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Abstract

We consider a supplier and a customer operating under a service agreement that requires the
supplier to cover the random customer demand with high probability. To fulfill the service agree-
ment, the supplier carries a certain amount of safety stock. The customer has some bearing on
its demand variability, possibly through activities such as acquiring advance demand information,
employing more sophisticated forecasting techniques or smoothing its product consumption, but
these activities bring an extra cost to the customer. Since a reduction in the customer demand
variability helps the supplier reduce its safety stock, the supplier is willing to offer a price discount
in exchange for reduced demand variability. We examine a pricing scheme where the supplier as-
sesses its potential cost savings from a reduction in the customer demand variability and returns
a fraction of these cost savings back to the customer through a price discount. We show that
both parties realize cost savings under such a pricing scheme, examine the efficiency issues and
consider the case where the customer does not reveal certain cost components accurately.



Although conventional inventory models treat the customer demand as an exogenous random process,

there are many situations where the customer can affect certain aspects of its demand process through

activities such as acquiring advance demand information, employing more sophisticated forecasting

techniques or smoothing its product consumption. Essentially, the outcome of these activities is to

reduce the customer demand variability, which, in turn, benefits the customer through increased fill

rates and the supplier through reduced inventories. However, although both the supplier and the

customer benefit from these activities, the costs associated with them are usually born only by the

customer. Consequently, the customer may pursue these activities in a much more limited scope

than the supplier desires, and the supplier may have to share the costs of these activities with the

customer or provide other incentives.

In this paper, we consider a supplier and a customer operating under a service agreement that

requires the supplier to cover the random customer demand in each time period with high probability.

The customer has some bearing on its demand variability, but this requires the customer to incur an

extra cost. Early in the paper, we do not explicitly specify how the customer can affect its demand

variability, but we later give a specific example where the customer can do this through advance

demand information acquisition. A reduction in the customer demand variability helps the supplier

reduce the safety stock that it needs to fulfill the service agreement, and the supplier is willing to

offer a price discount to motivate the customer. We propose a pricing scheme that is motivated by

the idea that the supplier should return a fraction of its potential cost savings that can be realized by

the reduction in the demand variability back to the customer through a price discount. The result

is a pricing scheme where the price charged to the customer is a linear function of the standard

deviation of the customer demand. We show that both the supplier and the customer realize cost

savings under such a pricing scheme. We examine the efficiency issues and consider the case where

the customer does not reveal certain cost components accurately.

Our work is motivated by the relationship between a just-in-time manufacturer and its raw

material supplier. In each time period, the supplier faces the demand for the raw material that

the manufacturer needs for production in the current time period. Through better planning and

forecasting techniques, the manufacturer can anticipate the need for the raw material in the future

and reduce its demand variability, which, in turn, decreases the safety stock of the supplier. In

our setting, the price discount is initiated by the supplier with the goal of reducing its safety stock

requirements. Price discounts initiated by the suppliers often occur in industries where there are

only a few suppliers and a few consumers of some raw material, and a specific supplier-consumer

pair operates in a close relationship. Such situations are common in high-tech industries. As pointed

by Lal and Staelin (1984), a large supplier may also initiate a price discount when supplying many
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small consumers. Our results may also be applicable in this setting by interpreting the customer

demand in this paper as the total demand from all consumers.

The literature on exploiting different forms of information to increase the efficiency of inventory

systems is quite rich. Several papers quantify the value of real-time demand information coming

from the retailers in a supply chain. Lee et al. (2000) consider a two-stage supply chain where the

customer demands at different time periods are correlated and show that the value of real-time de-

mand information is significant especially when the demand quantities in different time periods are

highly correlated. Cachon and Fisher (2000) study a distribution system with one warehouse and

multiple retailers, and point out that the value of real-time demand information can be small when

compared with the benefits of reducing the lead times or batch sizes. Gavirneni et al. (1999) quan-

tify the value of real-time demand information in capacitated production and distribution systems.

