 2022), IT portfolio management (Counihan et al., 2002, Otim and Grover, 2012)], 

persona-based human development decision-making (Bailey and Ngwenyama, 2014), financial 

decision-making (Tessmer et al., 1993), healthcare decision-making (Lin et al., 2017), and, more 

I 
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recently, human-artificial intelligence (AI) augmentation due to extensive automation (Sturm et al., 

2021) (Wang et al., 2021). 

6.1 Data Partitioning in Decision Tree Induction 

Data partitioning is the key to generating theory through tree induction, especially when 

there is a large amount of observational data, to arrive at decisions with propensity, which provides 

finer insights into and easy understandability and use of data (Yahav et al., 2016). In data 

partitioning, the sample training data set is divided into smaller subsets with the growth of the tree, 

so that the most relevant attribute is identified efficiently, establishing generality and enabling 

accurate prediction of unseen data to generate theory (Tessmer et al., 1993).  

Decision tree partition is examined through n-fold validation, where data sets are divided 

into n partitions, n-1 partitions are used as the training subsample, and one partition (or fold) is 

used for validation. In this analysis, 10-fold validation was used and is one of the most accurate 

and popular testing modes for building theory using decision tree induction (Hibbeln et al., 2017) 

(Karhade et al., 2015). WEKA data mining software was used, and measures were taken to avoid 

overfitting of data and to achieve higher prediction accuracy (Hall et al., 2009). 

There are two steps in tree induction following data partitioning: first, the C4.5 induction 

algorithm is applied on training data to build a decision tree (Quinlan, 1986b) (Quinlan, 1990)], 

and second, the constructed tree is pruned by performing various computational experiments to 

identify the tacit structure of data and signifies the robustness of knowledge discovery. WEKA 

was used for data partitioning, growing, and pruning trees (Hall et al., 2009). 

The C4.5 algorithm evaluates the goodness of fit of the data for generating maximum 

information from the data sets and satisfactorily manages common issues that arise in decision 

tree construction (Quinlan, 2014). Tree induction iteratively groups observations (i.e., intelligent 
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process automation implementations in banking and financial services, in this case) that have 

similar attributes and similar outcomes that predict the success of intelligent process automation 

(i.e., FTE reduction, process efficiency, and accuracy). Broadly, there are two key inputs for 

decision tree induction: 1) 176 intelligent process automation (IPA) implementation attributes or 

variables, and 2) success factors affecting IPA implementation. 

 Tree induction was carried out to identify information attributes with similar outcomes 

(in this case, FTE reduction, process efficiency, and accuracy of IPA implementation) (Quinlan, 

1986b). 

Using prediction accuracy alone as a criterion for choosing the best representative tree can 

be an overfitting trap, and to avoid the overdependency on prediction accuracy, two additional 

heuristics, namely, communicability (parsimoniousness) and structural consistency (stability) of the 

discovered knowledge, are introduced (Boonstra, 2003). In summary, the choice of the best 

representative tree is a combination of three heuristics: 1) prediction accuracy, 2) 

parsimoniousness, and 3) consistency of the tree structure, i.e., overall stability of the discovered 

knowledge. 

It needs to be understood that the implied basic decision rationale uncovered based on the 

tree induction does not reflect the exact rules of decision-makers (Boonstra, 2003). Decision tree 

induction avoids the correlated predictors and only conveys the most informative knowledge, 

which has a strong impact on final decision outcomes. In this study, correlations between 

predictors were not reported. In the following section, data analysis is described, which includes 

computational experiments that enable selecting the best representative tree for implementing 

intelligent process automation (IPA) based on three outcome predictors 1) full-time equivalent 

(FTE) reduction, 2) process efficiency, and 3) accuracy. 
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6.2 Need for Computational Experiments 

Tree pruning helps reduce the size of the tree by removing a part of the tree that has little 

power to classify the instances and helps provide better accuracy by reducing overfitting and noise 

or erroneous data (Hssina et al., 2014), thereby ensuring that rational decisions are 

comprehensively discovered and the training and subsamples are repeated many times. In each 

run, two mutually exclusive subsamples of were drawn from the studied 176 intelligent process 

automation implementations. The first set of subsamples is known as the training set, and the 

second set is known as the testing set. The training set was used to find the tacit decision rationale 

by using the C4.5 induction algorithm (Quinlan, 1986b), and the testing set was used to derive the 

predictive accuracy of the discovered decision (Boonstra, 2003). 

6.3 Selecting the Best Representative Tree 

In this analysis, tree selection is based on 10-fold validation as the empirical evidence 

(Weiss and Indurkhya, 1994) suggests that 10-fold validation is unbiased, consistent with optimal 

tree selection, and accurate irrespective of population distribution as it is dependent on the sample 

size. In 10-fold validation, the data set is divided into ten subsets and repeated ten times. In every 

run, one of the ten subsets is used as a test set, and the remaining nine subsets are used as the 

training set used for building a tree (Quinlan, 1990)1]. 

Decision rationale to predict the success factors of intelligent process automation from the 

unseen data is obtained by assessing the prediction accuracy of the tree generated from the training 

set. 

10-fold validation is repeated at various levels of pruning, i.e., different confidence factors 

and communicability of the tree, by repeating computational experiments from which multiple 
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approximations of decision rationale are derived. This is fundamental to the decision tree induction 

methodology so that multiple estimations for underlying decisions are available for researchers.  

6.4 Three Key Heuristics 

The three heuristics discussed earlier: 1) High prediction accuracy, 2) Parsimony, and 3) 

consistency to select the best representative decision tree, which, in turn, make the decision 

rationale credible. 

1) High predictive accuracy: Prediction accuracy of trees induced on the training data is 

evaluated on a mutually disjoint validation data set. This heuristic represents a goodness-

of-fit measure in terms of predicting decisions from unseen data. 

2) High parsimony: The induced tree is expected to be a parsimonious approximation of the 

underlying decision rationale so that it can serve as an effective decision- and policy-making 

aid. 

3) High reliability: Since the process of drawing training samples to induce trees and 

evaluating the predictive accuracy of induced trees on mutually disjoint validation samples 

is repeated several times, the robustness of the discovered knowledge was assessed. In this 

case, all the trees induced on the data contained the same topmost attribute, showing up 

reliably across these multiple iterations, thereby representing a robust approximation of 

the underlying decision rationale. 

Thus, the trees presented in this research are credible approximations of the intelligent 

process automation success outcomes in terms of “FTE reduction,” “process efficiency,” and 

“accuracy”. 
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6.5 Examining Full-Time Equivalent Reduction 

FTE reduction is one of the most important automation goals and has been found to 

impact the success of IPA implementation (Engel et al., 2021), and the released FTEs are 

redeployed for the jobs that are strategic in nature (Coombs et al., 2020). 

Table 2 outlines different computational experiments that were performed to identify the 

most suitable representative tree and facilitate the development of theories to pinpoint the critical 

factors impacting FTE reduction in the realm of intelligent process automation. By manipulating 

two primary parameters (confidence level and minimum instances at leaves) during the tree 

pruning process, various models were generated. In this analysis, four distinct levels (i.e., 

governance, process, technology, and complexity levels) were found, which encompassed a total 

of ten predictors to model the success factors of intelligent process automation with respect to 

FTE reduction. 

 

Table 10: Computational experiments to select best representative tree for FTE 

reduction. 

Mechanism to Detect 
Overfitting 

Three Key Heuristics to Choose the Best 
Representative Model   

No. Degree of 
pruning 

Minimum 
instances 
at leaves 

COMMUNICABILITY CONSISTENCY ACCURACY 

Size of tree (# of 
leaves) 

Topmost 
attribute 

Prediction 
Error 
(Validation 
Data) 

1 High (0.25) 8 11 1.Automation 
type 
2. Top-
down/bottom-
up 

38% 

2 Medium 
(0.5) 

8 13 1.Automation 
type 

39.20% 
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2. Top-
down/bottom-
up 

3 Low (0.75) 8 13 1.Automation 
type 
2. Top-
down/bottom-
up 

40% 

4 High (0.25) 10 11 1.Automation 
type 
2. Top-
down/bottom-
up 

38% 

5 Medium 
(0.5) 

10 13 1.Automation 
type 
2. Top-
down/bottom-
up 

38.6% 

6 Low (0.75) 10 13 1.Automation 
type 
2. Top-
down/bottom-
up 

39.77% 

7 High (0.25) 12 11 1.Automation 
type 
2. Top-
down/bottom-
up 

36.30% 

8 Medium 
(0.5) 

12 11 1.Automation 
type 
2. Top-
down/bottom-
up 

35.70% 

9 Low (0.75) 12 11 1.Automation 
type 
2. Top-
down/bottom-
up 

35.70% 

10 High (0.25) 14 9 1.Automation 
type 
2. Top-
down/bottom-
up 

36.36% 

11 Medium 
(0.5) 

14 9 1.Automation 
type 
2. Top-
down/bottom-
up 

34.65% 

12 Low (0.75) 14 9 1.Automation 
type 

34.65% 
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2. Top-
down/bottom-
up 

13 High (0.25) 16 9 1.Automation 
type 
2. Top-
down/bottom-
up 

34.70% 

14 Medium 
(0.5) 

16 9 1.Automation 
type 
2. Top-
down/bottom-
up 

34.70% 

15 Low (0.75) 16 9 1.Automation 
type 
2. Top-
down/bottom-
up 

34.70% 

 

Computational experiments allow choosing variables affecting the success of FTE 

reduction implementing intelligent process automation diligently through an incremental approach 

for the development of theory.  

6.5.1 Selecting the Best Representative Tree FTE Reduction 

To make sure that decision justification is found comprehensively, a method of drawing 

mutually exclusive training and testing samples is repeated multiple times. In every repetition, two 

random mutually exclusive subsamples of intelligent process automation derived from the data set 

of 176 projects were drawn with FTE reduction as the outcome variable, which is one of that 

factors that represent the success of intelligent process automation. Of two sets, one set is used as 

the training set, from which implicit decision rationale is found by using the C4.5 induction 

algorithm (Quinlan, 1986a), and the second set is known as the testing set, which is disjoint and 

used to evaluate the predictive accuracy of implicit decision rationale. The decision tree induction 

uses 10-fold validation, last partition of which is used for validation by comparing it against the 

other partitions used for building the tree. Prediction accuracy of the obtained tree from the 
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training set is assessed by applying the rationale to predict FTE reduction, which is one of the 

factors effecting the success of intelligent process automation from unseen data in the testing set, 

which is a mutually disjoint set. 

Multiple calculations of inherent implicit decision rationale were performed by repeating 

10-fold validations as part of computational experiments. This is part of the tree induction 

methodology to make sure that multiple estimates of implicit decision rationale are available to 

researchers.  

 

 

Figure 5: Tree 1: Decision Journey for FTE Reduction 
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Tree 8 from Table 10 depicted in Figure 5 is the best representative tree; although 

prediction error is marginally higher than the least prediction error, it optimally satisfies the three 

key heuristics of low prediction error, parsimony, and consistency of the top-level variable. 

Based on the information provided, it can be inferred that the most significant factors 

influencing FTE reduction in the context of intelligent process automation are the “automation 

type” and the approach adopted for automation, i.e., “top-down/bottom-up.” The success of 

intelligent process automation is directly proportional to the degree of FTE reduction achieved, 

indicating that higher FTE reduction levels correspond to greater success in this regard. 

6.5.2 Robustness Check 

The best representative tree, i.e., tree 8 from Table 1, was obtained through using 

10-fold cross-validation. To ensure the robustness of the result, a computational 

experiment on the best representative tree was also performed using the percentage split 

test using 80%, which means that 80% of the 176 instances are trained and tested with 

reminder of 20% of instances. I find that both with 10-fold validation and 80% percentage 

split the best representative tree 8 yields same results. 

6.6 Key Findings & Rules for FTE Reduction 

Trees, in Figure 5, that were discovered by the tree induction C4.5 algorithm, are not the 

precise rules or “a written rulebook” that decision-makers implementing IPA can use. Instead, 

they are estimates of the inherent structure of the data. The trees yield context-specific rules that 

clearly articulate the emergent connections across levels to inform the IPA success factors and 

therefore constitute part of my multi-level theory.  
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All the eleven information attributes characterizing initiatives in conjunction with the final 

FTE reduction decision are inputs to tree induction. All information attributes discovered by tree 

induction to be most informative for explaining FTE reduction decisions are included in the tree 

as decision attributes, and the tree induction C4.5 algorithm excludes all the noninformative 

attributes from the tree. The most informative decision attribute is the topmost attribute in the 

tree. The importance of attributes decreases as we move away from the top of the tree to its leaves. 

Three rules were derived in this study, as depicted in Figure 5: rules 1 and 2 are the top 

rules that predict the factors for high FTE reduction, resulting in successful IPA implementation, 

whereas rule 3 predicts factors for low FTE reduction, resulting in low IPA implementation. Rules 

are presented in Table 10. 

 

Table 11: Top context-specific rules discovered from decision tree induction (FTE 

reduction) 

No Rule Levels 
incorporated 

Decision 
(FTE 
reduction) 

Instances 
classified 

1 Unsupervised intelligence 
 
Automation type =“unattended” 

Governance 
Process 
Technology 
Complexity 

High 80 

2 Empowering business user 
 
Automation type =“hybrid” and 
Automation approach = “bottom-up” and 
Complexity = “high” or “medium” or “low” 
 

Governance 
Process 
Technology 
Complexity 

High 56 

3 Partial intelligence “guide me” 
 
Automation type = “attended” 

Governance 
Process 
Technology 
Complexity 

Low 41 
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6.6.1 Rule 1: Unsupervised Intelligence 

Unattended automation executes tasks of a process without any human involvement from 

the start to the end, where the process is mostly scheduled to start or some event triggers the 

process to begin. Unattended automation manages manual tasks that involves a specific pattern or 

a specific set of steps that are meant to be followed. From the studied 176 implementations for 

the outcome variable “FTE reduction,” it is observed that FTE reduction is very high when the 

automation is unattended. This was the main classification rule extracted from the tree as it is 

classified as most IPA implementations (80 IPA implementations). The general form of the rule is 

when automation is unattended, FTE reduction obtained in an IPA implementation is 

high.  

6.6.2 Rule 2: Empowering Business User 

When automation involves some user input, hybrid automation is recommended. With 

a hybrid automation model, attended automation performs the part that requires human 

intervention, and the rest is performed by unattended automation, and vice versa happens when 

unattended automation requires humans to make decisions. Bottom-up automation is driven by 

business owners at the process level who are empowered to give ideas as they have the complete 

knowledge of the domain and the gaps to be automated, with an all-inclusive approach that results 

in successful automation of a process; this kind of bottom-up approach will also make FTEs more 

productive. From the 176 IPA implementations, when “FTE reduction” is used as the outcome 

variable, when the automation type is hybrid, i.e., combination of attended and unattended 

automation, and when the business process owners are involved in the decision-making of 

automation, irrespective of complexity due to the inclusive approach, automation success is either 

high or trending toward high. This was the main classification rule extracted from the tree as it is 
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classified most IPA implementations (56 IPA implementations). The general form of the rule is 

when automation is hybrid and driven by a bottom-up approach, FTE reduction obtained 

in an IPA implementation is high irrespective of process complexity.  

6.6.3 Rule 3: Partial Intelligence “Guide Me” 

Attended automation involves working alongside humans and managing certain tasks 

within longer more complex work sequences or processes that cannot be fully automated from 

the start to the end. Attended automation generally occurs when there is no specific pattern 

identified for the business process and can only be performed by humans. From the studied 176 

implementations for the outcome variable “FTE reduction,” it is observed that FTE reduction is 

very low when automation is attended. This was the main classification rule extracted from the 

tree as it classified most IPA implementations (41 IPA implementations). The general form of the 

rule is when automation is attended, then the FTE reduction obtained in an IPA 

implementation is low.  

6.7 Examining Process Efficiency 

Process efficiency is one of the key success indicators of intelligent process automation 

(Asatiani and Penttinen, 2016, Santos et al., 2019) and has been found to be an expected impact 

when considering success of intelligent process automation. Higher process efficiency leads to 

faster business growth post intelligent process automation. 

 The data set for process efficiency undergoes the same process of computational 

experiments, pruning through 10-fold validation with the same set of ten predictors, as discussed 

earlier for FTE reduction, to generate decision rationale and theory development to derive the 

predictors impacting the process efficiency of intelligent process automation. 
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Computational experiments for process efficiency are depicted in Table 11. 

Table 12:Computational experiments to select best representative tree for process 

efficiency. 

