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ABSTRACT

In this paper, we present a novel ranking technique that
we developed in the context of an application that arose
in a Service Delivery setting. We consider the problem of
ranking agents of a service organization. The service agents
typically need to interact with other service agents to ac-
complish the end goal of resolving customer requests. Their
ranking needs to take into account two aspects: firstly, their
importance in the network structure that arises as a result
of their interactions, and secondly, the value generated by
the interactions involving them. We highlight several other
applications which have the common theme of ranking the
participants of a value creation process based on the net-
work structure of their interactions and the value generated
by their interactions. We formally present the problem and
describe the modeling technique which enables us to encode
the value of interaction in the graph. Our ranking algorithm
is based on extension of eigen value methods. We present ex-
perimental results on real-life, public domain datasets from
the Internet Movie DataBase. This makes our experiments
replicable and verifiable.
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1. INTRODUCTION
There are many situations from quite diverse domains

which display the following common characteristics. A group
of people or agents are involved in a set of activities that are
intended to create value. The process of value creation is
rarely based on individual ability and typically involves in-
teraction or collaboration. So, the end result of the process
is two pronged: firstly, there is a cumulative value created
due to the interactions between the agents and secondly, an
interaction network that captures the pattern of historical
interactions between the agents involved in the value cre-
ation process. Therefore, when we want to rank the agents
in such settings we have to take into account their influence
in the network as well as their contribution to the value
creation process.

We begin with two motivating applications. First one is an
application in software services setting which directly moti-
vated our research work. One of the distinguishing features
of the Services industry is that it involves people interacting
with each other to solve a client’s specific problem rather
than transforming goods (or raw materials) to produce a
product. One of the predominant components of the soft-
ware services industry is that of providing maintenance and
support services. Essentially, the service organization takes
the responsibility for resolving requests for maintenance and
support activities of a software product (or a specific mod-
ule of a software product). The requests may come from
either the users of the software product or a testing team of
the software product. A service delivery manager’s view of
the operations is as follows: a series of requests arrive; for
each request, the manager puts together a team of agents
to resolve the request; an outcome indicating the effective-
ness with which the request is resolved is recorded. After
a sufficiently long duration of delivering such a service with
a stable set of agents, the delivery manager may wish to
rank the agents. One might be tempted to believe that the
manager would like to rank the agents based on their aver-
age effectiveness. But, our interviews with domain experts
revealed that the importance of an agent is not just based
on average effectiveness. Domain experts would like to take
into account an agent’s connection pattern in the delivery



network as well due to the following reasons. A typical re-
quest requires modifications to one or more submodules of
the product and also it needs agents with different roles such
as developer, reviewer, tester etc. Since each request re-
quires handoffs between the agents responsible for them, an
agent’s connections indirectly capture the agent’s influence:
familiarity with the subdomains of the connected agents due
to the handoffs and ability (or inability) to work with the
other agents (depending on the outcomes). When a new
service request arrives, estimates of the agents’ influence (or
rank) and their role/expertise can be utilized to make a de-
cision on the composition of the team to resolve the request.

As mentioned before, similar problem arises in diverse sce-
narios. As a second example, we consider the problem of
ranking authors based on academic publications. The goal
of academic publication is to disseminate new knowledge
and novel insights obtained from academic research. So,
the outcome of every academic publication can be measured
based on parameters like, the conference or journal in which
it appeared, sustained citations it gets over a period of time,
awards it wins and so on. At the same time, the influence
of an academic researcher is not determined merely by the
outcomes of the papers. The connections an author devel-
ops and the influence of coauthors play a major role in the
overall influence of an academic researcher. So, the rank-
ing of academic researchers needs to take into account the
structure of their interactions (obtained from a database like
DBLP) and the impact of their papers (obtained from cita-
tions, impact ratings of conferences etc). Some of the works
in this direction can be seen in [10, 11, 9].

The literature of social network analysis (SNA) is rich on
ranking nodes [13, 7, 12, 8]. However, most of the techniques
are aimed at capturing the structural properties of the net-
works. To the best of our knowledge, the task of ranking
nodes while simultaneously taking into account both the
structure and the outcomes has not been formalized. We
summarize the SNA literature and shortcomings of the tra-
ditional ranking techniques.

The notion of service interaction networks was introduced
in [6] to capture and analyze the phenomena of agents inter-
acting for a shared goal of value creation. In this paper, we
develop a novel technique for ranking nodes that takes both
the structure and outcomes into account. We first build
an augmented network that varies from standard social net-
works by introducing special nodes corresponding to out-
comes and creating appropriate directed edges (as opposed
to undirected networks that are common in social network
analysis). In the augmented network, the special status of
the outcomes is captured by associating certain explicit val-
ues (or utilities) with the outcome nodes. We then develop
an eigenvector-like method to rank the nodes of the aug-
mented network such that the special outcome nodes are
not influenced by the ranking process (as they are priors).
We explore interesting mathematical and semantic proper-
ties of our technique.

We present experiments that show the progress our method
makes in the direction of outcome aware ranking. We com-
pare it against a baseline algorithm derived from traditional
eigenvector ranking approach. As outlined in the conclu-
sions, this is a limitation and we are working on other base-
line algorithms for comparison. The nature and sensitivity
of the business data prevents us from sharing the details
of our findings in the service delivery application. In this

paper, we present our experiments and findings on real-life
datasets from the Internet Movie DataBase (IMDB)1. These
datasets are such that, it is easier for wider audience to re-
late to, and also to replicate and verify our experiments.
The instances we have been able to extract from the IMDB
dataset are of moderate size. We leave the tasks of rigorous
experimentation on even larger datasets and comparisons
against larger set of baseline heuristics for future work.

The rest of the paper is organized as follows. In Sec-
tion 2.1, we discuss related literature on node ranking in
graphs. In Section 2.2, we illustrate the inadequacies of cur-
rent ranking schemes, taking the interactions in Figures 1
and 2 as an example. In Section 2.3, we formally define the
problem. In Section 3, we present our ranking algorithm
for outcome and structure aware ranking. In Section 4 we
present our experimental setup and results.