Bourland et al. (1999) consider a setting where the ordering cycles of the supplier and the retailer are

not aligned. They show that the supplier can make better ordering decisions if it knows the amount

of demand that occurs at the retailer between the time of the last order of the retailer and the time

that the supplier places an order. Another form of information that is used to increase the efficiency

of inventory systems is the forecast updates. Gullu (1996) and Gullu (1997) study production and

distribution systems where the demand forecasts get more accurate over time and show that the

inventory costs can be reduced if one explicitly takes the forecast updates into consideration.

There is also work on quantifying the value of advance demand information. Hariharan and Zipkin

(1995) consider a continuous-time inventory control model where the customer demand becomes

known τ time periods in advance. They refer to τ as the “demand lead time” and show that the

effect of increasing the demand lead time is exactly the same as the effect of decreasing the supply lead

time. Karaesmen et al. (2002) and Karaesmen et al. (2004) study production systems with advance

demand information where the main difference from Hariharan and Zipkin (1995) is the limited

production capacity modeled through a single-server queue. Ozer (2003) studies the value of advance

demand information in distribution systems. Gilbert and Ballou (1999) examine the reductions in

the inventory costs due to advance customer commitment and give a queueing model to assess the

impact of advance customer commitment on the capacity requirements. Van Donselaar et al. (2001)

and Thonemann (2002) consider the value of advance information in a project environment. Several

companies submit proposals for projects. If a company manages to get a project, then it needs raw

materials from its suppliers. The companies are able to share information about their proposals with

their suppliers, although it is not certain that they will get the project. These papers quantify the

value of such imperfect advance demand information to the suppliers.

Smoothing the orders is another method to increase the efficiency of inventory systems. Balakr-
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ishnan et al. (2004) and Disney et al. (2006) consider models where the retailer computes its order

quantity according to a base-stock policy, but its actual order quantity is a convex combination of

the order quantities computed in a certain number of past time periods. The goal is to reduce the

variability of the orders that the supplier receives. Graves et al. (1998) describe a similar idea in a

materials requirement planning environment with limited capacity. Boute et al. (2007) investigate

the benefit from smoothing the orders in a make-to-order environment where the production lead

time for the supplier depends on the orders placed by the retailer. An interesting point raised by

this paper, and also by Bertrand (1986), is that although smoothing the orders is beneficial to the

supplier, it may not be beneficial to the retailer since it restricts the ordering pattern of the retailer.

Closely related to this body of research is the work on using sophisticated forecasting methods to deal

with the bullwhip effect by reducing the variability of the orders that the supplier receives. Zhang

(2004) characterizes the effect of different forecasting methods on the magnitude of the bullwhip

effect. Dejonckheere et al. (2003) show that the bullwhip effect is inevitable as long as one uses a

base-stock policy and propose alternative policies.

Lastly, the literature on setting up optimal price discounts is related to our work. Monahan

(1984) studies a setting where a customer places orders to a supplier according to the economic order

quantity and shows that the supplier can realize cost savings by offering price discounts to persuade

the customer to place larger orders. Monahan (1984) assumes that the supplier and the customer

have the same ordering cycles, but Lee and Rosenblatt (1986) generalize this model to allow the

customer to order more frequently than the supplier. These two papers focus on maximizing the cost

savings of the supplier. The supplier sets up the price discount scheme so that the customer, after

the price discount, is only not worse off than it was before the price discount. Lal and Staelin (1984)

and Dada and Srikanth (1987), on the other hand, consider the total cost of the supplier and the

customer. They show how to set up a price discount scheme under which the ordering decisions of

the supplier and the customer jointly minimize the total system cost. Weng (1995) extends this work

by assuming that the demand is sensitive to price. An important point is that the papers mentioned

in this paragraph do not provide a natural mechanism through which the cost savings from the price

discount are shared between the supplier and the customer. Chen (2001) and Cheung (1998) present

models that are useful when deciding how much price discount should be given to the customers who

are willing to wait for the fulfillment of their orders. Klastorin et al. (2002) consider a case where the

supplier is willing to offer a price discount if the customer plans the timing of its orders to coincide

with the timing of the inventory replenishments of the supplier.