Mechanism to detect 
overfitting 

Three key heuristics to choose the best representative 
model 

No. Degree 
of 
pruning 

Minimum 
instances at 
leaves 

Communicability Consistency Accuracy 

Size of tree (# of 
leaves) 

Topmost attribute Prediction 
error 
(validation 
data) 

1 High 
(0.25) 

8 6 1.Automation type 
2.Architecture 

42.60% 

2 Medium 
(0.5) 

8 15 1.Automation type 
2.Interoperability, 
automation 
execution 

47% 

3 Low 
(0.75) 

8 23 1.Automation type 
2.Interoperability, 
automation 
execution 

46.60% 

4 High 
(0.25) 

10 6 1.Automation type 
2.Architecture 

46.60% 

5 Medium 
(0.5) 

10 14 1.Automation type 
2.Interoperability, 
automation 
execution 

47.10% 

6 Low 
(0.75) 

10 14 1.Automation type 
2.Interoperability, 
automation 
execution 

47.10% 

7 High 
(0.25) 

12 6 1.Automation type 
2.Architecture 

46.60% 

8 Medium 
(0.5) 

12 6 1.Automation type 
2.Architecture 

47.70% 

9 Low 
(0.75) 

12 6 1.Automation type 
2.Architecture 

48.30 % 

10 High 
(0.25) 

14 6 1.Automation type 
2.Architecture 

44.90% 

11 Medium 
(0.5) 

14 6 1.Automation type 
2.Architecture 

43.75 

12 Low 
(0.75) 

14 6 1.Automation type 
2.Architecture 

46% 

13 High 
(0.25) 

16 6 1.Automation type 
2.Architecture 

46% 

14 Medium 
(0.5) 

16 6 1.Automation type 
2.Architecture 

46% 
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15 Low 
(0.75) 

16 6 1.Automation type 
2.Architecture 

46% 

 

6.7.1 Selecting the Best Representative Tree “Process Efficiency” 

Figure 6 depicts the best representative tree that provides a rationale indicating best 

predictors for success of IPA implementation in terms of process efficiency as an outcome. 
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Figure 6: Tree 2: Decision Journey for Process Efficiency 

 



Critical Success Factors Impacting Intelligent Process Automation 

Page 84 of 172 

The same data set of 176 intelligent process automation projects is used for computational 

experiments with the outcome variable “process efficiency” representing the success of intelligent 

process automation, as defined earlier for FTE reduction. 

Prediction accuracy of the obtained tree from the training set is assessed by applying the 

rationale to predict the outcome “process efficiency” from unseen data in the testing set, which is 

a mutually disjoint set. 

Tree 5 from Table 12 depicted in Figure 6 is the best representative tree; although 

prediction error is marginally higher than the least prediction error, it optimally satisfies the three 

key heuristics of low prediction error, parsimony, and consistency of the top-level variable. 

From these top three variables, that is, “automation type,” “interoperability,” and 

“automation execution” impact “process efficiency.” Higher the process efficiency, higher the 

success of intelligent process automation. 

6.7.2 Robustness Check 

I obtain the best representative tree i.e., tree 5 from table 1 through cross-validation using 

10 folds, to ensure the robustness of the result I also perform a computational experiment on the 

best representative tree using percentage split test using 80%, which means that 80% of the 176 

instances are trained and tested with reminder of 20% of instances. I find that both with 10-fold 

validation and 80% percentage split the best representative tree five yields same results. 

6.8 Key Findings and Rules for Process Efficiency 

The tree representation for “process efficiency” follows the same methodology as followed 

for the first outcome variable “FTE reduction” to yield context-specific rules that clearly articulate 

the emergent connections across levels to inform the IPA success factor of “process efficiency” 
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and therefore constitute part of the multi-level theory. All the 10 information attributes 

characterizing initiatives in conjunction with the “process efficiency” decision are inputs to tree 

induction. 

There are 5 rules derived in this study, as depicted in Figure 6: rules 1, 3, and 5 are the top 

rules that predict the factors of high process efficiency, resulting in successful IPA 

implementations, whereas rules 2 and 4 predict factors of low process efficiency, which leads to 

unsuccessful IPA implementations. Rules are presented in Table 12. 

Table 13: Top context-specific rules discovered from decision tree induction (process 

efficiency) 

No Rule Levels 
incorporated 

Decision 
(process 
efficiency) 

Instances 
classified 

4 Citizen intelligence and standalone 
systems 
Automation type =“hybrid” and 
Automation execution =” citizen” and 
IPA architecture = “standalone” 

Governance 
Process 
Technology 
Complexity 

High 45 

5 Partial intelligence "guide me" 
Automation t= “attended” 

Governance 
Process 
Technology 
Complexity 

Low 29 

6 Enterprise automation 
 
Automation type = “unattended” and 
Interoperability = “yes” and 
 Automation approach = “top-down” 
 

Governance 
Process 
Technology 
Complexity 

High 24 

7 Citizen intelligence and distributed 
systems 
Automation type = “hybrid” and 
Automation execution = “citizen “and 
IPA architecture = “distributed” 

Governance 
Process 
Technology 
Complexity 

Low 22 

8 Unsupervised intelligence 
Automation type = “unattended” and 
Interoperability = “no” 

Governance 
Process 
Technology 
Complexity 

High 22 
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6.8.1 Rule 4: Citizen Intelligence and Standalone Systems 

Citizen automation happens when business users, without any knowledge or background 

in technical coding, develop IPA strategies to improve their work routines. In the current 

examination, citizen automators create solutions to replace human labor with machine intelligence, 

promoting digital transformation. Repetitive tasks that do not require intensive analysis are 

potential subjects of automation, i.e., require basic “if-then” thinking. As discussed earlier, when 

automation involves some user input, hybrid automation is recommended. From the 176 IPA 

implementations, when the outcome variable “process efficiency” is used and when the 

automation is hybrid and involves business user citizen automation with a standalone automation 

architecture, it generally leads to higher “process efficiency.” In standalone automation, the 

business user is the owner of the process and completely understands the manual interventions 

required due to the subject matter expertise he/she has and can augment the machine effectively 

to improve the overall efficiency of the process. This was the main classification rule extracted 

from the tree as it classified most IPA implementations (45 IPA implementations). The general 

form of the rule is when the automation is hybrid and if automation is citizen development 

and the architecture is standalone, the process efficiency obtained in an IPA 

implementation is high. 

6.8.2 Rule 5: Partial Intelligence “Guide Me” 

As explained earlier, attended automation generally occurs when there is no specific pattern 

identified for the business process and can only be performed by humans. From the studied 176 

implementations for the outcome variable “process efficiency,” it is observed that the process 

efficiency is very low when automation is attended. This was the main classification rule extracted 

from the tree as it classified most IPA implementations (29 IPA implementations). The general 
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form of the rule is when automation is attended, then process efficiency obtained in an IPA 

implementation is low.  

6.8.3 Rule 6: Enterprise Automation 

From my earlier examination it was been observed that unattended automation leads to 

greater FTE reduction and higher process efficiency; however, when the systems are more 

complicated and processes involve interacting and integrating with other processes and systems 

with greater interoperability, it was observed that the top-down approach to IPA is more suitable. 

The interoperability of systems and processes involve more sophisticated orchestration, scalability, 

and security of automation, indicating that the top-down approach is essential as it is implemented 

across the enterprise, and the company needs to follow a strategic top-down approach to 

automation as it is a key technology for any incumbent digitization journey that “pushes the 

envelope” on process redesign, enabling further process reengineering and thus requiring the top-

down support of business owners at the C-level. From the studied 176 implementations for the 

outcome variable “process efficiency,” it is observed that process efficiency is very high in 

unattended automation of interoperable business processes when the automation approach is 

strategic at the C-level, i.e., top-down. This was the main classification rule extracted from the tree 

as it classified most IPA implementations (72 IPA implementations). The general form of the rule 

is when the automation is unattended and if business processes are highly interoperable 

and if the automation approach is top-down, then the process efficiency obtained in an 

IPA implementation is high. 
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6.8.4 Rule 7: Citizen Intelligence and Distributed Systems 

Distributed automation systems require integration between multiple departments and 

processes, and the user input in the form of citizen development becomes overly complex. From 

the 176 IPA implementations, when the outcome variable is “process efficiency” and when the 

automation is hybrid and involves business user citizen automation with a distributed architecture, 

process efficiency is low. The manual interventions in a hybrid automation for distributed systems 

are difficult to augment machines and do not effectively increase the efficiency of the process. This 

was the main classification rule extracted from the tree as it classified most IPA implementations 

(24 IPA implementations). The general form of the rule is when the automation is hybrid and 

if automation is citizen development and the architecture is distributed, the process 

efficiency obtained in an IPA implementation is low. 

6.8.5 Rule 8: Unsupervised Intelligence 

Unattended automation executes tasks of a process without any human involvement from 

the start to the end, where the tasks are mostly scheduled to start, or some event triggers the 

process to begin. Unattended automation manages manual tasks that involve a specific pattern 

or specific set of steps that are meant to be followed. From the studied 176 implementations 

for the outcome variable “process efficiency,” it is observed that FTE reduction is very high when 

the automation is unattended, and the process is not interoperable. This was the main classification 

rule extracted from the tree as it classified most IPA implementations (80 IPA implementations). 

The general form of the rule is when automation is unattended, the process efficiency 

obtained in an IPA implementation is high.  
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6.9 Examining Process Accuracy 

Process accuracy is an important metric or outcome of intelligent process automation. A 

good process efficiency may be achieved by automating as many steps as possible in process 

automation; however, when an IPA robot is run, it must be highly accurate. Accuracy is defined 

as the ability to complete the process steps perfectly with zero errors (i.e., accuracy is 100%) (Gami 

et al., 2019). 

The computational experiments are run again on the set of eleven predictors to generate 

decision rationale and theory development to derive most significant predictors impacting the 

process accuracy of intelligent process automation. 

 

Table 14: Computational experiments to select best representative tree for “accuracy”. 

Mechanisms to Detect 
Overfitting 

Three Key Heuristics to Choose the Best Representative 
Model 

No. Degree 
of 
pruning 

Minimum 
instances at 
leaves 

Communicability Consistency Accuracy 

Size of tree (# of 
leaves) 

Top-most 
attribute 

Prediction 
error 
(validation 
data) 

1 High 
(0.25) 

8 6 1. Top-down / 
bottom-up 
2. Automation 
type 

32.38% 

2 Medium 
(0.5) 

8 16 1. Top-down/ 
bottom-up 
2. Automation 
type 

30.11% 

3 Low 
(0.75) 

8 16 1. Top-down / 
bottom-up 
2. Automation 
type 

30.11% 
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4 High 
(0.25) 

10 6 1. Top-down / 
bottom-up 
2. Automation 
type 

31.81% 

5 Medium 
(0.5) 

10 13 1. Top-down / 
bottom-up 
2. Automation 
type 

30.11% 

6 Low 
(0.75) 

10 13 1. Top-down / 
bottom-up 
2. Automation 
type 

28.40% 

7 High 
(0.25) 

12 6 1. Top-down / 
bottom-up 
2. Automation 
type 

31.81% 

8 Medium 
(0.5) 

12 9 1. Top-down / 
bottom-up 
2. Automation 
type 

30.11% 

9 Low 
(0.75) 

12 9 1. Top-down / 
bottom-up 
2. Automation 
type 

28.40% 

10 High 
(0.25) 

14 6 1. Top-down / 
bottom-up 
2. Automation 
type 

31.81% 

11 Medium 
(0.5) 

14 9 1. Top-down / 
bottom-up 
2. Automation 
type 

30.11% 

12 Low 
(0.75) 

14 9 1. Top-down / 
bottom-up 
2. Automation 
type 

28.40% 
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13 High 
(0.25) 

16 6 1. Top-down / 
bottom-up 
2. Automation 
type 

31.81% 

14 Medium 
(0.5) 

16 9 1. Top-down / 
bottom-up 
2. Automation 
type 

30.11% 

15 Low 
(0.75) 

16 

 

9 1. Top-down / 
bottom-up 
2. Automation 
type 

28.40% 

 

6.9.1 Selecting the Best Representative Tree Process Accuracy 

The following best representative tree provides a rationale indicating best predictors for 

success of IPA implementation in terms of process accuracy as an outcome. 

The same data set of 176 intelligent process automation projects was used for 

computational experiments with an outcome variable “accuracy” representing success of 

intelligent process automation, as defined earlier for FTE reduction. Prediction accuracy of the 

obtained tree from the training set was assessed by applying the rationale to predict the outcome 

“accuracy” from unseen data in the testing set, which is a mutually disjoint set. 

Tree 15, from Table 14 depicted in Figure 7, is the best representative tree that has lowest 

prediction accuracy; it optimally satisfies the three key heuristics of low prediction error, 

parsimony, and consistency of the top-level variable. 
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Figure 7: Tree 3: Decision Journey for Accuracy 

 

From the top three variables, that is, “automation approach,” “top-down/bottom-up,” 

and “automation type” impact “accuracy.” The higher the accuracy, the higher the success of 

intelligent process automation. 

6.9.2 Robustness Check 

The best representative tree, i.e., tree 15 from Table 14, was obtained using 10-fold 

validation. To ensure the robustness of the result, a computational experiment was 

performed on the best representative tree using the percentage split test using 80%, which 

means that 80% of the 176 instances are trained and tested with reminder of 20% of 

instances. I find that both with 10-fold validation and 80% percentage split the best 

representative tree 15 yields same results. 
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6.10 Key Findings and Rules for Process Accuracy 

The tree representation for “accuracy” follows the same methodology as used for the first 

two outcome variables “FTE reduction” and “process efficiency” to yield context-specific rules 

that clearly articulate the emergent connections across levels to inform the IPA success factor of 

“accuracy” and therefore constitute part of the multi-level theory. All the 10 information attributes 

characterizing initiatives in conjunction with the “accuracy” decision are inputs to tree induction. 

Three rules were derived in this examination, as depicted in Figure 7: rules 1 and 3 are 

the top rules that predict the factors for high accuracy, resulting in successful IPA 

implementations, and rule 2 is the top rule that predicts the factor for low accuracy, resulting in 

lower success of IPA implementation. Rules are presented in Table 14. 

Table 15: Top context-specific rules discovered from decision tree induction (accuracy) 

No Rule Levels 
incorporated 

Decision 
(accuracy) 

Instances 
classified 

9 Empowering business user 
Automation approach = “bottom-up” 
Automation type = “hybrid” or “unattended”  
 

Governance 
Process 
Technology 
Complexity 

High 93 

10 Disenfranchise business user 
Automation approach = “top-down” and 
Automation type = “attended” or “hybrid” 

Governance 
Process 
Technology 
Complexity 

Low 41 

11 Enterprise automation 
Automation approach = “top-down” and 
Automation type = “unattended”  
 

Governance 
Process 
Technology 
Complexity 

High 25 
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6.10.1 Rule 9: Empowering Business User 

As discussed earlier, bottom-up automation is driven by people at the business process 

level (business owner) who are empowered to define automation, with an all-inclusive approach 

that results in successful automation of a process; this kind of bottom-up approach will also make 

FTEs more productive. From the 176 IPA implementations and when “accuracy” is considered 

as the outcome variable, due to the inclusive approach, the business owners are in full control of 

the process steps, and they either define all the steps of unattended automation or they augment 

the machine effectively with the steps that cannot be automated, thereby achieving high accuracy. 

This was the main classification rule extracted from the tree as it classified most IPA 

implementations (93 IPA implementations). The general form of the rule is when automation 

approach is bottom-up and automation type is either unattended or hybrid, the accuracy 

of IPA implementation obtained is higher. 

6.10.2 Rule 10: Disenfranchise Business Owner  

It is observed that when the automation approach is top-down, i.e., top management or a 

C-level takes a decision to automate the process, and the automation type is either attended or 

hybrid, i.e., involves human intervention, and the business user is not adequately involved, and the 

accuracy takes a hit. From the studied 176 implementations for the outcome variable “accuracy,” 

it is observed that accuracy is very low when the automation is top-down and involves the business 

user intervention without empowering them to take decisions. This was the main classification rule 

extracted from the tree as it classified most IPA implementations (41 IPA implementations). The 

general form of the rule is when automation approach is top-down and the automation type 

is either attended or hybrid, the accuracy of IPA implementation obtained is lower. 
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6.10.3 Rule 11: Enterprise Automation 

As explained earlier, when decisions are made top-down, there is an alignment between 

departments within the enterprise toward the automation goal, and especially when the process 

across the enterprise is understood well and automated in such a way that there is no human 

intervention, the accuracy of the IPA implementation is high. This was the main classification rule 

extracted from the tree as it classified most IPA implementations (25 IPA implementations). The 

general form of the rule is when the automation approach is top-down and the automation 

type is unattended, then the accuracy of IPA implementation obtained is higher. 