2. NODE RANKING IN NETWORKS
Ranking nodes of a network with respect to some impor-

tance or influence measure is an active research topic in the
fields of social network analysis, network data mining, and
in general complex networks. A node refers to an entity
that could be an individual, role, group, or an organiza-
tion. Edges encode relationships between nodes, which are
of two kinds: Persistent (weblinks, friendship, membership,
affiliations) and discrete interactions (e-mails, collaboration,
authorship, team work). In the following, we briefly review
some of the works in node ranking related to our problem.

2.1 Related Literature
Various methods exist for ranking nodes in a network.

Degree Centrality is a measure in which the nodes in the
network are ranked based on the number of nodes to which
they are connected. This translates to ranking nodes purely
based on their experience or number of interactions. Eigen-
vector centrality [8, 12] is a popular measure for ranking
nodes in a network. It measures the centrality of a node as
a linear combination of the centralities of the nodes to which
it is connected. Unlike degree, which weighs every adjacent
node equally, the eigenvector weighs adjacent nodes accord-
ing to their centralities. Let A = [aij ]N×N be the (weighted)
adjacency matrix of a network with N nodes. The measure
xi for node i depends on the status measures of the interact-
ing nodes; xi ∝

P

j
aijxj . This can be expressed in matrix

notation as λx = Ax. Here, λ is the largest eigenvalue and
x is the corresponding eigenvector. The agents can then
be ranked based on the component wise value of the eigen-
vector x. The idea of using the eigenvector to do ranking
dates back to the 1950’s [13, 7]. However, in recent times,
this concept has been applied on a massive scale in ranking
the web-pages in the HITS [8] and the PageRank [12] algo-
rithms. A small representative sample of relevant work on
node ranking with relevance to the problem considered in
this paper, are presented below.

Co-authorship networks have been used extensively to de-
termine the status of individual researchers and the struc-
ture of scientific collaboration [10, 11]. To rank the authors
in a co-authorship network, AuthorRank algorithm was pro-
posed in [9]. It is a modification of PageRank [12] algorithm
for a weighted, directed network. PageRank is originally
designed to rank retrieval results based on the hyperlink

1http://www.imdb.com/interfaces
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structure (persistent relationship) of the web, which is a di-
rected, binary graph. The ranking is similar to eigenvector
ranking where a page has high rank if the sum of the ranks
of its backlinks is high. In AuthorRank, the construction
of the weights on the links between the authors is different
from that of the PageRank. The co-authorship frequency
and the number of authors per publication are taken into
account in the network construction. Some context aware
measure have also been proposed. Haveliwala [5] developed
topic-sensitive PageRanks by computing several eigenvec-
tors biased by specific topics. The rankings for a query was
obtained by appropriate combination of precomputed eigen-
vectors. White and Smyth [14] developed an algorithm to
rank the relative importance of nodes in a network with re-
spect to a set of “root nodes”. Their technique is based on
the notion of weighted paths. A node is considered to be
important to a root node if they share many short paths.
Chitrapura and Kashyap [3] presented a flow based algo-
rithm to rank webpages based on their relevance to the user
query. Delong et al. [4] developed conceptual encoding of the
links of the webgraph by extracting keywords and repeating
phrases from anchor data of the web-pages. They exploited
the augmented webgraph to present improved concept-aware
page ranking. Asur et al [1] presented algorithms to find
important nodes in dynamic networks by studying the node
evolution and interactions. We observe that none of these
works explicitly take the “outcome” of the events that give
rise to the structure while ranking the nodes.

2.2 Ranking based on Structure and Outcomes
of Interactions

In this section, we present some of the limitations of the
previous approaches to measuring the influence or impor-
tance of the nodes of a network. Consider the example
shown in Figure 1 which models agent interactions in three
different applications. There are five agents A, B, C, D, and
E and four interactions involving subsets of them. In case

Methodology Ranking

Degree C, B, {A, D, E}
Eigenvector C, B, {D, E}, A
Outcome C, B, A, D, E
Expected (Structure + Outcomes) C, B, D, A, E

Table 1: Rankings based on different methodologies

of service delivery, outcome is measured based on customer
satisfaction index, in case of academic collaboration, cita-
tion is assumed to be the outcome, and in case of movies,
the average IMDB rating with a threshold of 8/10 is taken to
be a binary outcome. The structure of their interactions is
captured in Figure 2. For the sake of exposition, we consider
the case of service delivery outcomes (first row of Figure 1).

We begin with the ideal or expected ranking that takes
both the structural importance of the nodes and the out-
comes into account.

2.2.1 Expected Ranking based on Structure and Out-
comes of Interactions

Considering both structural importance and contribution
to outcomes, it is imperative that C should be ranked first
and B should be ranked second. In terms of structural im-
portance, E and D have the advantage of being connected
to the most important node. However, the node A has the
distinction of having the highest outcome score. But, A’s
outcome score is only marginally higher than D’s. E’s out-
come score is much lower than A’s. So, we consider D, A, E
to be the expected ordering between them that takes both
the aspects into account; thus, giving the final ordering of
C, B, D, A,E.

The results of known ranking methods is tabulated in
Table1. Next, we explain different rankings in some detail.

2.2.2 Degree Ranking

Degree ranking merely counts the number of interactions
and hence quantifies only the experience. The ranking due
to degree is: C, B, {A, D, E}.

2.2.3 Eigenvector Ranking

Eigenvector ranking reflects the structural importance quite
well by modeling the inherited or transferred status and im-
plicitly takes into account the degree ranking. The largest
eigenvector for the adjacency matrix of the network is 1.8477
and the corresponding eigenvector is 0.271 (A), 0.5(B), 0.653
(C), 0.354 (D), and 0.354 (E). The ranking is: C, B, {D, E}, A.
With respect to this example, its limitation is exposed by
the fact that it fails to distinguish between D and E which
have a clear separation in terms of outcomes.