6.11 Conclusion 

This chapter details the process of decision tree induction and how it is useful in deriving 

insights and patterns and explains data partitioning to identify combinations of information 

attributes associated with similar outcomes using partitioning and data validation using the C4.5 

algorithm using the WEKA machine learning platform. It also explains the need for computational 

experiments to prune decision trees with varying confidence levels and number of tree instances, 

which helps in the reduction of the tree size by reducing the part of tree that has little power to 

classify data and reducing the noise or overfitting. It also defines the three key heuristics (high 

predictive accuracy, communicability or high parsimony, and high reliability), which helps identify 

the best representative tree. As a next step, the analysis for three outcomes of abduction in stage 

1 of the research methodology, namely, FTE reduction, process efficiency, and process accuracy, 

is explained through induction of decision trees, selecting the best representative tree, and the rules 

obtained. Then, eleven rules are derived as a result of decision tree induction. 
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The next chapter will explain the process of deriving one composite index IPA success 

through a principal component analysis formative construct and by performing decision tree 

induction to obtain the best representative tree for IPA success and the rules derived. 
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7 COMPOSITE MEASURE OF IPA SUCCESS 

n this chapter, I explain the process of obtaining a composite measure of IPA Success 

derived from the three measures of outcome obtained in the previous chapter. This 

measure, which is derived from principal component analysis (PCA), allows for a more 

holistic view of success, and can provide a more accurate representation of the critical success 

factors of intelligent process automation (IPA) implementation. The measure is also utilized for 

the decision tree induction to frame rules for critical success factors of IPA implementation. 

7.1 Formative vs Reflective Constructs 

From the earlier examination outlined in Chapter 6, I observed that I have three different 

measures of outcome, that is, Full-time Equivalent (FTE) Reduction, Process Efficiency, and 

Accuracy. However, the objective of this research paper was both to study the individual outcomes 

of IPA Success and to measure a single-index measure called IPA Success. To achieve this single-

index IPA Success, one among formative or reflective construct as a latent variable was taken into 

account. From the literature review, it was observed that most of the researchers lean toward 

focusing more on the structural model rather than measurement models; that is, by fully 

considering the relationship between measures and their latent constructs (Jarvis et al., 2003), such 

errors in measurement models will lead to measurement errors and in turn effect the structural 

model (MacKenzie et al., 2005). However, some researchers considered all constructs alike, 

regardless of whether the construct is reflective or formative (Chin, 1998), and such 

misspecifications of constructs as formative or reflective will lead to Type 1 and Type 2 errors. 

Now, let us look at what these reflective and formative constructs are and the relevance to this 

study of identifying success factors of IPA implementation and defining a success indication of IP 

Success. 

I 
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7.1.1 Reflective Construct 

According to (Jarvis et al., 2003), a reflective construct is the one where changes in 

underlying latent constructs are hypothesized to cause changes in the indicative measures, that is, 

when measures are used to examine the underlying construct that is not observable and is referred 

to as reflective indicator or effect indicator (Edwards and Bagozzi, 2000). 

 

 

Figure 8: Representation of reflective construct 

 

7.1.2 Formative Construct 

In simple terms, the formative constructs are a composite of multiple measures 

(MacCallum and Browne, 1993), which means variations in formative construct effect changes in 

the underlying constructs. My research paper focuses on the success factors of IPA through a 

single measure or index known as IPA Success, which is operationalized by three measures: FTE 
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Reduction, Process Efficiency, and Accuracy. Each of them captures differing aspects of IPA 

Success, which results in formative construct (Petter et al., 2007). 

 

 

Figure 9: Representation of formative construct 

 

I modeled my focal variable as formative construct since it meets the criteria of coverage 

of construct domain and lack of covariance among indicators (Diamantopoulos and Winklhofer, 

2001). First, each item makes unique contributions to the constructs and can be viewed as 

“forming” them: for example, gross domestic product, which measures country's economic 

performance considering the value of all goods and services produced within its borders. Second, 

an increase in any one item does not necessarily increase others. For example, an increase in sales 

growth does not necessarily imply an increase in profitability. Finally, items comprising each 

construct are distinct and not interchangeable. 

A more comprehensive measure of the construct to identify the critical success factors of 

IPA is postulated in this study, which is very context-specific deriving from multiple dimensions 
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represented by three measures of outcomes, and formative construct is the best way to achieve the 

comprehensive measure “IPA Success.” 

 

7.2 Principal Component Analysis 

Formative construct retains the unique variance in each measure as against the three 

outcome measures discussed in Chapter 6; hence, I use PCA to derive the IPA Success Index. This 

method helps reduce the dimensionality of the measures (Chin, 1995). 

PCA is a statistical technique used to identify patterns in data. It is a dimensionally reduced 

method that is used to transform many variables into a smaller number of uncorrelated variables, 

known as principal components. 

PCA works by identifying the direction of maximum variance in the data and then 

projecting the data onto this direction, creating a new variable (i.e., principal component) that 

captures as much of the variance in the original data as possible. This process is then repeated for 

the remaining directions of maximum variance, creating additional principal components. 

The resulting principal components are linear combinations of the original variables and 

are orthogonal to each other (i.e., uncorrelated). The first principal component captures the most 

variation in the data, with each subsequent component capturing progressively less. The number 

of principal components retained is determined by the amount of variance that needs to be 

explained, as well as the interpretability of the components. 
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7.3 Robustness Check 

The values obtained from the IPA Success Index using PCA were compared with those in 

structural equation modelling (SEM) using smart PLS, and the values with both methods are 

identical; hence, the robustness of the result is established. 

7.4 Data Analysis for Outcome Predictor IPA Success 

IPA Success is one of the key success indicators of IPA, and it is formative construct 

derived from PCA of three outcome variables discussed in Chapter 6, namely, FTE Reduction, 

Process Efficiency, and Accuracy. The IPA Success will act as one single index for the success of 

IPA. The values of the IPA Success Index obtained through PCA is divided into three sets in 

ascending order of success index, with first being 34% (high), next 33% (medium), and remaining 

33% (low). 

 The data set for IPA Success undergoes the same process of computational experiments, 

pruning through 10-fold validation with the same set of 16 predictors (governance level, process 

level, technology level, and complexity level) as discussed earlier in Chapter 6 to identify best 

representative tree and generate decision rationale, thereby aiding the development of theory to 

identify critical factors effecting IPA Success. Computational experiments for IPA Success are 

depicted in Table 15. 

 

Table 16: Computational experiments to select best representative tree for “IPA 

Success.” 

Mechanisms to Detect 
Overfitting 

Three Key Heuristics to Choose the Best Representative 
Model 

No. COMMUNICABILITY CONSISTENCY ACCURACY 
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Degree 
of 
pruning 

Minimum 
instances at 
leaves 

Size of tree (# of 
leaves) 

Topmost 
Attribute 

Prediction 
Error 
(Validation 
Data) 

1 High 
(0.25) 

8 4 1. Automation 
Type 

38.00% 

2 Medium 
(0.5) 

8 9 1. Automation 
Type 
2. Complexity 

38.63% 

3 Low 
(0.75) 

8 12 1. Automation 
Type 
2. Complexity 

39.7% 

4 High 
(0.25) 

10 4 1. Automation 
Type 

39.70% 

5 Medium 
(0.5) 

10 7 1. Automation 
Type 
2. Complexity 

41.40% 

6 Low 
(0.75) 

10 10 1. Automation 
Type 
2. Complexity 

41% 

7 High 
(0.25) 

12 4 1. Automation 
Type 

25% 

8 Medium 
(0.5) 

12 7 1. Automation 
Type 
2. Complexity 

42% 

9 Low 
(0.75) 

12 10 1. Automation 
Type 
2. Complexity 

41.4% 

10 High 
(0.25) 

14 4 1. Automation 
Type 

40% 

11 Medium 
(0.5) 

14 7 1. Automation 
Type 
2. Complexity 

42% 

12 Low 
(0.75) 

14 10 1. Automation 
Type 
2. Complexity 

41.4% 

13 High 
(0.25) 

16 4 1. Automation 
Type 

40.3% 

14 16 7 42% 
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Medium 
(0.5) 

1. Automation 
Type 
2. Complexity 

15 Low 
(0.75) 

16 7 1. Automation 
Type 
2. Complexity 

41.4% 

 

7.4.1 Selecting the Best Representative Tree “IPA Success” 

The best representative tree shown in Figure 10 provides a rationale indicating best 

predictors for the success of IPA implementation in terms of overall IPA Success as an outcome. 

The same data set of 176 IPA projects is used for computational experiments, this time 

with an outcome variable “IPA Success” representing the success of intelligent process 

automation. 

Prediction accuracy of obtained tree from training set is assessed by applying the rationale 

to predict the outcome “IPA Success,” from unseen data in the testing set, which is mutually 

disjoint set.  

Table 16Tree 3 from Table 16 depicted in Figure 10 is the best representative tree, which 

optimally satisfies the three key heuristics of low prediction error, parsimony, and consistency of 

top-level variable. 
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Figure 10: Tree Four: Decision Journey for IPA Success 

The higher the impact of “IPA Success”, as shown in the top variables “Automation Type” 

and “Complexity” in Figure 10, the higher the success of IPA. 

7.4.2 Robustness Check 

The best representative tree, that is, Tree 3 from  

Table 16 was obtained through cross-validation using 10-folds, to ensure the robustness 

of the result. A computational experiment on the best representative tree was also performed using 

the percentage split test using 80%, which means that 80% of the 176 instances are trained and 

tested with reminder 20% of instances. I find that both with 10-fold validation and 80% split the 

best representative Tree 5 yields the same results. 
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7.5 Key Findings & Rules for IPA Success 

The tree representation for “IPA Success” follows the same methodology as I have 

discussed in Chapter 6 to yield context-specific rules that clearly articulate the emergent 

connections across levels to inform the IPA Success Factor “IPA Success” question and therefore 

constitute part of my multilevel theory. All the ten information attributes characterizing initiatives 

in conjunction with the “IPA Success” decision are inputs to tree induction. 

There are five rules derived in this study as depicted in Figure 3: Rules 1 and 4 are the rules 

that predict the factors for high “IPA Success” resulting in successful IPA implementations, Rule 

2 predicts the factors of medium “IPA Success”, and rules 2 and 5 are the rules that predict the 

factors for low “IPA Success.” Rules are presented in Table 16. 

 

Table 17: Top context-specific rules discovered from decision tree induction “IPA 

Success.” 

No. Rule Levels 
Incorporated 

Decision 
(IPA 
Success) 

Instances 
Classified 

12 Unsupervised Intelligence 
Automation Type =“Unattended”  
 

Governance 
Process 
Technology 
Complexity 

High 70 

13 Average Intelligence “Tackling 
Complexity” 
Automation Type =“hybrid” and 
Complexity = “Medium” and 
Coding Feature =“low Coding” or “Average 
Coding” 
  

Governance 
Process 
Technology 
Complexity 

Medium 41 

14 Partial Intelligence “Guide Me” 
Automation Type =“Attended”  
 

Governance 
Process 
Technology 
Complexity 

Low 29 

15 Empowering Business Owner 
Automation Type =“hybrid” and 
Complexity = “High” and 

Governance 
Process 
Technology 

High 16 
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Automation Approach = “Bottom-Up” 
 
 

Complexity 

16 Disenfranchise Business Owner 
Automation Type =“hybrid” and 
Complexity = “High” and 
Automation Approach = “Top-Down” 
 

Governance 
Process 
Technology 
Complexity 

Low 12 

 

7.5.1 Rule 12—Unsupervised Intelligence 

Unattended automation executes tasks of a process without any human involvement from 

start to end. They are mostly scheduled to start the process or when there is some event that 

triggers the process to begin. They run in the background and pass their product to either humans 

or some other machine. Unattended automation manages manual tasks that involves specific 

pattern or specific set of steps that are meant to be followed. From the studied 176 

implementations for the outcome variable “IPA Success,” it is observed that the IPA Success is 

very high when the automation is unattended. This was the main classification rule extracted from 

the tree as it is classified in most IPA implementations (70 IPA implementations). The general 

form of the rule is when automation is unattended, then the IPA Success obtained is high.  

7.5.2 Rule 13—Average Intelligence “Tackling Complexity” 

This rule specifically illustrates that when the automation is in hybrid mode, humans 

augment machines to execute the process. When the coding is either average or low, the extent of 

automation is moderate or medium for the 176 IPA implementations studied. This was the main 

classification rule extracted from the tree as it is classified in most IPA implementations (41 IPA 

implementations). The general form of the rule is even when the coding is either low or average 
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and the business process is of moderate complexity and still needs humans to augment 

automation, then the IPA Success obtained is moderate. 

7.5.3 Rule 14—Partial Intelligence “Guide Me” 

Attended automation generally collaborates with humans, handling certain tasks within 

longer, more complex workloads or processes that cannot be fully automated from start to finish. 

Attended automation occurs when there is no specific pattern identified for business process and 

can only be performed by humans. From the studied 176 implementations for the outcome 

variable “IPA Success,” it is observed that the IPA Success is very low when the automation is 

attended. This was the main classification rule extracted from the tree as it is classified most IPA 

implementations (29 IPA implementations). The general form of the rule is when automation 

attended, the FTE Reduction obtained in an IPA implementation is low.  

7.5.4 Rule 15—Empowering Business Owner 

When automation involves some user input, hybrid automation is recommended. I also 

understand bottom-up automation as something that is driven by people at the business process 

level who are empowered to give ideas as they have the complete knowledge of domain and the 

gaps to be automated, with an all-inclusive approach that results in successful automation of a 

process. In the context of this specific rule, hybrid automation involves humans or business 

owners who drive the automation through bottom-up approach; specifically in the complex 

processes, it can bridge the gaps where machine cannot automate and hence lead to high IPA 

Success. 

From the 176 IPA implementations analyzed in this study, I considered outcome variable 

as “IPA Success” and found that when the automation type is hybrid, that is, combination of 
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attended and unattended, when the business process owners are involved in decision making 

of automation, and when process complexity is high, the inclusive bottom-up approach IPA 

Success is high. This was the main classification rule extracted from the tree as it is classified in 

most IPA implementations (16 IPA implementations). The general form of the rule is the IPA 

Success obtained is high when automation is hybrid and when dealing with complex 

process, and if driven by bottom-up approach.  

7.5.5 Rule 16—Disenfranchise Business Owner 

As in the case of rule 4, hybrid automation takes place when the process needs to be 

augmented with human intelligence, where specific inputs from human are required to make the 

automation of the process successful. In this specific scenario of Rule 5 where the complexity of 

the process is high, it requires a human intervention. These human interventions should be handled 

by business users with complete domain knowledge of the process being automated to fill the gaps 

that machine is not able to achieve. In the scenario of complex process, the human intervention is 

through top-down approach, which means that when someone who is not familiar with the process 

(not a business process owner) and is positioned higher in the hierarchy is involved, then the 

success of IPA is low. 

From the 176 IPA implementations analyzed in this study, I considered outcome variable 

as “IPA Success” and found that when the automation type is hybrid, that is, combination of 

attended and unattended, when the business process owners are not involved in decision 

making of automation, and when process complexity is high, the non-inclusive bottom-up 

approach IPA Success is low. This was the main classification rule extracted from the tree as it is 

classified in most IPA implementations (12 IPA implementations). The general form of the rule is 

the IPA Success obtained is high when automation is hybrid and when dealing with 

complex process, and if driven by top-down approach. 
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7.6 Conclusion 

In this chapter thus far, I explain the differences between the formative and reflective 

constructs and a rationale behind using constructive construct using the PCA. Through PCA, I 

obtain the comprehensive construct that measures the IPA Success for the sample of 176 live IPA 

implementations. Once the single-outcome measure IPA Success is obtained, the same decision 

tree induction process is performed through the analysis of the data and a best representative tree 

is obtained for the composite measure. From the best representative tree, I derive the critical 

success factors and five context-specific rules impacting the success or failure of the IPA 

implementation. In the next chapter, I develop the proposition by comparing and contrasting 16 

rules derived so far. 

  



Critical Success Factors Impacting Intelligent Process Automation 

Page 110 of 172 

8 ABDUCTING AWAY TO DEVELOP INSIGHTS AND 

PROPOSITIONS 

n this chapter, I first compare and contrast the rules derived from decision trees for IPA 

Success, then I represent the rules separately for high and low IPA Success. I then abduct 

away from these rules to form the propositions. 

8.1 Compare and Contrast Rules from Decision Trees 

In Chapter 6, through the decision tree induction, I examine the three measures of 

outcome (FTE Reduction, Process Efficiency, and Process Accuracy), and in Chapter 7, I obtain 

a single measure of outcome IPA Success, then I compare and contrast the rules obtained from 

the examination of all four outcomes as part analysis one in Chapter 6 and analysis two in Chapter 

7 to identify the insights and propositions for my research questions on the critical success factors 

of Intelligent Process automation (IPA) Success. 

Table 18: Compare and Contrast Rules Across IPA Outcomes 

 Analysis 1 Analysis 2 

Automation 
Success 

FTE Reduction Process 
Efficiency 

Accuracy IPA Success 

High Unsupervised Intelligence 
Automation Type = 
“Unattended” 

Unsupervised 
Intelligence 
Automation 
Type = 
“Unattended” 

 Unsupervised Intelligence 
Automation Type = 
“Unattended”  

Empowering Business User 
Automation Type = 
“Hybrid” and 
Automation Approach = 
“Bottom-up” and 
Complexity = “High” or 
“Medium” or “Low” 

 Empowering 
Business User 
Automation 
Approach = 
“Bottom-Up” 
Automation 
Type = 
“Hybrid” or 
“Unattended”  
 

Empowering Business 
Owner 
Automation Type = 
“hybrid” and 
Complexity = “High” and 
Automation Approach = 
“Bottom-Up” 

 Citizen 
Intelligence and 

  

I 
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Standalone 
Systems 
Automation 
Type =“Hybrid” 
and 
Automation 
Execution = 
“Citizen “and 
IPA Architecture 
= “Stand Alone” 

 Enterprise 
Automation 
Automation 
Type = 
“Unattended” 
and 
Interoperability 
= “Yes” and 
 Automation 
Approach = 
“Top-Down” 

Enterprise 
Automation 
Automation 
Approach = 
“Top-Down” 
and 
Automation 
Type = 
“Unattended”  

 

     
 
 

Low Partial Intelligence “Guide 
Me” 
Automation Type = 
“Attended” 

Partial 
Intelligence 
“Guide Me”" 
Automation 
Type = 
“Attended” 

 Partial Intelligence “Guide 
Me” 
Automation Type = 
“Attended” 

  Disenfranchise 
Business User 
Automation 
Approach = 
“Top-Down” 
and 
Automation 
Type = 
“Attended” or 
“Hybrid” 

Disenfranchise Business 
Owner 
Automation Type = 
“hybrid” and 
Complexity = “High” and 
Automation Approach = 
“Top-Down” 
 

 Citizen 
Intelligence & 
Distributed 
Systems 
Automation 
Type = “Hybrid” 
and 
Automation 
Execution = 
“Citizen “and 
IPA Architecture 
= “Distributed” 

  

Medium    Average Intelligence 
"Tackling Complexity" 
Automation Type = 
“Hybrid” and 
Complexity = “Medium” 
and 
Coding Feature = “Low 
Coding” or “Average 
Coding” 



Critical Success Factors Impacting Intelligent Process Automation 

Page 112 of 172 

 

8.2 Insights 

From the context-specific rules induced through decision trees, I now abduct away to 

present the insights based on the compare-and-contrast table represented in Table 18. These 

insights form the basis for making insightful decisions for IPA practitioners. Following are the 

insights on critical success factors impacting the IPA implementation. 

First, I considered the entire repertoire of context-specific rules and the theoretical levels 

and predictors they encompass. As seen in Table 11, Table 13, Table 15, and Table 17, for all four 

outcomes of IPA Success, I observed that there are some top-ranked predictors that results in high 

IPA implementation success; abstracting away from this observation, I present the first insight as 

shown below.  

Table 19 : Observation and Insight 1. 

Observation Unattended automation type design is a predictor for the top-ranked 
rule that results in high IPA implementation success in all four 
outcomes (i.e., FTE Reduction, Process Efficiency, Process Accuracy, 
and IPA Success) 

Insight S1: Unattended automation-type design is a necessary predictor for the top-
ranked rule that results in high IPA implementation success for all outcomes. 

 

Second, I observe that there are some top-ranked predictors that result in low IPA 

implementation success; abstracting away from this observation, I present the second insight as 

shown below. 

 

Table 20: Observation and Insight 2. 

Observation Attended automation-type design is a predictor for the top-ranked rule 
that results in low IPA implementation success in all four outcomes 
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(i.e., FTE Reduction, Process Efficiency, Process Accuracy, and IPA 
Success) 

Insight S2: Attended automation-type design is a necessary predictor for the top-
ranked rule that results in low IPA implementation success for all outcomes. 

 

Third, I observe that there is a second-ranked predictor that results in high IPA 

implementation success for three out of four outcomes; abstracting away from this observation, I 

present the third insight as shown below. 

Table 21: Observation and Insight 3. 

Observation Bottom-Up automation approach is a predictor for the second-ranked 
rule that results in high IPA implementation success for three outcomes 
(i.e., FTE Reduction, Process Accuracy, and IPA Success) 

Insight S3: Bottom-Up automation approach is a necessary predictor for the second-
ranked rule that results in high IPA implementation success for all outcomes 
except Process Efficiency. 

 

Next, I observe that a specific predictor Top-Down, with a specific combination resulting 

in high IPA implementation success for two out of four outcomes; abstracting away from this 

observation, I present the fourth insight as shown below.  

 

Table 22: Observation and Insight 4. 

Observation Top-Down automation approach is a predictor that results in high IPA 
implementation success for two out of the four outcomes (i.e., Process 
Accuracy and Process Efficiency), when combined with the 
interoperable processes and Unattended automation type 

Insight S4: For interoperable and unattended processes, Top-Down automation 
approach is an important predictor of high IPA implementation success for 
process accuracy and efficiency. 

 

Next, I observe that some predictor combinations impact high IPA implementation 

success for a single outcome and are not present in any of the other outcomes. Citizen execution 
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in standalone architecture results in high IPA implementation success for the outcome process 

efficiency; abstracting away from this observation, I present the fifth insight as shown below.  

Table 23: Observation and Insight 5. 

Observation Citizen automation execution is a predictor that results in high process 
efficiency IPA outcome, when the technology architecture is standalone 
and automation type is Hybrid. Citizen automation predictor is not 
present in other three IPA implementation success outcomes (i.e., FTE 
Reduction, Process Accuracy, and IPA Success) 

Insight S5: Citizen automation execution is an important predictor that results in 
high process efficiency when combined with standalone architecture and 
Hybrid automation; it is not present in any of the other IPA implementation 
success outcomes. 

 

Next, I observe that some predictor combinations impact low IPA implementation success 

for a single outcome and is not present in any of the other outcomes. Citizen execution in 

distributed architecture results in high IPA implementation success for the outcome process 

efficiency; abstracting away from this observation, I present the sixth insight as shown below.  

 

Table 24: Observation and Insight 6. 

Observation Citizen automation execution is an important predictor that results in 
low process efficiency IPA outcome; when the technology architecture 
is distributed, and automation type is Hybrid. Citizen automation 
predictor is not present in other three IPA Implementation success 
outcomes (i.e., FTE Reduction, Process Accuracy, and IPA success) 

Insight S6: Citizen automation execution is an important predictor that results in low 
process efficiency when combined with distributed architecture and Hybrid 
automation; it is not present in any other IPA implementation success 
outcomes. 

 

Through the process of abducting away, I arrive at insights that offer immense value to 

the practitioners implementing IPA in the organizations, and I look at the rules derived from 

decision trees and their combinations and impact across all the outcomes of IPA implementation 

to make these recommendations on the insights. 
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8.3 Propositions 

Building on the context-specific rules induced through decision tree induction, I now move 

forward to generic explanations facilitated by abduction. For example, when discussing the hiring 

of employees in firms, (Pentland, 1999) argued that an observation enables storytelling from the 

point of view of a specific stakeholder. Abducting away from a specific new employee’s 

perspective, a fabula can serve as the basis for generic propositions which reveal the underlying 

structure to a set of events and their interrelationships in terms of who did what and how people 

in general are hired. 

Along similar lines, in this study, I make observations relying on the context-specific rules 

extracted from the best representative tree and the insights derived so far. In this phase of theory 

development, I abduct away from these specific observations to uncover the underlying structure 

of interrelationships of predictors across levels.  

 

 

Figure 11: Compare and Contrast Rules for High IPA Success 
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Figure 12: Compare and Contrast Rules for Low IPA Success 

 

We articulate the individual rules or critical success factors impacting the high or low 

success of one or combination of IPA outcomes (FTE Reduction, Process Efficiency, Process 

Accuracy, and Overall IPA Success) as presented in Table 18, and Figure 12 and ,Figure 11. I 

articulate six generic propositions for critical success factors impacting the IPA Success, which 

broaden the generalizability of our research.  

First, I considered the entire repertoire of context-specific rules, Insights, the theoretical 

levels, and predictors they encompass. As seen in Table 11, Table 13, Table 15, and Table 17, for 

all four outcomes of IPA Success, I observe several instances of rules with predictors across all 

theoretical levels. Abstracting away from this observation, I offer our first proposition as shown 

in Table 25. 

 

Table 25: Observation and Theoretical Proposition 1. 

Observation Predictors informing success of IPA implementations lie at 
Governance, Process, Technology, and Complexity levels 
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Proposition P1: Predictors informing success of IPA Implementation are present across 
multiple levels of analysis 

 

Second, I compared and contrasted context-specific rules that collectively explain the 

predictors or critical factors impacting high and low IPA Success in Figure 11 and Figure 12. I 

observed several rules explaining critical factors of high and low IPA success with various 

predictors. Abducting away from these two observations, I develop our second proposition as 

shown in Table 26 

 

Table 26: Observation and Theoretical Proposition 2. 

Observation Predictors informing high success of IPA implementation are 
Unattended Automation, Bottom-Up Approach, Interoperable Systems, 
Citizen Execution, and Standalone Architecture. 
  
Predictors informing low success of IPA implementation are Attended 
Automation, Top-Down Approach, and Distributed Architecture 

Proposition P2: The combination of predictors informing high success of IPA 
implementation is different from that of predictors informing low success of 
IPA implementation 

 

Third, I scrutinized the interrelationships among predictors across various levels. I 

observed that only certain predictors are relevant for explaining IPA success based on the values 

of other predictors. Abducting away from these observations, I develop our third proposition in 

Table 27. 

Table 27: Observation and Theoretical Proposition 3 

Observation Citizen Automation Execution (Governance Level) is a significant 
predictor informing high success of IPA implementation only when the 
technology architecture (Technology Level) is Standalone and 
automation type (Complexity Level) is Hybrid.  
  
Citizen Automation Execution (Governance Level) is a significant 
predictor informing Low Success of IPA Implementation only when the 
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technology architecture (Technology Level) is Distributed and 
Automation Type (Complexity Level) is Hybrid.  

Proposition P3: For predictors informing high or low success of IPA implementations, the 
predictors at one level influence the inclusion or exclusion of predictors at 
other levels 

 

 

Next, considering multiple contingencies, a few predictors could have a strong, dominating 

influence and almost operate in isolation. Alternatively, multiple contingencies could also combine 

to have a reinforcing influence on outcomes. I made two observations along these lines. Abducting 

away from these observations, I uncover two types of underlying interrelationships between 

predictors at multiple levels and I develop the fourth proposition in Table 28. 

 

Table 28: Observation and Theoretical Proposition 4 

Observation For success in IPA Implementation, Automation Type is a dominant 
predictor. 
  
For success in IPA Implementation, Automation Approach, 
Automation Execution, Process Complexity, IPA Architecture are 
reinforcing predictors 

Proposition P4: Multiple predictors informing the success of IPA implementation may 
interact in such a way that either a few predictors dominate or reinforce in 
their combined influence on IPA Success. 

 

Next, I have examined four measures of the IPA Success (FTE Reduction, Process 

Efficiency, Process Accuracy, and Overall IPA Success), and I scrutinize the one or combination 

of predictors on overall effect on all the four measures of IPA Success. I see that one of the most 

dominating combinations of predictors of the fourth and significant measure (Overall IPA 

Success) may or may not impact the other three outcome measures of IPA Success. Abducting 

away from these observations, I develop our fifth proposition in Table 29. 
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Table 29: Observation and Theoretical Proposition 5 

Observation Unattended automation is the single dominating predictor informing 
the outcome measures Overall IPA Success, FTE Reduction, and 
Process Efficiency except Process Accuracy. 
  
The combination predictors of Hybrid automation and Bottom-Up 
automation approach informing the Overall IPA Success, FTE 
Reduction, and Process Accuracy except Process Efficiency 

Proposition P5: One or combination of predictors informing Overall IPA Success may or 
may not impact other specific outcomes of IPA success 

 

Finally, I see that some predictors informing the successful IPA implementation outcome, 

for example, Bottom-Up automation approach, the opposite, that is, Top-Down automation 

approach, do not necessarily imply that they will lead to failure of IPA implementation outcome; 

abducting away from these observations, I develop the fifth proposition shown in Table 29. 

  

Table 30: Observation and Theoretical Proposition 6 

Observation Bottom-Up Automation approach leads to successful IPA implementation 
outcome when Automation Type is Hybrid and complexity is high; this does 
not mean that Top-Down leads to Unsuccessful IPA implementation 
outcome. 
 
Top-Down Automation approach leads to successful IPA 
implementation outcome, when the business processes are 
Interoperable and Automation Type is Unattended 

Proposition P6: If the presence of a predictor is necessary for successful IPA 
implementation outcome, the opposite does not imply that I will lead to 
failure. 

 

In summary, by making systematic observations, our abductive approach facilitates the 

journey from context-specific rules to generic explanations in the form of propositions. In doing 

so, I build on prior exemplars of theory building with multiple contingencies and leverage multi-

level theorizing to shed new light on critical success factors of IPA implementation. 
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Thus far in this chapter, I focused on abducting away from the rules derived in Chapters 

6 and 7 to develop six insights and six meta propositions for the success of IPA implementations. 

In the next chapter, I validate the rules and propositions through econometrics establishing the 

extent of effect of each predictor and causality. 
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9 VALIDATION ANALYSIS THROUGH ECONOMETRIC 

METHODOLOGY 

9.1 Introduction 

n the previous chapters, we have discussed how a configurational view of causality has 

been established using decision tree induction. The configurational view of causality refers 

to a perspective that takes into account multiple configurations or combinations of causal 

factors that can lead to an outcome or result. It relies on the notion of complex causality using 

conjunctural, equifinal, and asymmetric relationships (El Sawy et al., 2010). 

Decision trees are useful tools for representing and analyzing these configurations. They 

are graphical representations of a set of decisions and their possible consequences (equifinality). 

They consist of nodes that represent decision points, branches that represent possible choices, and 

leaves that represent outcomes. For example, the automation type node for successful 

implementation of intelligent process automation (IPA) could have three branches: unattended, 

hybrid, and attended. Decision trees can be used to analyze complex systems and identify the 

combinations of causal factors that result in a particular outcome. 

In the context of configurational causality, decision trees can be used to identify different 

configurations of causal factors resulting in an outcome. For example, in Chapter 6 and Chapter 

7, the four measures of outcome (full-time equivalent (FTE) reduction, process efficiency, process 

accuracy, and overall IPA success) for successful IPA implementation are discussed. The causal 

factors that contribute to the outcomes are as follows: bottom-up automation approach, 

unattended automation type, citizen automation execution, and standalone architecture. 

I 
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The specific combinations of factors that are most strongly associated with the outcome 

of an IPA implementation can be identified by exploring different configurations of these causal 

factors in the decision tree. 

This chapter focuses on establishing the causality and how each predictor is associated 

with the potential outcome of successful IPA implementation. 

9.2 Purpose 

This study aims to validate the outcomes obtained through configurational causality using 

decision trees with the potential outcomes view of causality (Mithas et al., 2022). The potential 

outcomes view of causality is a framework for understanding the causality commonly used in 

statistics and social sciences. At the heart of this framework is the concept of a “potential 

outcome,” which refers to the outcome that would be achieved if a particular treatment or 

intervention was administered to an individual; in our case, it is IPA implementations in banking 

and financial services. 

The average treatment effect (ATE) is a measure of the overall impact of a treatment on a 

population. It is calculated by calculating the difference between the average outcome for the 

treated group and the average outcome for the control group, which can be mathematically 

expressed as follows: 

𝐴𝑇𝐸 = 𝐸[𝑌(1)] − 𝐸[𝑌(0)] 

where Y (1) is the potential outcome under treatment, Y (0) is the potential outcome under control, 

and E [] represents the expected value. In this study, the before and after analysis is used where Y 

(1) is the potential outcome before IPA automation and Y (0) is the potential outcome after 

automation. The ATE is useful because it provides an approach to quantify the overall impact of 

a treatment on a population. 
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Overall, the potential outcomes view of causality using the ATE provides a framework for 

understanding the causal impact of treatments or interventions on populations. By comparing the 

outcomes between treated and untreated individuals, researchers can determine the overall impact 

of a treatment and make informed decisions about its implementation. In this study, the ordinary 

least square (OLS) method of linear regression is used to quantify the effect on the outcomes of 

IPA based on the configurations derived from decision tree induction. 