2.2.4 Outcome based Ranking

The ranking obtained by just considering the average sat-
isfaction indices for each of the nodes is, A, D, E, B, C. This
ranking completely ignores the structural importance of nodes
B and C.

From the above discussion, we observe that the intended
ranking mechanism should be similar in spirit to eigenvec-
tor ranking. However, it should be able to take into ac-
count value creation aspects of nodes to distinguish between
nodes which seem to display similar or equal structural im-
portance.



2.3 Problem Definition
In this section, we formalize the problem considered. Let

V = {1, 2, . . . , N} be the set of agents in the system. Let
{1, 2, . . . , T} be the set of interactions that have taken place
in the system. Each interaction results in one of the possible
outcomes R = {1, . . . , M}. Following indices are used: i and
j for agents, t for interactions, and m for the outcomes.

An interaction t ∈ {1, 2, . . . , T} involves a subset of agents
Vt ⊆ {1, 2, . . . , N}. The pattern of the interaction is given
by the edge set Et with a non-negative δt

ij denoting the
weight on the edge (i, j) ∈ Et. The weight for non-existent
edges is zero: δt

ij = 0, (i, j) 6∈ Et. As t is an interaction
among the Vt agents, the graph (Vt, Et) is connected. The
specific structure of the graph is given by the nature of the
interaction. If the interaction is that of a group work with
one interaction involving all, then the graph is complete.
For a hierarchical interaction, the graph will have a tree
structure. Let Rt ∈ {1, 2, . . . , M} be the observed outcome
of the interaction. The interaction t can thus be completely
characterized by the tuples (Vt, Et, {δ

t
ij}, Rt). For the kind

of applications of interest to us, whether it is service delivery
or academic collaboration or IMDB rating, the interactions
are mainly of group work.

Let ρm ∈ R denote the utility or value of an outcome
m ∈ R. The set {ρm : m ∈ R} can be cardinally ordered
and if ρm′ > ρm′′ , then the outcome m′ is preferable to
m′′. Typically, the utility of the outcomes is ascertained
based on domain knowledge and also varies over time. Even
more importantly, the user of a ranking scheme may want
to experiment with different options of outcomes. So, the
representation of the data and the technique should ideally
allow the user to change just the outcome values and observe
the corresponding changes in ranking.

Given the past t interactions {(Vt, Et, {δ
t
ij}, Rt)} and the

outcome utilities {ρm : m ∈ R}, goal is to rank the agents
in a manner that captures both their structural importance
as well as their contribution to the value creation process.

3. OUR METHOD

3.1 Network Construction
Firstly, the individual interactions are aggregated to ob-

tain the agent interaction network, which, with a slight abuse
of notation, is given by the graph (V, E, {δij}):

V = ∪tVt (1)

E = ∪tEt (2)

δij =
X

t

µtδt
ij ∀i, j (3)

The overall strength of interaction between any two agents
is the linear combination of the individual strength of inter-
actions. If the interactions are chronologically ordered, then
µt can be used as the past influence factor to model the rela-
tive importance of the interactions with respect to time. By
judiciously choosing {µt}, one can model various kinds of
past influences: Uniform, sliding window, etc. We call the
edge weight matrix A = [δij ] of order N as the agent inter-
action matrix. This matrix aggregates the past interactions,
but does not capture any information on the outcomes of
the interactions. We now present a method that augments
this matrix in a way that appropriately aggregates the con-
tribution of the nodes to the value creation process.

3.1.1 Augmenting the Outcomes as Nodes

The main reason the eigenvector based approach captures
the structural aspects so well is the manner in which a node
transfers part of its status to its neighbors and derives its
own status as a linear combination of the status of its neigh-
bors. Consider an interaction which involves Vt nodes and
have Rt as outcome. We need a mechanism by which the
utility of Rt can be transferred in parts to the nodes in Vt.
At the same time, the utility of the outcome Rt itself is a
prior and should not be affected by the status of the nodes
in Vt. This suggests the following natural directed construc-
tion. Let the outcome of interaction t be m. The graph
(Vt, Et, {δ

t
ij}) is updated as follows:

Vt ← Vt ∪ {m} (4)

Et ← Et ∪ {(m, i)}, ∀i ∈ Vt (5)

δt
mi ≥ 0, ∀i ∈ Vt (6)

X

i∈Vt

δt
mi = 1 (7)

The outcome m is added as a node (and is called as outcome-
node). A directed edge is added from m to each of the other
agents that participated in the interaction. The weights on
the newly added edges that are given by (6) and (7), captures
the relative contribution of agents in realizing the outcome
m. The weights on the non-existent edges are zero: δt

im = 0,
∀i and δt

mi = 0, ∀i 6∈ Vt. The status or the influence of the
outcome node is later used in the algorithm to transfer it to
the participating nodes via the directed edges.

Without loss of generality, we can assume that each of the
outcomes is realized in at least one of the interactions. The
aggregation of the graphs augmented with outcomes is given
by:

V ← V ∪ {1, 2, . . . , M} (8)

E ← E ∪ {(m, i) : ∃t, Rt = m ∧ i ∈ Vt} (9)

δmi =
X

t

ωtδt
mi, ∀i, m (10)

δim = 0 (11)

The outcomes {1, 2, . . . , M} are added as nodes to the in-
teraction network and an edge from outcome m to a node i
exists if i had been a part of at least one interaction with out-
come m. The weights on the outcome-agent edges are taken
as linear combination of the corresponding weights in the
individual interactions. We call the above network as the
agent-outcome interaction network and the corresponding
edge weight matrix as the agent-outcome interaction matrix
∆ of order (N + M). For the network in figure 2 with out-
come II of figure 1, the agent-outcome interaction network
is shown in figure 3. The four outcomes O1, O2, O3, O4 cor-
respond to the outcomes of the four interactions. Assuming
equal contribution from each agent, weight on the directed
edge from an outcome to an agent is 1/2.

The matrix ∆ captures both the inter-agent interactions
and agent-outcome interactions. It is asymmetric. The over-
all intended effect of the directed construction is to let the
outcome-nodes transfer their utilities to the agents and the
utilities of the outcome-nodes are not altered. The matrix
∆, however does not take into account the utilities of the
outcomes {ρm}. We treat the utilities as exogenous status
of the outcomes and combine with ∆ to obtain the rank-
ing. Note that, in our representation, to experiment with
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different valuations of outcomes, all we need to do is specify
different e vectors.

3.2 Outcome Augmented Ranking Algorithm
(OARA)

The traditional eigenvector ranking has a limitation that
it can only be applied to non-negative, symmetric matri-
ces. Thus, if the underlying graph is asymmetric, especially
with unchosen nodes (nodes with zero in-degree), the rank-
ing provided by eigenvector centrality is inconsistent. The
unchosen nodes receive no status from the other nodes and
hence contribute nothing to the nodes to which they are con-
nected. But, in our construction the zero in-degree nodes
play a critical role of transferring the status of outcomes to
the nodes.

Let e be the vector that captures the status of the out-
comes nodes. That is, e[i] for agent nodes are made identical
and for outcomes nodes, it will be a function of their values.
Let x be the vector that an iterative technique computes as
the final influence of the nodes. In other words, the differ-
ence vector (x− e) should be expressible in an eigenvector-
like form with respect to a scaling parameter α and the
incident matrix ∆ of the augmented network.

(x− e) = α∆T x (12)

In other words, we are looking for an x such that,

x = α∆T x + e (13)

Observe that the Equation (13) captures the effect of
interactions and the values associated with the outcomes
nodes. Our measure of influence of the nodes is similar to a
centrality measure used by Bonacich [2] in finding influence
of nodes in unweighted, directed graphs in very small social
networks coming from marriage data among elite families.
In what follows we establish some important properties of
our approach.

Firstly, it is easy to see that, it reduces to the eigenvector
ranking when the relationships are symmetric and the value
of all the outcomes are identical (say zero). In the general
setting as above, the value of x is given by

x = (I − α∆T )−1e (14)

The vectors e and x, and identity matrix I are of order
(N + M). We can show that the method works best when
α is in the range (0, 1/λ) where λ is the largest eigenvalue
of ∆ (when it exists). We omit the details due to space
considerations. We now present the effect of both the free
parameters of the iterative approach: α and the vector of
outcome values, e.

3.2.1 Vector of Outcome Values

In this section, we first show that our usage of the vector e
is semantically sound. In particular, we show that the value
of outcome nodes themselves do not undergo any change
during the algorithm. We then show how to set e rigorously.

Let us assume for now that we have chosen α ∈ (0, 1/λ).
The vector e for our problem is (e1, e2, . . . , eN , eN+1, . . . , eN+M ),
where the first N components correspond to the exogenous
status of the nodes and the last M correspond to the exoge-
nous status of different outcomes. We define e as follows:

ei = 1, ∀i (15)

eN+m = θρm, ∀m (16)

The assignments in Equation 15 reflect the fact that the ex-
ogenous status of all the agent nodes are uniform. The out-
comes on the other hand have their utilities as the external
status. The utilities are unique up to a linear transforma-
tion and hence the external status of an outcome is defined
as proportional to its utility by a non-zero scalar θ. In other
words, {θρm} still preserves the cardinal structure and the
relative magnitude of the utilities are unchanged.

� � m a x
R a n k i n gq u o t i e n t x A

x Bx C x A
x B x C

R a n k i n g : A , B , C R a n k i n g : B , A , CR a n k i n g : B , C , A R a n k i n g : C , B , A
Figure 4: Rank quotients of vertices as a function of

θ

The justification for associating non-uniform exogenous
status with the outcome nodes is: the utilities of the differ-
ent outcomes are independent of the way they are achieved.
For example, the utility of a research article is not deter-
mined by the authors of the paper, rather it is decided by its
impact, say the number of citations it gets. Therefore, while
the exogenous status of the outcome-nodes should influence
the status of the other nodes, the solution x of Equation 14
should not alter the status of the outcome nodes. The follow-
ing derivations show this property to be indeed true. Define
matrix Y of order (N + M):

Y = (I − α∆T )−1 (17)

By definition of ∆,

yN+m,N+m = 1, ∀m (18)

yN+m,N+m′ = 0, ∀m,m 6= m′ (19)

Rephrasing x vector in terms of Y ,

xi =
X

j

yijej +
X

m

yi,N+meN+m, ∀i (20)

xN+m = eN+m, ∀m (21)



α Ranking

0.054, 0.102, 0.15, 0.198 C, B, A,D, E
0.247, 0.295, 0.343 C, B, D, A, E
0.391, 0.439, 0.487 C, B, D, E, A

Table 2: Ranking for different α values
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and 5 outcomes

Substituting for the e, as defined in (15) and (16),

xi =
X

j

yij + θ

 

X

m

yi,N+mρm

!

, ∀i (22)

xN+m = θρm, ∀m (23)

Thus the components of x corresponding to outcome nodes
have the same value as their external status. On the other
hand, xis (called ranking quotients) for the other nodes are
dependent on θ and rankings could possibly change with re-
spect to the choice of θ. As the other terms in (22) are
constants, we have N lines given by equations (22) as a
function of θ. If all these lines are parallel, then ranking is
independent of θ. Otherwise, the rankings will depend on θ
as shown in figure 4. The ambiguity in ranking is due to the
magnitudes of ∆, θ, and {ρm}. The ∆ and {ρm} are instance
specific and hence θ should be chosen such that ranking is
not affected. One possibility is to choose a positive θ > θmax

(greater than all the intersecting points, as shown in figure
4), so that the ranking will remain unchanged with further
increase in θ value. As each line will possibly intersect at
N − 1 points with N − 1 lines, the total number of possible
intersecting points are (N − 1)(N − 2)/2. Hence, the max-
imum of the intersection points, θmax can be estimated in
O(N2) time.