9.3 Data and Variables 

The input to the econometric model is the data of 176 live IPA implementations used for 

decision tree induction and the results obtained based on the top predictors indicating the success 

of IPA implementation. These data are prepared in two time periods, i.e., before IPA 

implementation and after IPA implementation (before and after study), determined by distinct 

IPA implementation. A total of 352 business process time period observations are considered, of 

which 176 are before automation and 176 are after automation. 

Two dependent variables, namely FTE reduction and process efficiency, and three 

independent variables—automation type, automation approach, and automation execution— are 

examined in this study based on decision tree analysis discussed in Chapter 6 and Chapter 7. The 

remaining eight variables are treated as control variables. Chapter 5 (measures) provides detailed 

explanations of all thirteen variables. Table 30 presents the definitions and assigned values for 

performing the before–after analysis using ordinary least squares (OLS). 
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Table 31: Description and Measurement of Variables 

Variable Description 

Dependent variables  

FTE (full-time 
equivalent) reduction 

FTE reduction, or full-time equivalent reduction, is a measure of 
the number of full-time employees who can be replaced by 
automation or other efficiency measures. 

Process efficiency Process efficiency is being able to take less time to do things or 
being able to do more within the same amount of time. 

Independent variables  

Automation type Automation type depends on the extent of the manual 
intervention when a process is automated. The base variable in 
this study is attended=0, hybrid=1, and unattended=2 

Automation approach Automation approach is defined in two ways: top-down (base 
variable = 0) and bottom-up (base variable=1) 

Automation execution Those executing the automation to run the process form the part 
of automation execution. In general, the execution of the process 
can be triggered in two ways: citizen automation (base 
variable=0) and technology-driven automation (base variable=1) 

Control variables  

Build vs buy Decision to build or buy the solution to execute IPA: base 
variable=0, both build and buy=1, and only buy=2 

Domain category Domain category is a categorical variable, simply a string 
determining which domain the process belongs to, i.e., asset 
management, F&A, etc. 

Key processes These are specific processes under the domains represented as a 
categorical variable 

Process complexity The complexity of the business process being automated: base 
variable low=0, medium=1, and high=2 

Architecture This represents how the IPA architecture is defined and how it 
affects the implementation: base variable distributed 
architecture=0 and standalone architecture=1 

Artificial intelligence This variable is to see the effect of AI on IPA implementation: 
base variable no=0 and yes=1 

Interoperability This refers to the ability of different RPA systems to work 
together seamlessly, allowing them to share data and processes 
across different platforms: base variable no=0 and yes=1 

Coding feature This explains how complex was the coding process: base variable 
low=0, medium=1, and high=2 
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9.4 Econometric Specification 

To analyze these data, a before–after analysis is conducted using the OLS method (Hayes 

and Matthes, 2009). OLS is used in linear regression analysis to evaluate the parameters of a linear 

equation that establishes the relationship between a dependent variable and one or more 

independent variables. In this study, FTE reduction and process efficiency are considered 

dependent variables, whereas automation type, automation approach, and automation execution 

are considered independent variables. OLS minimizes the sum of the squared differences between 

the observed values of the dependent variable and the values predicted by the linear equation. It 

generates estimates for the coefficients (slopes) and the intercept of the linear equation that 

provides the best fit to the data. 

To apply OLS, one must first specify a linear model that describes the relationship between 

the dependent variable and the independent variables, which can be written as follows: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑘𝑋𝑘 + 𝜖+ 

where Y is the dependent variable, X1, X2, … Xk are the independent variables, β0 is the 

intercept, β1, β2, … βk are the coefficients or slopes, and ε is the error term. 

There could be heteroscedasticity in this model. It is a statistical term used to describe the 

scenario where the variability of a dependent variable is unequal across the range of values of an 

independent variable. In other words, the variance of errors or residuals in a regression model is 

not constant for all values of the predictor variable(s). 

In regression analysis, heteroscedasticity can lead to biased and inefficient estimates of regression 

coefficients and can result in incorrect inferences about the relationship between the independent 

and dependent variables. There are several methods to detect and correct heteroscedasticity, such 

as transforming the dependent or independent variables, using weighted least squares, and applying 
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robust standard errors or white robust/sandwich estimators of standard errors. It is important to 

address the heteroscedasticity before drawing conclusions from a regression model. 

In this study, a white robust/sandwich estimator of standard errors (also known as white-

corrected or heteroscedasticity-consistent) is used to correct for heteroscedasticity in the data in 

regression analysis. The traditional standard errors calculated for regression models assume that 

the variance of the errors is constant across all observations. However, if there exists 

heteroscedasticity, these standard errors are biased and may lead to incorrect conclusions about 

the significance of the estimated coefficients. 

White robust standard errors adjust for heteroscedasticity by estimating the variance–

covariance matrix of the errors using a modified version of the residual sum of squares. This 

method considers different variances of errors across the range of values of the independent 

variables. 

White robust standard errors are useful when the assumption of constant variance in errors 

is violated, and they can provide more reliable estimates of standard errors, t-statistics, and p-

values in regression models. They are commonly applied in econometrics and other fields where 

heteroscedasticity of data is a common feature. 

To investigate the predictors or critical success factors of IPA, this research involves a model with 

two dependent variables (FTE reduction and process efficiency) and three additional dependent 

variables derived from the analysis of four outcome predictors of IPA identified at significant tree 

levels. This can be expressed as follows: 

𝐷𝑉

= 𝑓(𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒   

∗ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒

∗ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ ∗ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛) 
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A before–after analysis for the dependent variables FTE reduction and process efficiency is carried 

out to understand the impact of the independent variables derived from decision tree induction in 

previous chapters. The before–after analysis is a type of evaluation method used to determine the 

effect of an intervention or treatment on a particular outcome or a combination of outcomes (in 

this study, the treatment being IPA implementation). It involves comparing the state of the 

outcome or outcomes of interest before the treatment is implemented (the “before” period) to the 

state of the outcome or outcomes after the treatment is implemented (the “after” period). 

The before–after analysis aims to assess whether the intervention or treatment has a 

significant effect on the outcome or outcomes of interest. It is often used in program evaluation, 

healthcare research, and other fields where determining the effectiveness of an intervention or 

treatment is important. 

In this study, a hierarchical approach of regression is used. In regression, it refers to a method of 

building regression models by adding predictors in a stepwise manner based on their importance 

in explaining the variation in the response variable. This approach is often used when many 

predictors are available for inclusion in the model. It involves fitting a series of models, each with 

a diverse set of predictors. The first model includes only the most important predictor determined 

based on expert knowledge or prior research. In the subsequent models, additional predictors are 

added in a stepwise manner, with each predictor being evaluated for its ability to improve the 

overall fit of the model. 

The hierarchical approach can be useful in scenarios where the knowledge about which 

predictors are most important is limited or when the number of potential predictors is large. By 

building models in a stepwise manner, this approach can help identify the most important 

predictors and avoid model overfitting. 
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In this study, five models are investigated using a hierarchical approach involving three 

predictors. The first model presents the direct effects on various outcomes; then, in models two 

to four, the two-way interaction effects of each pair of predictors are studied, respectively, and in 

the fifth model, the two-way interaction effects of all pairs of predictors are examined together. 

 

9.5 Results  

In Table 32, the results of the direct effects of the predictors on the automation approach, 

automation type, and automation execution on the IPA implementation success outcome variable 

FTE reduction are presented. The first column of the table represents model 1, which presents 

the direct effects of the predictors on FTE reduction before and after the automation. 

In model 1, before automation, the processes that undergo the bottom-up approach on 

average show a 6.4% FTE reduction compared with the processes that undergo the top-down 

approach. After automation, on average, a 22% FTE reduction is observed for the processes that 

undergo the bottom-up approach compared with the processes that undergo the top-down 

approach. 

In model 1, before automation, the processes that undergo unattended treatment on 

average show a 20% FTE reduction compared with those undergoing attended treatment. After 

automation, on average, a 53.3% FTE reduction is observed for the processes with unattended 

automation compared with those with attended automation. 

In model 1, before automation, the processes with citizen execution show no significant 

difference from those with tech-driven execution. However, after automation, on average, an 

11.3% FTE reduction is observed for the processes with citizen automation execution compared 

with those with tech-driven execution. 
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The second column of the table represents model 2, which presents the two-way 

interaction effects of the first pair of predictors, i.e., automation type × automation approach, on 

the IPA implementation success outcome FTE reduction before and after automation. 

In model 2, before automation, the processes with a two-way interaction of the pair with 

a combination of the bottom-up approach × hybrid treatment and the bottom-up approach × 

unattended treatment show no significant difference from those with the bottom-up approach × 

attended treatment. However, after automation, on average, a 6% of FTE reduction is observed 

for the processes with the bottom-up approach × unattended automation compared with the 

processes with the bottom-up approach × attended automation. 

The third column of the table represents model 3, which presents the two-way interaction 

effects of the second pair of predictors, i.e., automation approach × automation execution on the 

IPA implementation success outcome FTE reduction before and after automation. 

In model 3, before automation, the processes with a two-way interaction of the bottom-

up approach × citizen execution show no significant difference from those with the bottom-up 

approach × tech-driven execution. However, after automation, on average, a 35% FTE reduction 

is observed for the processes with the bottom-up approach × citizen execution from those with 

the bottom-up approach × tech-driven execution. 

The fourth column of the table represents model 4, which presents the two-way interaction 

effects of the third pair of predictors, i.e., automation type × automation execution on the IPA 

implementation success outcome FTE reduction before and after automation. 

In model 4, before and after automation, the processes with the two-way interaction of 

hybrid treatment × citizen execution and unattended treatment × citizen execution show no 

significant difference from those with attended treatment × tech-driven execution. 

The fifth column of the table represents model 5, which presents the two-way interaction 

effects of all three pairs of predictors, i.e., automation type × automation approach, automation 
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approach × automation execution, and automation execution × automation type on the IPA 

implementation success outcome FTE reduction before and after automation. 

In model 5, before and after automation, the processes with the two-way interaction of all 

three pairs show no significant difference. 

Table 32: Main Results of Econometrics—FTE Reduction 

 

Dependent 
Variable 
FTE 
Reduction 

(1) 
Direct Effects 

(2) 
Two-Way 
Interaction Effects 

(3) 
Two-Way 
Interaction Effects 

(4) 
Two-Way 
Interaction Effects 

(5) 
Two-Way Interaction 
 Effects 

Pre      
Approach 
Bottom-Up  -.64 (.22, 0.005) ** -.35(.66,0.592)  -.63(.22,0.006) **  -.66(.23, 0.005) ** -.29(1.0,0.784) 

Type: Hybrid 
           
Unattended 

 
-.496 (0.33,0.134) 
-1.99(0.34, 0.000) 
*** , 

-.47(.33,0.157) 
-1.97(.35,0.000) *** 

 -.37(.40, 0.344) 
-1.89(.40,0.000) *** 

 -.07(.47, 0.876) 
 -2.0(.46,0.000) *** 

Execution 
Citizen Bots  -.24(.35, 0.49) -.16(.35, 0.649) .42(1.8,0.816) .21(.75,0.777)  .59(1.81, 0.746) 

Approach X 
Type 
 Bottom-Up 
X Hybrid 
 Bottom-Up 
X 
Unattended --- 

-.69(.69,0.315) 
.05(.71,0.940) --- --- 

 -.76(1.0,0.483) 
.01(1.0,0.992) 

Approach X 
Execution 
 Bottom-Up 
X Citizen 
Bots --- --- -0.7(1.8,0.700) ---  -.75(2.13, 0.724) 

Type X 
Execution 
 Hybrid X 
Citizen Bots 
 Unattended 
X Citizen 
Bots --- --- --- 

 -.48(.65,0.463) 
-.50(1.12,0.655) 

  .04(1.06, 1.06) 
 -.29(1.39, 0.835) 

Post      
Approach X 
Post 
Bottom-Up 
X Post -1.57 (.34, 0.000) *** -2.02(.89,0.025) **  -1.5(.34, 0.000) ***  -1.58(.35,0.000) *** -1.37(1.68,0.415) 

Type X Post 
 Hybrid X 
Post 
 Unattended 
X Post 

 -.61(.49,0.213) 
 -3.76(.50, 0.000) 
*** 

 -.22(.67, 0.740) 
 -4.47(.66,0.000) 
*** 

-.56(.49, 0.254) 
-3.73(.50,0.000) 
*** 

 -.54(.59,0.367) 
-3.73(.59,0.000) *** 

 -.06(.68,0.927) 
 -4.32(.68, 0.000) *** 

Automation 
Execution X 
Post 
 Citizen Bots 
X Post -0.89(.45, 0.050) **  -.61(.45, 0.175) 1.77(.43,0.000) *** -.79(.90, 0.380) 1.77(.51, 0.001) *** 
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Approach X 
Type X Post 
 Bottom-Up 
X Hybrid X 
Post 
 Bottom-Up 
X 
Unattended 
X Post --- 

 -.50(.34, 0.137) 
-.64(.33, 0.054) * --- --- 

-1.00(1.76,0.571) 
 .76(1.75, 0.665) 

Approach X 
Execution X 
Post 
 Bottom-Up 
X Citizen 
Bots X Post --- --- -2.79(.58,0.000) ** --- -2.95(1.84, 0.110) 

Type X 
Execution X 
Post 
 Hybrid X 
Citizen Bots 
X Post 
 Unattended 
X Citizen 
Bots X Post --- --- --- 

-.28(1.0,0.780) 
 .35(.96, 0.713) 

.44(1.85,0.809) 

.39(1.81, 0.829) 

n value -
Observations 352 352 352 352 352 

Groups 176 176 176 176 176 

Time Period 2 2 2 2 2 

R Squared 0.86 0.8652 0.861 0.8604 0.8661 

Notes 
Significance level: P<0.01 ***, P<0.05 ** & P<0.1 * 
Base variable for the automation approach is taken as top-down. 
Base variable for the automation type is taken as unattended. 
Base variable for automation execution is taken as tech-driven automation. 
Bottom-up automation approach shows significant reduction in FTE. 
“Unattended” automation type shows consistent reduction in FTE. 
When automation type is combined with automation approach, a significantly larger effect is observed compared with individual effects, 
i.e., automation type and automation approach moderate the effect on FTE reduction. 
When automation approach is combined with automation execution, a significantly larger effect is observed compared with individual 
effects, i.e., automation approach and automation execution moderate the effect on FTE reduction. 

 

Table 33 presents the results of the direct effects of the predictors on the automation 

approach, automation type, and automation execution on the IPA implementation success 

outcome variable process efficiency. The first column of the table represents model 1, which 

presents the direct effects of the predictors on process efficiency before and after automation. 

In model 1, before automation, the processes with the bottom-up approach show no 

significant difference from those with the top-down approach. However, after automation, on 

average, an 8.25% improvement in process efficiency is observed for the processes with the 

bottom-up approach compared with those with the top-down approach. 
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In model 1, before automation, the processes with the hybrid treatment on average show 

an 8.6% improvement in process efficiency, and those with the unattended treatment on average 

show a 19% improvement in process efficiency compared with those with attended treatment. 

After automation, on average, a 23.4% improvement in process efficiency is observed for the 

processes with the hybrid treatment, and on average, a 56.5% improvement in process efficiency 

is observed in those with the unattended automation compared with those with the attended 

automation. 

In model 1, before automation, the processes with citizen execution show no significant 

difference from those with tech-driven execution. However, after automation, on average, a 9.5% 

reduction in process efficiency is observed for the processes with citizen automation execution 

compared with the processes with tech-driven execution. 

The second column of the table represents model 2, which presents the two-way 

interaction effects of the first pair of predictors, i.e., automation type × automation approach on 

the IPA implementation success outcome process efficiency before and after automation. 

In model 2, before and after automation, the processes with a two-way interaction of the 

pair with the combination of bottom-up approach × hybrid treatment and bottom-up approach 

× unattended treatment show no significant difference from those with the bottom-up × attended 

treatment. 

The third column of the table represents model 3, which presents the two-way interaction 

effects of the second pair of predictors, i.e., automation approach × automation execution on the 

IPA implementation success outcome process efficiency before and after automation. 

In model 3, before automation, the processes with a two-way interaction of the pair with 

the combination of bottom-up approach × citizen execution show no significant difference from 

those with bottom-up approach × tech-driven execution. However, after automation, on average, 
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a 56.6% reduction in process efficiency is observed for the processes with bottom-up approach × 

citizen execution. 

The fourth column of the table represents model 4, which presents the two-way interaction 

effects of the third pair of predictors, i.e., automation type × automation execution on the IPA 

implementation success outcome process efficiency before and after automation. 

In model 4, before and after automation, the processes with a two-way interaction of the 

pair with the combination of hybrid treatment × citizen execution and unattended treatment × 

citizen execution show no significant difference from those with attended treatment × tech-driven 

execution. 

The fifth column of the table represents model 5, which presents the two-way interaction 

effects of all three pairs of predictors, i.e., automation type × automation approach, automation 

approach × automation execution, and automation execution × automation type on the IPA 

implementation success outcome process efficiency before and after automation. 

In model 5, before automation, the processes with the two-way interactions of all three 

pairs of predictors show no significant difference compared with the respective base variables. 

However, after automation, on average an 18.5% improvement in process efficiency is observed 

with bottom-up approach × hybrid treatment and a 20% improvement with bottom-up approach 

× unattended treatment compared with top-down approach × attended treatment. When the 

processes receive two interactions of the pair of predictors bottom-up approach × citizen 

execution, there is, on average after automation, a 90% reduction in process efficiency compared 

with top-down approach × tech-driven execution. Finally, after automation, on average, a 37.4% 

improvement in process efficiency is observed with hybrid treatment × citizen execution, and a 

47.2% improvement in process efficiency is observed with unattended treatment × citizen 

execution compared with attended treatment × tech-driven execution. 
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Table 33: Main Results of Econometrics Process Efficiency 

Dependent 
Variable 
FTE 
Reduction 

(1) 
Direct Effects 

(2) 
Two-Way Interaction 
Effects 

(3) 
Two-Way Interaction 
Effects 

(4) 
Two-Way 
Interaction 
Effects 

(5) 
Two-Way 
Interaction 
 Effects 

Pre 

     

Approach 
Bottom Up  -1.22(1.05,0.247) -1.24(4.34, 0.775) -13.72(11.80,0.246) 

 -
1.18(1.07,0.269)  -17.29(12.13,0.155) 

Type Hybrid 
          
Unattended 

 -5.16(1.8,0.005) *** 
 -11.36(1.96, 0.000) 
*** 

 -5.63(2.34,0.017) *** 
-11.03(2.40, 0.000) *** 

 -4.74(1.83,0.010_** 
-10.94(1.96, 0.000) *** 

-4.21(3.37, 
0.213) 
 -
9.85(5.31,0.065) 
** 

4.63(7.84, 0.555) 
1.27(8.58,0.882) 

Execution 
Citizen Bots  .58(1.9, 0.763)  .71(1.93,0.714)  -11.23(11.80,0.342)  1.89(4.97,0.704) -10.74(11.90, 0.367) 

Approach X 
Type 
 Bottom-Up X 
Hybrid 
 Bottom-Up X 
Unattended --- 

.64(4.25,0.880) 
 -.58(4.44,0.895) --- --- 

 -5.79(7.46, 0.438) 
-6.95(7.43,0.350) 

Approach X 
Execution 
 Bottom-Up X 
Citizen Bots --- ---  12.64(11.80,0.285) ---  22.52(14.03, 0.109) 

Type X 
Execution 
 Hybrid X 
Citizen Bots 
 Unattended X 
Citizen Bots --- --- --- 

 -
1.24(4.08,0.760) 
 -1.80(5.93, 
0.761) 

 -5.79(7.46,0.438) 
 -6.95(7.43,0.350) 

Post      
Approach X 
Post 
 Bottom-Up X 
Post  -3.73(1.71, 0.030) *** -7.27(5.65, 0.199)  -24.59(3.25, 0.000) *** 

-3.46(1.75, 
0.050) ** 

 -27.25(4.54, 0.000) 
*** 

Type X Post 
 Hybrid X 
Post 
 Unattended X 
Post 

-8.89(2.7,0.001) *** 
-22.54(2.73, 0.000) 
*** 

 -10.78(3.57, 0.003) *** 
-23.90(3.49, 0.000) *** 

  -8.51(2.71, 0.002) *** 
 -22.27(2.74, 0.000) *** 

-5.77(5.13, 
0.261) 
 -
15.07(5.39,0.005
) *** 

7.17(7.66,0.350) 
 -1.25(7.78,0.872) 

Execution X 
Post 
 Citizen Bots 
X Post  5.09(2.69, 0.060) *  4.12(2.89, 0.155)  -15.31(2.44, 0.000) ***  8.66(5.49, 0.116) 

-14.74(2.88, 0.000) 
*** 

Approach X 
Type X Post 
 Bottom-Up X 
Hybrid X Post 
 Bottom-Up X 
Unattended X 
Post --- 

 4.33(5.92,0.465) 
3.64(6.00,0.545) --- --- 

 -11.12(5.72, 0.053) 
* 
 -11.99(5.52,0.031) 
** 

Approach X 
Execution X 
Post 
 Bottom-Up X 
Citizen Bots X 
Post --- ---  21.33(3.36, 0.000) *** --- 

35.39(6.80, 0.000) 
*** 

Type X 
Execution X 
Post 
 Hybrid X 
Citizen Bots X 
Post --- --- --- 

-4.92(6.04, 
0.416) 
 -
9.26(6.23,0.138) 

 -16.70(6.77, 0.014) 
** 
 -21.39(6.96, 0.002) 
*** 
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 Unattended X 
Citizen Bots X 
Post 

n value -
Observations 

352 352 352 352 352 

Groups 176 176 176 176 176 

Time Period 2 2 2 2 2 

R Squared 0.9116 0.9119 0.9138 0.912 0.9164 

Notes 
Base variable for the automation approach is taken as top-down. 
Base variable for the automation type is taken as unattended. 
Base variable for automation execution is taken as tech-driven automation. 
Bottom-up automation approach shows significant improvement in process efficiency. 
“Unattended” automation type shows consistent improvement in process efficiency. 
“Citizen bots” automation execution decreases process efficiency. 
When automation type is combined with automation approach, a significantly larger positive effect is observed compared with individual effects, 
i.e., automation type and automation approach moderate the effect on process efficiency. 
When automation approach is combined with automation execution, a significantly negative effect is observed compared with individual effects, 
i.e., automation approach and automation execution moderate the effect on process efficiency negatively. 

 

9.6 Implications 

In Chapter 6, the decision tree induction on the live data of 176 IPA implementations and 

from the tree analysis is discussed, and sixteen rules are derived. In this chapter, the OLS method 

of linear regression is used to quantify the effect on the outcomes of IPA based on the 

configurations derived from decision tree induction and to validate the rules through econometric 

analysis. 

In Table 32, the results of the econometric analysis of predictors affecting IPA outcome 

FTE reduction before and after automation are presented, which validate the rules derived in 

Chapter 6 for FTE reduction. From these results, on average, the results of unattended automation 

are significant, with a 53.3% FTE reduction after automation compared with attended automation. 

This validates rule 1, which predicts high FTE reduction, and rule 3, which predicts low FTE 
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reduction. Similarly, on average, the results of the bottom-up approach are significant, with a 22% 

FTE reduction after automation compared with the top-down approach. This validates rule 2. 

In Table 33, the results of the econometric analysis of predictors affecting the IPA 

outcome process efficiency, before and after automation, are presented, which validate the rules 

derived in Chapter 6 for process efficiency. From these results, on average, hybrid automation 

results in a 23.4% improvement in process efficiency after automation compared with attended, 

which validates rule 4 and rule 7. Next, on average, unattended automation results are significant, 

with a 56.5% improvement in process efficiency compared with attended automation, which 

validates rule 5, rule 6, and rule 8. With respect to the interaction effects on process efficiency, it 

is clear that after automation, on average, a 37.4% improvement in process efficiency is observed 

with hybrid treatment × citizen execution, which validates rule 4. 

Overall, from the results of the econometric analysis, the potential outcome causality is 

established with the configurational view of causality established by decision trees. 

9.7 Conclusion 

Thus far, in this chapter, the application of econometric analysis in validating the sixteen 

rules and six propositions derived in previous chapters is discussed. The specifications for our 

analysis are defined in terms of dependent, independent, and control variables, and the before–

after analysis is carried out using OLS. 

The results establish the validity of the rules and propositions obtained using the decision 

tree induction; hence, the configurational causality is validated by potential outcome-based 

causality. The configurational causality using decision trees determines what are the critical success 

factors or predictors affecting the success of IPA implementation. The potential outcome causality 

using OLS not only establishes the outcomes of configurational causality but also quantifies the 
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effects of the factors affecting the success of IPA implementation. In the next chapter, the 

theoretical contributions, managerial implications, strengths, and limitations are discussed along 

with the concluding thoughts. 
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10 DISCUSSION 

his chapter examines the sixteen rules, six insights, and six meta-propositions that 

affect the successful implementation of intelligent process automation (IPA) and 

discusses the theoretical and managerial implications, strengths, and limitations of this 

study, besides shedding light upon future research opportunities. 

10.1 Theoretical Contributions 

The results of this study are consistent with the ongoing discussion on identifying critical 

factors for the successful implementation of IPA. In this study, predictors that have a significant 

effect on the success of IPA implementation are identified. For instance, unattended automation 

and bottom-up approach are important predictors that appear in all four outcomes of successful 

IPA implementation, whereas attended automation is a significant predictor in all outcomes of 

unsuccessful IPA implementation. These findings suggest that dominant predictors that 

significantly affect the successful implementation of IPA are purely strategic profiles (Kathuria et 

al., 2020). 

In addition, this study explains how software projects are different from IPA 

implementations. In this research, predictors of IPA implementation success that are distant from 

software project predictors are identified, thus significantly contributing to the theory. 

Furthermore, this study contributes to moving the conversation forward on how to ensure 

the successful implementation of technology democratization based on artificial intelligence (AI). 

Besides the implications of decision rules, insights, and propositions, this research provides 

three significant contributions to theory. First, decision trees provide a comprehensive and easily 

comprehensible representation of theories. These trees categorize and sort predictors according 

T 
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to their importance on multiple levels and remove non-informative predictors, thus allowing 

researchers to focus on informative ones. In addition, decision trees organize predictors based on 

their importance, providing a summary of the decision-making process and experiences of the 

decision-makers. Second, rules extracted from the decision trees reveal ontologies or concepts and 

categories that define their properties and relationships. Hence, this study demonstrates how 

decision trees can illuminate first principles or “the essence of things,” which is a major 

contribution to theory. 

Third, this study highlights the use of abduction as a logical framework for theory 

development. Two commonly used approaches in logical conclusions are deduction and induction, 

with the former starting from a known rule and seeking to apply it to a case to obtain knowledge 

(Reichertz, 2007) and the latter beginning with a case and extending a result from the data into a 

rule. In contrast, in abduction (Hobbs et al., 1993), the best explanation is inferred from the 

available information. In this study, theoretically nuanced explanations were developed, and their 

predictions were refined by extracting rules from decision trees. Through abstraction, the rules 

were examined in their abstract forms, thus enabling them to progressively develop and refine 

their theoretical propositions. In this approach, the focus was not on actual rule instantiations, but 

on discovering how abstractions progressively evolved into an ontology of rules. This approach 

provided a better understanding of the combined influence of predictors on the outcome of 

interest. 

In other words, abductive discovery is used to proceed from the data (four trees), to rules 

(sixteen context-specific rules and their general forms), to mid-level theoretical insights(six 

insights), and to finally arrive at cases (six generic propositions) (Reichertz, 2007). Herein lies our 

third significant contribution. 

Next, an alternative means for developing multilevel theory that reveals sequences of 

insights is demonstrated. Hierarchical linear modeling is used in extant efforts at multilevel theory 
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building (e.g., (Maruping and Magni, 2012, Suh et al., 2011), and multistage econometric models 

(e.g., (Xie and Lee, 2015) are used to examine the phenomena between and across two levels of 

analysis. This distinct methodological contribution lies in our articulation of sequences of predictor 

combinations that lie across the four levels of theory, i.e., governance, process, technology, and 

complexity levels. The order in the decision tree induction goes beyond mere outcomes by 

explicitly representing these sequences, where the partial ordering of decisions is of importance. 

Third, a combination of predictors that would enable organizations to achieve specific 

outcomes of IPA implementation is identified, namely full-time equivalent (FTE) reduction, 

process efficiency, and accuracy. 

Overall, this manuscript moves Information Systems (IS) research forward by presenting 

an alternative form of knowledge production that emphasizes “inductive, rich inquiries using 

innovative and extensive data sets” and enables “novel, genuine, high-level theorizing around 

germane conceptual relationships” (Grover and Lyytinen, 2015). Our data-driven, abductive–

inductive–abductive research interprets the patterns in data to discover empirical regularities 

(stylized facts) that challenge the existing beliefs and give rise to new constructs and theories 

(Helfat, 2007). As Weick (Weick, 1995) notes, novel theories require diverse lenses to examine the 

phenomena present in them, keen observation of data, disciplined imagination, and thought 

experiments. This manuscript presents an alternate lens that can help IS theorists develop rich 

theory by seamlessly moving through different levels of abstractions to discover new knowledge 

and ontologies and to identify inter-relationships across facts (Grover and Lyytinen, 2015). 

10.2 Managerial Implications  

This study investigates the success of IPA implementation from the vantage point of 

various predictors (e.g., automation type, automation approach, automation execution, etc.). Thus, 
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the implications of the findings of this study are multifold based on sixteen rules, six insights, and 

five propositions that are identified following managerial implications. 

• A nuanced view into the decision-making process for IPA practitioners is provided 

regarding the predictors or critical factors affecting both high and low success of 

IPA implementation, specifically helping IPA practitioners to determine factors 

that contribute to high automation success and those that do not. These insights 

help derive rational decision-making mechanisms by IPA practitioners/managers 

regarding critical factors that determine the successful implementation of IPA. 

• For successful implementation of IPA, organizing principles for their 

implementations are identified by highlighting the most efficient path for 

successful IPA implementation, thus improving the probability of success. 

Following Rules 1–16, IPA managers should focus on unattended automation, i.e., 

they need to choose the right business process to undergo automation so that IPA 

implementation is understood well in advance and made seamless without human 

intervention. Then, the bottom-up automation approach needs to be focused on, 

especially in the combination of hybrid or unattended automation type. By 

focusing on these two critical factors, the probability of successful IPA 

implementation becomes high. 

• Before implementing IPA, it is essential to define what the organization wants to 

achieve through automation (outcomes of measure). This process includes the 

following: setting specific goals and objectives, identifying key performance 

indicators (KPIs) to measure the success, and aligning IPA initiatives with the 

overall strategy of the organization. In this study, the outcomes FTE reduction, 

process efficiency, accuracy, and IPA success are discussed, depending upon the 

organizational priorities. 
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• Not all processes are suitable for automation. Therefore, repetitive, rule-based, and 

high-volume processes need to be identified and evaluated for automation. This 

will ensure that the organization maximizes the benefits of IPA while minimizing 

the risks of implementation. 

• This study presents a well-defined IPA strategy that can help organizations achieve 

their automation goals. This strategy includes a roadmap for implementation, a 

clear timeline for deployment, and an assessment of the effects on the workforce. 

Practice implications also extend to other contexts of automation implementations such 

as low/code in healthcare, retail, and other sectors. 

10.3 Strengths and Limitations 

This research has several strengths. Live sample data of 176 real-time implementations are 

used to systematically examine critical factors that lead to successful IPA implementation. This 

sample is specifically focused on banking and financial services across the world, thus taking into 

account complex issues and the heterogeneity of the data. 

This research setup addresses the potential concerns in sample selection as both successful 

and not-so-successful implementations are part of the dataset. This comprehensive dataset 

contributes unique insights into successful IPA implementation, especially for complex processes 

in banking and financial services across the world. Second, the decision tree induction 

methodology used in this study also contributes unique insights by identifying key patterns in the 

data and presents the analytics in an intuitive and easy-to-follow manner for a wide variety of 

stakeholders. Critically, this methodology is appropriate for inferring a fit (or a lack of fit) between 

what managers are expected to do (in theory) and what they actually do (as revealed by the trees), 

making it appropriate for presenting to managers (Drazin and Van de Ven, 1985). Third, the 
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decision tree induction methodology has a low rate of false-positive predictions (Spangler et al., 

1999). Thus, our low prediction error of ~33% is also conservative in nature. Finally, a key strength 

of this study lies in the use of decision tree induction to realize a new ontology, which signals 

future research advances. This methodology offers a perspective that aligns with the current trends 

in AI such as semantic networks and cognitive computing (Davenport and Ronanki, 2018), which 

require explicit representation of extensive knowledge. Decision trees create ontologies that can 

be used to further derive semantics and knowledge representations. Therefore, ontologies are the 

pillars of the semantic web that enable us to understand first principles, or “the essence of things.” 