3.2.2 The α Value

Another free parameter that affects the ranking is α ∈
(0, 1/λ). The parameter α reflects the relative importance
of the structure versus outcomes in determining the rank of
the agents. For the network in Figure 3, the largest eigen-
value of the ∆ matrix is 1.8477 and hence α was chosen in
the range (0, 1/1.8477). The table 2 shows the rankings ob-
tained for ten different equally spaced α values in the above
range. The ranking given by mid-range α values is that of
the expected ranking, whereas the low range is same as that
of outcome rank and the higher range is more similar to
eigenvalue and degree rank (also see table 1). In the fol-
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lowing, we propose a novel way of analyzing the influence
of outcomes and interactions over the ranking and thereby
choosing α judiciously.

Let an α ∈ (0, 1/λ) be chosen. Let R be the ranking
for the utility {ρm}. Construct a new set of utility {µm}
with the opposite order of preference. Thus, if the outcome
has the highest utility in {ρm}, then it has the lowest in
{µm}. Similarly, the outcome with second highest in {ρm}
is one but last in {µm}. Let R be the ranking with utility
{µm} and α. For a given value of α ∈ (0, 1/λ), we would
like to estimate the influence of structure and outcomes in
the final rankings. We do this by exploiting the concept
of Kendall correlation [7]. Given two complete rankings,
it computes a score in the range of [−1, 1]. If the score is
close to 1, it means the two rankings are identical and if it
is close to -1, it means the two rankings are near opposite
orders. If the Kendall correlation, τ (R,R) is close to 1, then
the outcomes have negligible influence, as the rankings are
not modified with the reversed utilities. Similarly, if the
correlation coefficient is close to -1, one can infer otherwise.
An equal influence of outcomes and interactions is achieved
for an α with which zero correlation is achieved. Such an α
may not exist for a given interaction network, as shown in
the following example.

Consider the star interaction network of figure 5. The
agents A1, A2, . . . , A20 had interacted with agent A0. The
strength of interactions with A0 are 1, 2, . . . , 20 for agents
A1, A2, . . . , A20, respectively. Five outcomes O1, O2, . . . , O5
were observed. As shown in the figure, all the individual in-
teractions of A0 with A20, A19, A18, and A17 had resulted
in O1. Similarly, interactions with the next four agents in
decreasing sequence resulted in O4 and so on. Each inter-
action has equal contribution from A0 and the interacting
agent for the resulting outcome. Hence, the weight of the
edge from outcome node O1 to A20 is 10 (half of 20 inter-
actions) and that of to A0 is 37 (half of 20 + 19 + 18 + 17).
For brevity, the network augmented with outcome nodes and
edges are not shown in the figure.

Figure 6 shows three different utility functions U1, U2,
and U3 for the outcomes. The utilities are scaled to range
(0, 1] as they are unique up to a multiplication by a positive
scalar (θmax ensures the uniqueness). All the three func-
tions are increasing over O1, O2, O3, O4, and O5. The rate
of increase, however, is different: linear for U1, marginally
increasing for U2, and marginally decreasing for U3. Thus,
one can expect the difference in rate of increase to be re-
flected in the rankings. Let the utilities U1, U2, and U3 be
reversed. For example, reversed utilities of U1 for O1, O2,
O3, O4, and O5 are 1, 0.762, 0.525, 0.287, and 0.05. It is
easy to verify that the ranking for the reversed utilities of
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Figure 7: Trade-off of interactions and outcomes for

utilities U1, U2, and U3

U1, U2, and U3, for all α ∈ (0, 1/λ) will be A0, A20, A19,
. . . , A1. Incidentally for this network, this ranking is also
the same as that of degree based ranking and eigen ranking.
Figure 7 shows the variations in Kendall correlation coeffi-
cient for the rankings with opposite utilities, with respect
to α ∈ (0, 0.018) (the maximum eigen value λ = 53.572).
As expected, the correlation is increasing towards 1. For all
the three utility functions, the minimum possible correla-
tion coefficient is positive and hence influence of the struc-
ture of agent interactions is considerably more than that of
outcomes. For U2, Kendall correlation coefficient of zero is
obtained for α = 0.02 and a ranking obtained for this α takes
into account both the interactions and the outcomes in equal
strengths. Note that the above discussions are for illustra-
tive purposes and the inferences (with respect to U1, U2,
and U3) are limited to the given star network. However, the
proposed methodology of reversing the utilities and comput-
ing the correlation of the rankings for all α ∈ (0, 1/λ) enables
one to analyze the trade-off of influence of outcomes and in-
teractions. As it needs reversal of utilities and the rankings
are derived from the same network, there are no anomalies
in the trade-off analysis and requires no additional routines
for the algorithm. Based on our analysis of the impact of
α for the star network and for the network shown in Figure
3, we follow a heuristic of picking α in the lower half of the
range of (0, 1/λ) to give a slight bias towards outcomes.

3.3 Baseline Algorithm for Comparison
As shown during the problem formulation naive applica-

tion of known ranking techniques to our problem gives un-
satisfactory results as they were not designed keeping these
requirements in mind. However, as observed during the for-
mulation, several characteristics of the eigenvector ranking
are essential in our setting too. So, a natural question, can
a slight modification to the eigenvector ranking give mean-
ingful rankings in our context?

Consider the matrix ∆ obtained from the special construc-
tion described in Section 3.1.1. This matrix is an asymmet-
ric matrix. This is inevitable as the outcomes play a special
role. So, we cannot directly use eigenvector computation
which is meant for symmetric matrices. So, a natural heuris-
tic is to consider the ranking according to the left singular
vector corresponding to the largest singular value of ∆. In
this case, ∆ is modified as follows: if there is an edge of

weight w from an agent node i to an outcome node of value
v, the corresponding ∆ entry is set to be w · v. Intuitively,
this heuristic does not address the subtle technical point we
covered in depth: that of ensuring that the outcomes are
used to influence the ranking of agents and not vice versa.
Our experiments show that this approach produces results
which are inferior to the ones obtained by our technique.