If organizations are conceived as bundles of decisions dynamically allocated across humans, 

systems, or combinations of humans and systems, decision trees represent the first and vital step 

toward achieving cognitive reapportionment and autonomous decision-making (Konsynski and 

Sviokla, 1993). Eventually, decision trees could credibly approximate the decision processes and 

governing dynamics pertinent to management practices. 

There are some limitations to the present study. First, decision trees are an approximation, 

albeit credible, of the decision-making process in identifying the critical factors for successful IPA 

implementation. Though follow-up interviews with IPA practitioners are conducted to ascertain 

the validity of the results, this study cannot precisely quantify the exact order of steps taken by 

managers in the decision-making process for identifying the critical factors for the successful 

implementation of IPA. Second, only a sample of IPA implementations in banking and financial 

services is discussed. A larger sample would help us to ascertain the propositions made in this 

study. Third, the generalizability of these results to other types of technology automation may be 

limited. Finally, the cross-sectional nature of our data precludes us from drawing causal 

conclusions through our analysis. Because of the presence of different approaches to IPA 

implementation in the market across domains and the ongoing technological advances especially 

due to AI, gathering and studying longitudinal effects in this context is not feasible. However, this 

is an interesting scope for future research studies in other contexts. 
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10.4 Directions for Future Research 

Two avenues for future research are identified in this study. First, our research 

methodology utilizes induction to discover rules explaining the critical factors for the successful 

implementation of IPA. Rules serve as the primary input to the abduction process. Thus, this 

methodology serves as a harbinger for cognitive computing, whereby AI systems can mimic the 

functioning of the human brain and help improve human decision-making by inferring the best 

explanation from a given set of rules. A further step toward this goal can be made by mapping 

decision journeys. Decision-tree-based abduction, which helps define ontologies and construct 

decision journeys and flows, is thus a stepping stone toward a deeper understanding of decision-

making by human agents (stakeholders) in complex situations. Future research for automating this 

intellectual improvement from rules to cases, or inference to the best explanation, is a foundational 

feature to realize the dream of cognitive computing. 

Second, in this study, IPA implementation is studied from the point of view of a few 

success predictors. Future research could contrast related questions from the perspectives of other 

technological advancements such as AI, augmented reality/virtual reality, and right process 

selection variables for successful IPA implementation. 

10.5 Summary of Key Findings 

This section presents the summary of key findings of sixteen rules, six insights, and six 

propositions that immensely contribute to the theory for IS research, as shown in Table 33. 
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Table 34: Summary of Theoretical Artifacts 

Theoretical Artifact 

Rules 

Rule 1: Unsupervised intelligence—if the automation type is unattended, then FTE reduction 
is high. 

Rule 2: Empowering business user—if the automation type is hybrid and the automation 
approach is bottom-up, the FTE reduction is high. 

Rule 3: Partial intelligence “Guide Me”—if the automation type is attended, then FTE 
reduction is low. 

Rule 4: Citizen intelligence and standalone systems—if the automation type is hybrid and 
executed by citizen, then process efficiency is high for standalone systems. 

Rule 5: Partial intelligence “Guide Me”—if the automation type is attended, then process 
efficiency is low. 

Rule 6: Enterprise automation—if the automation type is unattended and when systems are 
interoperable, process efficiency is high with the top-down approach. 

Rule 7: Citizen intelligence and distributed systems—if the automation type is hybrid and 
executed by citizen, then process efficiency is low for distributed systems. 

Rule 8: Unsupervised intelligence—if the automation type is unattended, then process 
efficiency is high. 

Rule 9: Empowering business user—if the automation approach is bottom-up and when the 
automation type is either hybrid or unattended, then process accuracy is high. 

Rule 10: Disenfranchise business user automation—if the automation approach is top-down 
and when the automation type is either hybrid or attended, then process accuracy is low. 

Rule 11: Enterprise automation—if the automation approach is top-down and the automation 
type is unattended, then process accuracy is high. 

Rule 12: Unsupervised intelligence—if the automation type is unattended, then overall IPA 
success is high. 

Rule 13: Average intelligence “Tackling Complexity”—if the automation type is hybrid and 
complexity is medium, then overall IPA success is moderate. 

Rule 14: Partial intelligence “Guide Me”—if the automation type is attended, then overall IPA 
success is low. 

Rule 15: Empowering business owner—if the automation type is hybrid and complexity of the 
business process is high, then overall IPA success with the bottom-up automation approach is 
high. 

Rule 16: Disenfranchise business owner: If business processes are highly complex and have a 
hybrid automation type, then overall IPA success is low with the top-down automation 
approach. 

Insights 

Insight 1: Unattended automation type is a necessary predictor for the top-ranked rule that 
results in high IPA implementation success for all outcomes. 

Insight 2: Attended automation type is a necessary predictor for the top-ranked rule that 
results in low IPA implementation success for all outcomes. 

Insight 3: Bottom-up automation approach is a necessary predictor for the second-ranked rule 
that results in high IPA implementation success for the majority of outcomes; however, it 
does not contribute to IPA implementation outcome process efficiency. 

Insight 4: Top-down automation approach is an important predictor that results in high IPA 
implementation success along with specific combinations of other predictors for the majority 
of outcomes; however, it does not contribute to IPA implementation outcome FTE reduction. 
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Insight 5: Citizen automation execution predictor results in high process efficiency when 
combined with standalone architecture and hybrid automation; however, it does not 
contribute to any of the other IPA implementation success outcomes. 

Insight 6: Citizen automation execution predictor results in low process efficiency when 
combined with distributed architecture and hybrid automation; however, it does not 
contribute to any of the other IPA implementation success outcomes. 

Propositions 

Proposition 1: Predictors determining the success of IPA implementation are present across 
multiple levels of analysis. 

Proposition 2: Combinations of predictors determining the high success of IPA 
implementation are present across multiple levels of analysis and are different from the 
predictors informing low success of IPA implementation. 

Proposition 3: Predictors determining high or low success of IPA implementations at one 
level influence the inclusion or exclusion of predictors at the same or other levels. 

Proposition 4: Multiple predictors determining the success of IPA implementation may 
interact such that a few predictors either dominate or reinforce their combined influence on 
IPA success. 

Proposition 5: One or a combination of predictors determining overall IPA success may or 
may not affect other specific outcomes of IPA success. 

Proposition 6: If the presence of a predictor is necessary for a successful IPA implementation 
outcome, the opposite does not imply that it will lead to failure. 

 

10.6 Concluding Thoughts 

This study offers three key takeaways for researchers, managers, and practitioners. First, it 

provides rules, insights, and propositions to identify the dominant predictors and combination 

predictors present at all theoretical levels explaining successful IPA implementation. Second, it 

discusses the presence of interdependencies between predictors of IPA implementation success 

outcomes that lie across multiple levels of theory. This study is an attempt to reconcile multiple 

multilevel predictors. However, because of the complexity, diversity, and uncertainties associated 

with diverse types of IPA implementation, there may be other combinations of predictors that 

offer fresh research opportunities. This study calls for further multilevel research that goes beyond 

examining hierarchical relationships across only two levels of analysis to develop a deeper 

understanding of successful IPA implementation. Finally, the methodological contributions of this 

study provide opportunities for developing a richer agenda for IS researchers. Although decision 
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tree induction is not a new tool, advances in the methodology and the availability of large datasets 

allow researchers to realize its potential. As envisioned by prior research, this methodology allows 

us to study variables across multiple levels of theory and discover their emergent and tacit 

combinations. Bringing this approach to nascent, emerging areas of study, such as success factors 

of IPA implementation, will advance our community, research, and management practice forward 

on the arc of progress. 
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Table 35: Summary of Prior IS Research of Digital Transformation. 

Study Theory Base DV IV(Moderator/Mediat
or) 

Method Key Arguments 
& Findings 

Limitation 

(Baiyere et al., 
2020) 

BPM 
needs/logics 
in the context 
of DT 

Dynamics of BPM in 
the context of DT 

Light touch processes 
infrastructural 
flexibility 
mindful actors 

Ethnographic 
study 

In the context 
of digital 
transformation, 
the needs of 
BPM change 
because of ever-
changing DT. 
Light touch 
processes, 
infrastructural 
flexibility, and 
mindfulness of 
actors should 
stimulate the 
imaginations of 
BPM scholars 
and 
practitioners 
alike. 

Just studied 
on one 
company. 
Diversity is 
low. 
Very generic. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Mandviwalla 
and Flanagan, 
2021) 

Action 
design 
research 
(ADR) 

Small business firm 
value through DT 

Engagement 
Selling 
Delivery 
Process/new Models 

Case study  DT is welcome 
and can 
generate values 
in small 
businesses. 
Digital 
technologies, 
especially 
platforms that 
target small. 
Businesses have 
matured to a 
level that can 
accelerate the 
transformation. 
Small businesses 
should focus 
initially on 
digital channel 
basics such as 
engaging, 
selling, 
delivering, and 
over time 
expanding to 
explore new 
digital business 
models. 

Results are 
limited to 
microbusines
s. 
Diversity is 
low. 
Very generic. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Soluk and 
Kammerland
er, 2021) 

Dynamic 
capabilities 

Achieve digital 
transformation 

Strategic decision-
making 
Information 
management 
Continuous renewal 
Employee learnability 
Strategic partnerships 
Brand management 

Case study Challenges and 
opportunities in 
DT will 
continue.  
The 
antecedents, 
processes, and 
implications of 
firms’ digital 
transformation 
for information 
systems and 
management 
research are still 
under-
researched. 

Managerial 
implications 
for DT are 
limited to 
family-owned 
firms. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data  
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Analyzes the 
processual 
dimension of 
digital 
transformation 
in family-owned 
Mittelstand 
firms. 
Triggers, 
enablers, and 
barriers in the 
digital 
transformation 
process, and the 
role of dynamic 
capabilities in 
achieving digital 
transformation. 

(Wimelius et 
al., 2021) 

Paradoxical 
tensions for 
technology 
renewal 

Technology renewal Paradoxical tensions, 
i.e., (established vs 
renewed technology 
usage), deliberate vs 
emergent renewal 
practices, inner vs 
outer renewal 
contexts. 
 

Longitudinal 
case study 

Technology 
renewal of 
digital and 
infrastructure 
platforms is 
essential to 
achieve strategic 
goals. 
Technology 
renewal involves 
paradoxical 
tensions 
between 
established and 
renewed 
technology 
usage, deliberate 
and emergent 
renewal 
practices, and 
inner and outer 
renewal 
contexts. 
Organizations 
respond 
differently to 
the paradoxical 
tensions. 
Reinforcing a 
virtuous cycle 
and increasing 
the likelihood of 
renewal success 
requires 
persistent 
patterns of 
integrating and 
splitting 
responses. 
In contrast, 
persistent 
patterns of 
pretending and 
avoiding 
responses will 
reinforce a 
vicious cycle 
and increase the 
likelihood of 
renewal failure. 

Qualitative 
explanation. 
Diversity is 
low. 
Very generic. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Tan et al., 
2020) 

Driving 
boundary 
practices to 
digitally 
transform 
business 
ecosystems. 
Democratizati
on as 

Digital transformation 
of business ecosystem 

Boundary practices Interpretive 
case study 

Insights into the 
process of 
digital 
transformation 
of business 
ecosystems. 
Resources can 
be combined to 
effectively 

Problem of 
transferability 
or 
generalizabilit
y. 
Limited 
context. 
Limited data. 



Critical Success Factors Impacting Intelligent Process Automation 

Page 159 of 172 

boundary 
practice 

develop 
business 
ecosystems. 

Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Chanias et 
al., 2019) 

Integrated 
process/activit
y model 
showing how 
pre-digital 
organizations 
can develop a 
digital 
transformation 
strategy 

Realized digital 
transformation 
strategy 

Organizational 
strategy 
Episodes of digital 
strategy DTS practices 

Interpretive 
in-depth case 
study 

Human agents 
had to 
continually work 
at transforming 
the social 
structure. 
Digital strategy 
making where a 
DTS must be 
continually 
reinvented. 
Digital strategy 
has 
distinguished 
characteristics 
compared with 
IS strategy. 
Digital 
transformation 
is business-
centric and 
customer-
oriented in its 
perspective. 
All parts of the 
organization are 
affected by 
changes 
resulting from a 
DTS. 
DTS is 
developed by 
different 
stakeholders 
within the 
organization. 
 

Just one case 
study. 
Problem of 
transferability 
or 
generalizabilit
y. 
Limited 
context. 
Limited data. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Zapadka et 
al., 2022) 

Boundary 
resource 
deployment 

Beneficial boundary 
resources 

Digital knowledge 
Digital 
complementors 
Market power 

Empirical 
study on 
longitudinal 
sample. 
General 
estimation of 
equations 
(GEE) 
regression 

Firms that rank 
high in digital 
knowledge tend 
to deploy 
boundary 
resources. 
Existence of 
digital 
complementors 
in the field is 
positively 
associated with 
boundary 
resource 
deployments. 
 

Restricted 
sample. 
Geographical 
limitation. 
Limited 
context. 
Limited data. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Wessel et al., 
2021) 

Grounded 
theory 

Differences between 
DT and ITOT 

Transformation 
activities 
Transformation 
outcome 

Longitudinal 
case study 

Conceptual 
differences 
between DT 
and ITOT. 
DT changes the 
identity of the 
firm. 
ITOT reinforces 
existing 
organizational 
identity. 

Theory is not 
tested. 
Limited to 
few case 
studies. 
Theory is not 
generated 
based on the 
data. 

(Sandberg et 
al., 2014) 

General 
options theory 

Digital options Connectivity 
Uncertainty 
Equivocality 
Context appreciation 
Characterization 
Information 
requirements analysis 

Case study Consider 
technology 
innovation in 
relation to 
sociotechnical 
changes. 

Only limited 
to conceptual 
foundation. 
Empirically 
not proven. 
Theory is not 
generated 



Critical Success Factors Impacting Intelligent Process Automation 

Page 160 of 172 

Digital options 
recognition. 

Should consider 
technical and 
rational 
decisions and 
cultural, social, 
and cognitive 
forces. 
Identifying 
suitable 
processes for IT 
investment is a 
key activity in 
the context 
appreciation 
activity. 

based on the 
data. 

(Gurbaxani 
and Dunkle, 
2019b) 

Six-dimension 
framework for 
executives 

Successful digital 
transformation 

Strategic vision 
Culture of innovation 
Expertise and 
intellectual property 
Dimension: know-
how and intellectual 
property 
Digital capability 
Strategic alignment 
Technology assets 

Exemplar case 
studies 

Provides 
framework for 
executives to 
assess their 
company’s 
progress on six 
dimensions 
critical to 
successful digital 
transformation. 
Benchmarking 
one’s company 
with others in 
our database—
either within a 
sector or against 
companies that 
are in the same 
state of progress 
toward digital 
transformation. 
Helps diagnose 
gaps in a 
company’s 
capabilities. 

Basic 
research. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Hess et al., 
2016) 

Conceptual 
framework for 
formulating a 
digital 
transformation 
strategy and 
key 
dimensions 

Dimensions of digital 
transformation 

Use of technologies 
Value creation 
Structural changes 
Financial aspects 

Case study of 
three 
companies 

Conceptual 
framework for 
formulating a 
digital 
transformation 
strategy. 
What are the 
right questions 
to ask? 
Provide 
managers with a 
comprehensive 
and structured 
approach to 
digital 
transformation. 

Basic 
research. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Karimi and 
Walter, 2015) 

Dynamic 
capabilities 

Response to disruptive 
innovation 

Dynamic capabilities Case study Clarifies the role 
of first-order 
dynamic 
capabilities in 
responding to 
digital 
disruption. 
Helps building 
digital platform 
capabilities, and 
for reinventing 
their core 
functions to 
accelerate 
digitization. 

Restricted 
sample. 
Geographical 
limitation. 
Limited 
context. 
Limited data. 
Empirically 
not proven. 
Theory is not 
generated 
based on the 
data. 

(Kohli and 
Devaraj, 
2003) 

A Framework 
for the 
structural 
categories 
influencing IT 
payoff 

Firm 
performance/profitabi
lity 

Type of domain 
Sample size 
Data source 
 

Meta-analysis 
Logistic 
regression 
Discriminant 
analysis 
 

A framework 
for the 
structural 
categories 
influencing IT 
payoff 

Empirically 
proven. 
Meta-analysis 
includes 
studies from 
the 
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information 
systems 
discipline. 
Real 
implementati
on of data is 
not 
considered. 