4. EXPERIMENTS
In this section, we present experimental results that show

the efficacy of our approach. In the service delivery ap-
plication for which we developed our approach, ranking is
used in conjunction with the roles and responsibilities of the
agents to determine ideal team composition for new service
requests. Since an automated tool cannot capture all the nu-
ances of the service delivery, the output of the tool is used
as a guidance rather than in a strict sense. This, and the
sensitivity of the business data, makes is difficult to report
our field trials in a consistent way. Moreover, it is difficult
to replicate and verify without sharing the data which re-
veals certain statistical properties pertaining to the service
delivery organization. So, for the purpose of verifiability and
replicability, we conduct and report our experiments on the
datasets from IMDB.

We consider the problem of ranking movie actors. Typical
SNA approach would rank the agents based on the“co-actor”
network structure. Typical outcome oriented ranking would
rank the actors based on the average “outcome” of their
movies (with appropriate statistical filters). However, as
argued in the introduction, our approach of simultaneously
considering both the structure and the outcomes captures
the dynamics better (as demonstrated in the experiments as
well). We view each movie as an interaction involving the
leading actors of the movie. The outcome of a movie should
be indicative of its success or failure. We choose the IMDB
dataset as it provides us with an appropriate proxy for the
outcomes. Arguably, the outcome of a movie is impacted
quite a lot by participants such as the director and rest of
the technical team. However, in a mass rating medium like
IMDB where a single movie gets thousands of votes, it is the
performance of the main actors which influences its rating
to a great extent. So, for a movie, we consider its overall
user rating in the IMDB as its outcome. To ensure that our
assumptions hold, we consider only those movies that have
a certain minimum number of votes. It is also common to
see multiple actors sharing screen in multiple movies which
is common with the features of the service delivery applica-
tion that motivated our work. Another advantage with the
IMDB dataset is, we can use familiar, identifiable names in
small experiments and conduct controlled acts like changing
the outcomes of their movies or including/excluding specific
movies (or time periods) to show the conceptual strength of
our formulation.

IMDB allows us to programmatically extract the following
data: list of all movies, list of movies according to genre and
time period, within a genre top user rating movies, within
a genre a random mix of movies and so on. We also get the
user ratings corresponding to the movies in the lists that we
work with. Also, for each movie, it lists the list of actors
in the movie. So, for a given set of movies, we construct
the interaction network as follows: each actor who appears
in any of the movies is an agent, each movie represents an
interaction that is incident on all its main actors (we choose



first 6 listed names) and the outcome associated with the
interaction is the average user ratings for the movie. Given
this interaction data, we construct the ∆ matrix as described
in Section 3.1.1. Our experimentation explores the effects of
the different constructions for the vector outcome values. As
explained in last section, we choose α in the lower range of
(0, 1/λ). Some of the important conceptual aspects that we
exhibit from our experiments are:

• The baseline algorithm described in Section 3.3 is not
very sensitive to the changes in the outcomes.

• When the outcomes associated with a certain subset of
movies is changed, the rankings of the actors obtained
by OARA also undergoes corresponding change, thus
indicating the sensitivity of our technique for changes
in outcomes.

• When we increase/decrease the importance of a subset
of actors, then, in the ranking obtained by OARA,
the ranking of the actors who are well connected to
those actors also see a corresponding change. This
indicates that our approach takes the structure into
account while ranking the agents.

• The choice of e is important to obtain good results. We
demonstrate some effective and some not so effective
constructions for e.

The IMDB dataset, due to the presence of large number of
widely recognizable actors makes it easy to verify intuitive
correctness of the experiments on small datasets. We have
extracted two special instances (List 1 and List 2) each hav-
ing 28 and 30 actors respectively (small enough to be easily
interpreted and large enough to need computation) which
can be used to highlight conceptual strengths. List 1 and
List 2 are enumerated in Table 3. The first instance consists
of 28 actors from contemporary times. The second instance
consists of 30 actors whose prime era was before 1970s. Since
these two sets have fairly well known actors, we make our
conceptual points using these instances.

Results of ranking algorithms are generally meaningful
only for connected interaction networks. When the graph is
disconnected, the rankings across different components are
not comparable. Therefore, we limit our instances to only
connected interaction networks. We employ simple traver-
sal techniques over the movie and actor lists to construct
instances which are connected. To demonstrate the stabil-
ity of the computational approach we construct interaction
networks with 200, and 400 actors (11114 movies). To auto-
matically assess the sensitivity of our technique for changes
in outcomes, we use the Kendall tau distance (τ from now)
between the following two rankings: before and after changes
in the outcomes. As for the feasibility of our approach for
very large graphs, it should be noted that the computa-
tion of an inverse is the most time consuming part; O(n3).
Therefore, for most interaction networks like the completely
cleaned, connected IMDB or DBLP, our approach can be
used without any problem. For truly massive graphs like
the web graph, exact computation is not feasible. Develop-
ing a technique that can be used even on massive graphs is
an important challenge for future work.

Actor List 1 List 2
Index

1 Marlon Brando Marlon Brando
2 Al Pacino James Mason (I)
3 Robert De Nero Louis Calhern
4 Sean Bean Glenn Ford (I)
5 Jean Reno Karl Malden
6 Don Cheadle Ben Johnson (I)
7 John Travolta Timothy Carey
8 Hugh Jackman Richard Harris (I)
9 George Clooney Montgomery Clift
10 Casey Affleck Dean Martin (I)
11 Brad Pitt Frank Overton
12 Matt Damon Malcolm Atterbury
13 Dan Fredenburgh Robert Ryan (I)
14 Bill Nighy Burt Lancaster
15 Johnny Depp Frank Sinatra
16 Orlando Bloom Ernest Borgnine
17 Jack Davenport Lee Marvin
18 Lee Arenberg Rhys Williams (I)
19 Tom Hollander DeForest Kelley
20 Jude Law John Wayne (I)
21 Anthony Hopkins Walter Brennan
22 Sean Penn Ed Wynn
23 Samuel L. Jackson Stephen Boyd (I)
24 Kevin Bacon Milton Berle
25 Tom Hanks Tony Bennett (I)
26 Steve Buscemi Al Pacino
27 Clive Owen Robert De Niro
28 Nicolas Cage Broderick Crawford
29 Ricky Nelson (I)
30 Buddy Ebsen

Table 3: List of actors used in experiments

4.1 Experiments when outcomes are changed
The goal of these experiments is to evaluate the ability of

our OARA approach and SVD to take into account outcomes
while ranking the actors. We conduct our experiment as
follows. Let ∆ be the matrix constructed according to the
method in Section 3.1.1. Let e be the vector of outcome
values. We generate the OARA and SVD rankings under
four different conditions as defined below:

• R1 is the ranking by OARA(∆, e). Table 4 and Table 7
show the R1 ranking for both the list of actors.

• R2 is the ranking by SVD(∆).

• R3 is generated after making the following modifica-
tions to the original data. We pick two highly ranked
actors in both the rankings, say A1 and A2. For each
of the movies in which either of them appears, we ar-
tificially reduce the averaging rating by 2. We then
pick the two middle-ranked actors, A3 and A4. We
increase the ratings of those movies in which either
of them appears by 2. Let ∆′ be the corresponding
matrix. Note that e does not change. Let R3 be the
ranking by OARA(∆′, e).

• R4 is the ranking obtained by SVD(∆′).

For the rest of the experiments we use R1, R2, R3, R4 to
denote the rankings obtained by OARA and SVD by this
process for the different lists and different es considered in
the experiments. The different rankings obtained for List 1
are as in Table 4 (With A1 = 9, A2 = 23, A3 = 28, A4 = 16).



R1 = OARA(∆, e) 23 9 25 12 10 7 21 15 3 6 20 8 24
16 28 2 22 26 27 11 1 4 14 18 5 17 19 13

R2 = SVD(∆) 9 23 25 12 7 10 21 15 3 20 8 6 24
28 16 2 22 26 27 11 4 1 14 5 17 18 19 13

R3 = OARA(∆′, e) 25 28 23 9 12 10 7 21 15 3 16 20 6
8 24 2 22 26 27 11 14 1 4 18 17 5 19 13

R4 = SVD(∆′) 9 23 25 12 7 10 21 15 3 20 8 6 24 28
16 2 22 26 27 11 1 4 14 5 17 18 19 13

Table 4: Rankings of actors in List1 under different

conditions

OARA(∆list1, e) 23 9 25 12 10 7 21 15 3♣ 6 20 8 24 16 28 2♦ 22 26
27 11 1 4 14 18 5 17 19 13

OARA(∆list2
, e) 17 12 24 30 19 28 16 20 15 18 22 10 11 25 2 21

6 13 4 29 23 14 8 7 9 5 1 3 27♣ 26♦

Table 5: Rankings of Al Pacino♦ and Robert de Niro
♣ in both the lists

The rankings are given in the ascending order of ranks; the
actor with the first rank appears first and so on.

Let us now check how the two methods dealt with changes
in outcomes (refer Table 4). One would expect the rankings
of A1 and A2 to go down and those A3 and A4 to go up.
Notice (by comparing R1 and R3) that OARA rankings of
the both top actors (number 23 and 9) have gone down while
those of the two chosen mid-ranked actors A3 and A4 (num-
ber 28 and 16) have gone up. Notice (by comparing R2 and
R4) that there is hardly a noticeable change in the SVD
rankings before and after modification. This shows that our
formulation is more sensitive to changes in outcomes.

4.2 Experiments for relative importance across
time periods

We conducted experiments to check if our approach can
indicate relative influence of actors across time periods (Re-
fer to Table 5). Since the List 2 involves mainly old actors,
only movies up to 1980 are contained in their interaction
networks. We consider two actors, Robert De Nero and Al
Pacino who are present in both the lists. Since their interac-
tion with the old actors is limited, they are ranked towards
the end in List 2 whereas they are ranked high in List 1.

4.3 Experimentation with e

The vector of outcome values plays a crucial role in the
ranking obtained by OARA. Conceptually, there are two
main settings. One, in which every outcome has some pos-
itive value (degree varies) and the other, in which some of
the outcomes may have negative values. As an example of
a setting with negative outcomes is IMDB where a user rat-
ing of 7 or below is treated as an indication of its failure
and a rating above 7 is treated as an indication of its suc-
cess. In such a case, it is meaningful to associate positive
and negative weights with different outcomes. An exam-
ple of setting of only positive outcomes whose degree varies
is the academic publications by researchers in refereed con-
ferences and journals. The value varies depending on the
forum and citations and so on. So, in this case, the weights
associated with outcomes are appropriately weighted posi-
tive values (for example, 100 citations is more than 10 times
better than 10 citations!). Below, we show how different
ways of setting the vector e influences the rankings.

Case 1. When all outcomes were positive. In this case,
every movie is treated as having a non-zero positive out-
come. The value of a movie with rating R the outcome was
set to be 2R. Refer to Table 6. Here, ranking R1 is the rank-
ing on original data. Ranking R3 is obtained by reducing

R1 = OARA(∆, e) 17 24 12 30 20 28 16 19 15 10 22 18 25 11 2 21
6 13 4 23 29 14 8 7 9 5 1 3 27 26

R3 = OARA(∆′, e) 17 24 12 30 20 28 16 19 15 10 18 22 21 25 2 11
6 13 4 23 29 14 8 7 5 9 1 3 27 26

Table 6: Rankings of actors in List2 generated for

Case 1
R1 = OARA(∆, e) 17 24 12 30 28 19 16 20 15 10 22 18 25

11 2 21 6 13 4 23 29 14 8 7 9 5 1 3 27 26

R3 = OARA(∆′, e) 15 24 30 20 21 10 16 17 25 12 28 19 22
18 2 11 6 13 4 14 29 5 23 8 1 27 9 7 26 3

Table 7: Rankings generated of actors in List2 for

Case 2

the outcomes of a subset of the movies of actors 17 and 24.
In this case, although OARA shows changes in some of the
connected actors like 21 and 11, it does not change the rank-
ing of 17 and 24 themselves as they had other movies with
high positive value and since the values of movies with re-
duced rating was still positive, they did not suffer in ranking
(contrary to expectation).