(Øvrelid and 
Bygstad, 
2019) 

Foucault’s 
theory of 
discourse 

Digital infrastructure 
transformation 

Contextual factors 
Causal mechanisms 

Case study Framework to 
understand the 
role of 
discursive 
formations in 
digital 
transformation. 
Propose a set of 
configurations 
to explain how 
contextual 
factors and 
causal 
mechanisms 
contingently 
lead to the 
transformation 
of a digital 
infrastructure. 

Experimental. 
Theoretical. 
Theory is not 
generated 
based on the 
data. 

(Datta et al., 
2020) 

Digital 
transformation 
challenges 

Digital transformation 
success 

Sociocultural 
disruption 
Digital literacy 
Bureaucratic friction 

Case study Offers digital 
transformation 
recommendatio
ns, generalizable 
across any 
global 
democracy 

Narrowed 
focus. 
No 
quantitative 
proof. 
Theory is not 
generated 
based on the 
data. 

(Chaimankon
g et al., 2021) 

To explore, 
understand, 
analyze, and 
summarize the 
impacts of the 
COVID-19 
pandemic on 
digital banking 
services 

Digital transformation 
impact or customer 
retention 

Consumer behavior 
Consumer trends 
Service innovation 
Customer engagement 

Semistructure
d interviews 

Customers want 
better 
experience and 
to manage their 
finances 
conveniently 
from any 
location. 
 

Context 
sensitive. 
Geographical 
limitation. 
Limited 
context. 
 

(Sabherwal 
and Chan, 
2001) 

Miles and 
Snow’s 
popular 
classification 
of defender, 
analyzer, and 
prospector 
business 
strategies. 
STROBE 
framework. 

Business success or 
firm performance 

Alignment between 
business and IS 
strategy 

Two 
multiresponde
nt surveys 
Empirical 
methods 

Alignment 
influences 
overall business 
success in 
prospectors and 
analyzers but 
not in 
defenders. 
Aligning the IS 
strategy with the 
business strategy 
may not be as 
universal as 
previously 
believed. 

Simplification
. 
Applicability 
to other 
industries. 
No objective 
measures. 
Not based on 
real data. 
Theory is not 
generated 
based on the 
data. 

(Im et al., 
2001) 

Changes in the 
market value 
of the firm 

Effectiveness of IT 
investments 

Price reaction 
Volume reaction 
Industry effect 
Size effect 
Time lag effect 

The event 
study 
methodology 
Statistical 
methods 

There is no 
price reaction 
for larger firms 
and a positive 
price reaction 
for smaller 
firms. 
There is an 
increase in both 
price and 
volume reaction 
over time. 
Both industry 
and size effects 
become 
stronger over 
time 

All potential 
confounding 
variables were 
not 
considered. 
Only related 
to stock 
prices. 
Theory is not 
generated 
based on the 
data. 
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IT spending is 
of value to the 
firm. 

(Sia et al., 
2016) 

Pursuing a 
digital business 
strategy 

Digital strategy success 
factors 

Structure 
process 
technology 
people 

Case study Key capabilities 
that an 
organization 
needs to build 
so it can pursue 
a digital 
business 
strategy. 
There is greater 
urgency to 
“rewire” or 
transform 
traditional 
enterprises so 
they can 
accommodate 
digital 
innovation. 
Important 
questions to ask. 
 

Case study 
restricted to 
the banking 
domain. 
Narrowed 
focus. 
No 
quantitative 
proof. 
Theory is not 
generated 
based on the 
data. 
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Table 36: Summary of Prior IS Research of Artificial Intelligence. 

Study Theory Base DV IV(Moderator/Mediator) Method Key Arguments & 
Findings 

Limitation 

(Benbya 
et al., 
2021) 

Tensions of AI for 
information 
systems 

AI tensions Substitution of jobs vs. 
tasks  
Automation vs. 
Augmentation  
Humanlike vs. 
machinelike 
conversations  
Human vs. artificial 
emotion intelligence 
Machine rationality vs. 
human judgment 
Human vs. machine bias 
Decision accountability 
humans vs. machines 
 

Literature 
review and 
case study 

Differentiated effects 
that AI brings about 
and the implication 
for future IS 
research. 

Qualitative 
case study 
approaches. 
Empirically 
proven. 
No 
quantitative 
proof. 
Theory is not 
generated 
based on the 
data. 

(Strich et 
al., 2021) 

Mechanisms 
through which 
employees 
strengthen and 
protect their 
professional role 
identity.  
 

Role identity 
before and 
after AI 

Foresighted consulting 
enhanced consulting 
services,  
data manipulation,  
 self-elevation, 
responsibility transfer, 
illustration of 
consultation, 
 reassurance 

Case study Shedding light on 
how a substitutive 
decision-making AI 
system affects 
employees’ 
professional role 
identity. 
Revealing different 
mechanisms utilized 
by the two consultant 
groups to respond to 
the changes in their 
professional role 
identities. 
Highlighting the 
boundary conditions 
resulting from 
introducing a 
substitutive decision-
making AI system. 
Contribution to the 
empirical literature 
on AI and 
employees. 

Focusses on 
single point of 
time. 
Single case 
study. 
No 
quantitative 
proof. 
Theory is not 
generated 
based on the 
data. 

(Riemer 
and 
Peter, 
2020) 

Willcocks’ analysis 
of the automation 
and future of work 

Effect on work 
life quality 

Task complexity 
Skills development 
Job control 
Work intensity 
Nature of work 
Arrangements Perceived 
job security. 
Perceived job security 

Literature 
review and 
Wilcocks’ 
analysis 

Automation and the 
future of work must 
include the qualitative 
changes automation 
will bring to work 
and workplaces. 
Suggest that aspects 
of job design and 
employee experience 
should become part 
of new automation 
initiatives so that 
automation does not 
invariably result in 
unintended outcomes 
for work life quality. 
Most countries lack 
the capability to keep 
track of changes in 
the qualitative aspects 
of work in their 
economies. 

No 
quantitative 
proof. 
Theory is not 
generated 
based on the 
data. 

(Khanday 
et al., 
2020) 

Help of various AI 
tools 

Diagnosis of 
disease 

Image data 
Textual data 
24 Attributes 

Data analysis 
Classification 

Revealed that logistic 
regression and 
multinomial naive 

Quantitatively 
proven. 
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Logistic 
regression  
Multinomial 
naıve Bayes 
Support 
vector 
machine 
Decision 
trees 
Bagging 
AdaBoost 
Random 
forest 
Stochastic 
gradient 
boosting 
 

Bayesian classifier 
gives excellent results 
by having 94% 
precision, 96% recall, 
95% f1 score, and 
accuracy 96.2% 
Various other 
machine-learning 
algorithms that 
showed better results 
were random forest, 
stochastic gradient 
boosting, decision 
trees and boosting. 
The efficiency of 
models can be 
improved by 
increasing the 
amount of data. 

Needs more 
data. 
Theory is not 
explained only 
results have 
been 
explained. 

(Fügener 
et al., 
2021) 

Attitude toward AI 
Delegation 
Complementarity 
on the instance 
level 
Role of feedback 

Accuracy AI alone 
Humans alone 
Delegation 
Inversion 

Experimental 
design 
Descriptive 
statistics 
 

Demonstrates that 
humans and AI can 
work together. 
If AI would be 
responsible to 
delegate to humans, 
the resulting 
performance was 
higher than that of 
the AI alone. 
Inversion might also 
improve human work 
perspectives. 
Humans making 
more arbitrary 
delegation decisions 
when dealing with 
difficult tasks, which 
worsens their overall 
performance. 

Not 
generalizable. 
Restricted to 
nonspecialized 
situations. 
Theory is not 
generated 
based on the 
data across 
situations. 

(Berente 
et al., 
2021b) 

Synthesizes the 
insights on 
managing AI 

Facets of AI Autonomy 
Learning 
Inscrutability 

Exemplar 
case studies 

Reflects about how 
our own norms, 
processes, outputs, 
and “ground truth” 
may be challenged in 
terms of autonomy, 
learning, and 
inscrutability 

Narrowed 
focus. 
No 
quantitative 
proof. 
Theory is not 
generated 
based on the 
data. 

(Schanke 
et al., 
2021) 

Anthropomorphism 
of AI-enabled 
automated 
customer service 

Transaction 
outcomes 

Social presence 
Communication delays 
Humor 

Field 
experiment 
Descriptive 
statistics 

Anthropomorphism 
influences transaction 
conversion positively. 
Anthropomorphism, 
in our context, plays 
the most significant 
role in sensitive 
information 
disclosure. 
Augmenting AI-
enabled autonomous 
agents with human-
like social intelligence 
can increase their 
performance in 
customer service 
settings. 

Narrowed 
focus. 
Theory is not 
generated 
based on the 
data. 

(Someh 
et al., 
2022) 

Inductive grounded 
theory. 
Challenges and 
explains the ability 
dimensions of AI 

AI 
explainability 

Decision tracing 
Bias remediation 
Boundary setting 
Value formulation 

Case study Include and engage 
with the entire 
organization to Build 
AIX capability. 
Look beyond the AI 
team to assemble the 
required AI 
explanation expertise. 
Document current 
practices for decision 
tracing, bias 
remediation, 

Narrowed 
focus. 
Theory is not 
generated 
based on the 
data. 
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boundary setting, and 
value formulation. 
 

(Mayer et 
al., 2020) 

Unintended 
consequences of 
introducing a 
decision-making AI 
system 

Unintended 
consequences 
of AI 

AI system Case study Highlights the 
potential benefits of 
substituting human 
decision-making with 
an AI system. 
Was confronted with 
several unintended 
consequences of 
introducing the AI 
system, for both 
frontline employees 
and the organization, 
which were not 
anticipated by senior 
management during 
the planning stages. 
Unintended 
consequences could 
threaten the intended 
organizational goals 
of introducing an AI 
system. 
Provided 
recommendations for 
managers who intend 
to implement or have 
already implemented 
AI systems in their 
organization. 

Narrowed 
focus. 
Theory is not 
generated 
based on the 
data. 

(Rana et 
al., 2022) 

Dynamic capability 
view and 
contingency theory 
Resource-based 
view 
Unintended 
consequences of 
AI-integrated 
business analytics 
(AI-BA) influence a 
firm’s overall 
competitive 
advantage 

Adverse firm 
performance 

Opacity 
Operational inefficiency 
Contingency planning 
Competitive 
disadvantage. 

Interviews 
Descriptive 
statistics 
 

AI-integrated BA 
solution might delve 
into several 
misplaced 
assumptions where 
the potential dangers 
might be introduced 
by AI in the firm 
settings. 
Effective 
administration of AI 
governance in a firm 
brings sustenance 
toward 
competitiveness of 
that firm. 
Ineffective AI 
governance would 
negatively influence 
the performance of 
the firm, and in that 
way, the firm would 
lose its 
competitiveness 
through operational 
inefficiency. 
 

Narrow focus 
to service 
industries. 
Low sample 
sizes. 
Overlooked 
technical 
issues. 
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14 APPENDIX C 

Table 37: Summary of Prior IS Research of Intelligence Process Automation. 

Study Theory Base DV IV(Moderator/Mediator) Method Key Arguments & 
Findings 

Limitation 

(Denagama 
Vitharanage 
et al., 2020) 

Empirical 
studies on RPA 
benefits gained 
by 
organizations 

RPA benefits Accuracy 
Average handling time 
Process efficiency 
ROI 
Customer satisfaction 

Exploratory 
case study 

“Improvement in 
accuracy” was the 
most discussed 
anticipated benefit, 
while “improvement 
in customer service 
and customer 
satisfaction” was the 
least discussed 
anticipated benefit. 
Identified seven 
anticipated benefits 
and seven 
unanticipated 
benefits. 

Single case 
study. 
Single process 
 

(Plattfaut, 
2019) 

Identify key 
lessons learned 
in RPA 

Lessons learned 
RPA 

Test beyond technology 
Program communication 
IT and business 
commitment 
Prioritization 
 

Case study Extends this test 
from a pure technical 
one to a test also 
including regulatory 
and governance 
issues. 
Includes RPA in the 
overall process 
optimization 
program 
communication. 
Business needs to be 
behind the 
technology and 
committed to RPA 
introduction. 
Not overthink 
prioritization 
procedures. 
Organizations need 
to source lasting 
capabilities. 

Single case 
study. 
 

(Carden et 
al., 2019) 

Resources and 
tools and 
techniques 
related to 
project 
execution 

RPA outcomes Cost 
Efficiency 
Cycle time or handling 
time 

Case study What are the 
resources, tools, and 
techniques related to 
project execution? 
Future issues and 
challenges related to 
robotics process 
automation, cognitive 
tools, and blockchain 
integration. 

Single case 
study. 
 

(Asatiani 
and 
Penttinen, 
2016) 

Challenges for 
RPA 
implementation 

RPA introduction Potential analysis 
Process assessment 
Business case 

Case study RPA business model 
is dependent on 
short- and long-term 
goals. 
Analyzes the market 
opportunity. 

Single case 
study 
 

(Lacity et 
al., 2021) 

Guidelines for 
RPA action 
principles 

RPA action 
principles 

Strategy 
Sourcing 
Program management 
Process selection 
Tool selection 
Stakeholder buy-in 

Case study Workable approach 
that gains a great deal 
of contemporary 
information, 
providing insights 
into how the 
technologies 
function, how they 
are deployed, and 
with what results. 
 

Single case 
study 
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(Kedziora 
and 
Penttinen, 
2021) 

Discussion 
about RPA 
journey 

RPA governance Exception handling 
software 
Integration 
Reusability 
Downtime 
Standardization 
IT complexity 

Case study Outlines several 
governance-related 
issues and decision 
points that must be 
addressed in 
connection with any 
deployment of 
robotic process 
automation. 
The key issues are 
related to the 
software’s 
development and 
maintenance, robotic 
process automation 
governance, and IT 
infrastructure. 

Sole case 
study 

(Oshri and 
Plugge, 
2022) 

Journey to 
implement 
RPA solutions 

RPA introduction Process feasibility 
Service quality 
Customer satisfaction 

Case study Understanding what 
bots can and cannot 
do. 
Understanding the 
end-to-end business 
process. 
When the bot fails to 
complete a task. 

Sole case 
study. 
Empirically 
not proven. 

(Lyytinen et 
al., 2021) 

Metahuman 
systems 

Metahuman critical 
factors 

Delegating 
Monitoring 
Cultivating 
Reflecting 

Literature 
survey 

Addresses issues of 
human goals and 
values in settings 
where metahuman 
systems evolve or are 
applied. 
Achieving benefits 
and avoiding 
problems will require 
better understanding 
of systems level 
learning. 
 

Literature 
review. 
Empirically 
not proven. 

(Lyytinen et 
al., 2021) 

A Framework 
for explaining 
the behavior of 
black-box AI 
systems 

AI explanation Model 
Goals 
Training data 
Input data 
Output data 
Environment 

Case study Framework for 
explaining the 
behavior of black-
box AI systems can 
facilitate the 
successful 
introduction of AI. 
 

Sole case 
study 
Empirically 
not proven 

(Mendling 
et al., 2020) 

Orthogonal 
assumptions of 
process 
management 
and digital 
innovation 

Convergent logic Combined process 
design 
 

Exemplar 
case studies 

BPM and digital 
innovation belong 
together, like two 
sides of the same 
coin. 
BPM and digital 
innovation are 
complementary fields 
of inquiry that have 
much to learn from, 
and offer to, each 
other. 
Processes, 
technologies, and 
products are 
intertwined. 
 

 

(Bygstad 
and 
Øvrelid, 
2020) 

Investigates the 
alignment 
between 
process 
innovation and 
architectural 
alignment 

Successful process 
innovation and 
digital 
infrastructure 
alignment 

Lightweight IT 
Vendor boundary 
resources 
Message exchange 

Case study The careful 
deployment of 
lightweight IT in 
onsite configuration, 
loosely coupled from 
the infrastructure 
activities, allows for 
fast process 
innovation while 
leveraging the slow 
and nonlinear 
evolution of 
infrastructure. 
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Model to describe the 
interaction between 
lightweight IT and 
heavyweight for 
process innovation 
efforts to successfully 
interact and align 
with a large existing 
digital infrastructure. 
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15 APPENDIX D – WEKA FOR DECISION TREE 

INDUCTION 

 

 

Figure 13: Weka Tool for Decision Tree Induction 
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Figure 14: Data Preprocessing in Weka 

 

Figure 15: Data Classification Using C4.5 Decision Tree Induction 
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Figure 16: Representation of decision tree for FTE Reduction in Weka 
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Figure 17: Decision Tree Pruning using Weka. 

 

 

 