Case 2. When the outcomes are mixed. This is the most
general case where the outcomes are treated as positive and
negative. For example, a movie whose average rating is 5 is
deemed a failure and thus having a negative outcome, and
a movie with a rating of 8 is considered to be a positive
outcome. Specifically, we set the weights for different out-
comes as follows. If a movie has the corresponding rating R
greater than 7 then the associated was 2R, else the outcome
is −28−R. We repeated the experiment for Case 1 with this
setting (Refer to Table 7). Observe that R1 and R3 were
noticeably different. Note that relative ranks of 17 (A1) has
dropped while that of 21 (A4) has improved. The reason for
the stability of 24 in the ranking is his close collaboration
with actors 2 and 11 with whom he has acted in 14 movies.
Table 7 shows the ratings from experiment on List 2.

Case 3. Vector e can be used to take into account any
known special status of the agents themselves. In this case,
the status of an actor may be enhanced due to an award or
a rise in popularity. In this case, non-uniform setting of e[i]
for nodes corresponding to agents to take this into account.
Observe original ranking for List 2. Actors with indices 27
(Robert De Nero) and 26 (Al Pacino) are appearing towards
end in R1. If we now increase the importance of these two
actors (because of award winning performances) and keep
the importance of rest of the actors uniform, then, we notice
that not only these two actors, but, also those who interacted
with them (like Marlon Brando) benefit in the ranking. The
new ranking after changing importance of the two actors is
denoted by R5. Rankings are shown in Table 8.

4.4 Experiments on larger networks
We extracted larger, connected networks consisting of 200

and 400 actors respectively. The fact that we used only the
first few of the listed actors for each movie limited the size
of the connected networks that we could detect. We use
Kendall correlation [7] to see how rankings are correlated
(Refer to Section 3.2.2 for interpreting this measure) across
different experiments. As before, we decrease the value of

R1 = OARA(∆, e) 17 24 12 30 28 19 16 20 15 10 22 18 25
11 2 21 6 13 4 23 29 14 8 7 9 5 1 3 27 26

R5 = OARA(∆, e′) 27 26 24 25 20 17 28 30 16 15 10 12 22 2
19 14 29 18 6 4 11 21 13 1 8 23 7 9 5 3

Table 8: Rankings generated of actors in List2 for

Case 3



outcomes of two top actors and increase the outcome of two
middle ranked actors. This process affects a large fraction of
the nodes in the network because of the cascading effect of
the“co-actor”network structure. As a result, the rankings of
most actors are likely to see major shifts, and hence, the two
rankings are likely to look almost unrelated. We notice that,
for the OARA rankings, the Kendall correlation measure is
close to zero and for the SVD rankings it is in the range
of 0.6. These experiments provide important empirical evi-
dence that our method accounts both the structure and the
outcomes in its rankings; and, the SVD based approach is
not as effective.

Case 1. Network of 200 actors. τ (R1, R3) = 0.007352
and τ (R2, R4) = 0.68160

Case 2. Network of 400 actors. τ (R1, R3) = 0.087 and
τ (R2, R4) = 0.6345

4.5 Experiments on Simulations of Service De-
livery

This research was conducted for the application of rank-
ing agents in a service delivery setting. Although we are
not able to share results on the actual data, we present
results on data obtained from a service delivery simulator
that we developed. Our simulator captures various real-life,
people-centric aspects of service delivery that we observed
in practice: a. compatibility and incompatibilities between
people within team settings and their effect on the outcomes
b. transient slackness in performance of people due to repet-
itive nature of tasks in service delivery c. performance as-
pects such as ramp-up curve when people begin their work.
Here, we briefly discuss our experiments with the simulator.
A reference to the technical report on our simulator will be
provided in the final version of the paper.

Our simulator created an environment of 500 agents. As-
sociated with each agent was a list of compatible and in-
compatible agents, apart from individual level of compe-
tency. We generated a time-series of requests tagged by
types. We used the types of the recent requests performed
by an agent to measure his likelihood of slackening. For
a given request, we picked agents so as to balance load (a
common practice in service delivery). For each assignment
of agents, we computed a likely-outcome that takes into ac-
count: their individuals levels of competency, their affin-
ity for slackening, and basic compatibility index between
them as a team. We repeated the experiments carried out
in Section 4.4 on the simulated data. With the usual mean-
ings of rankings R1, R2, R3, R4, over multiple runs, we found
that τ (R1, R3) ≈ 0.30 and τ (R2, R4) ≈ 0.75. Note that the
Kendall measure between R1 and R3 in case of simulation is
much higher than those obtained in Section 4.4. This could
be because, the outcomes are computed by a method which
combines the parameters of the simulation in a predictable
manner whereas the outcomes of the movies do not neces-
sarily follow any predictable model.

5. CONCLUSIONS
The main goal of our work is to highlight applications

that require ranking that takes the structure and outcomes
associated with the interaction networks. We developed a
novel ranking technique and presented several mathemati-
cal properties of the technique. Our technique is sensitive
to changes in both structural and outcome aspects of the in-
teraction networks. There are several directions to pursue.

One of the drawbacks of our current empirical work is the
comparison against a single baseline heuristic. There are
other ways of modifying the interaction networks that take
the outcomes into account. For example, one may rank the
actors separately based on structure and outcomes and then
use rank aggregation techniques to get a combined ranking.
We are currently working on this approach. From a com-
putational point of view, the need to invert a matrix is the
most challenging task of this approach. To make this scale
to massive graphs, we need to develop a heuristic which ap-
proximates the matrix computation in the same sense as
power method does for eigenvector computation. Conduct-
ing our experiments on massive real-life datasets is another
focus of our current work.
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