In this paper, we make the following research contributions. 1) We analyze a model that captures

the relationship between a supplier and a customer where the supplier is willing to reduce the price if

3



the customer reduces its demand variability. We propose a pricing scheme under which both parties

realize cost savings. 2) We show that the cost savings of the supplier are larger than those of the

customer under the proposed pricing scheme. In this pricing scheme, the supplier decides how the

price will be adjusted according to the customer demand variability. Consequently, the supplier can

be viewed as the dominant party and this dominance is reflected in its cost savings. 3) We show

that if the supplier and the customer repeatedly use the proposed pricing scheme, then the customer

eventually keeps the standard deviation of its demand at the level that minimizes the total system

cost. 4) Realizing that setting up the proposed pricing scheme requires the supplier to know all

cost parameters of the customer, we consider the case where the customer does not reveal a crucial

cost component accurately. We show that both parties continue to realize cost savings under certain

assumptions, and if the two parties repeatedly use the proposed pricing scheme, then the motivation

for the customer to distort the cost component diminishes.

In Section 1, we formulate the model and derive the cost functions of the supplier and the

customer. Section 2 describes the pricing scheme and shows that both parties realize cost savings

under this pricing scheme. Section 3 considers the case where the customer does not reveal a crucial

cost component accurately and presents results similar to those in Section 2. Section 4 shows the

application of our model to a case where the customer can reduce its demand variability by acquiring

advance demand information. In Section 5, we present numerical examples.

1 Model Formulation

We consider the relationship between a supplier and a customer operating under a service agreement

that requires the supplier to cover the random customer demand in each time period with high

probability. The customer has some bearing on its demand variability, but this requires the customer

to incur an extra cost. This section does not explicitly specify how the customer can affect its demand

variability, but Section 4 gives a specific example in the advance demand information acquisition

context. To motivate the customer to reduce its demand variability, the supplier is willing to offer a

price discount. We are interested in setting up a pricing scheme that results in cost savings for both

parties. Sections 1 and 2 assume that all cost components are common information, or equivalently,

the supplier and the customer are required by law or contracts to reveal their cost components

accurately. Section 3 considers the case where the customer falsely reveals a crucial cost component.

We let Dt be the customer demand in time period t and assume that Dt is normally distributed

with mean µ and standard deviation x, where x is a decision variable for the customer. To keep

the standard deviation of its demand at x, the customer incurs a cost of µ C(x) per time period.

Therefore, one can view µ C(x) as the cost of recurring operational activities or the periodic payment
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for an initial investment of the customer to keep the standard deviation of its demand at x. The

customer chooses a value for x once and does not change this value. To simplify the discussion, we

assume that x is constrained to lie in the interval [0, b] for some finite b. As will be clear shortly, the

multiplier µ in µ C(·) is simply for normalization.

We denote the first, second and third derivatives of the function f(·) by ḟ(·), f̈(·) and
...
f (·),

respectively. When we say that f(·) is differentiable over the interval [l, u], we mean that f(·) is

differentiable over the interval (l, u), right-differentiable at l and left-differentiable at u. We assume

that C(·) is differentiable three times over [0, b], and 0 ≤ C(x) < ∞, −∞ < Ċ(x) < 0, 0 < C̈(x) < ∞,

−∞ <
...C (x) < 0 and [C̈(x)]2 < Ċ(x)

...C (x) ≤ 2 [C̈(x)]2 for all x ∈ [0, b]. The assumptions on the signs

of C(·), Ċ(·) and C̈(·) are intuitive. We need the other assumptions to ensure that certain optimization

problems we encounter are convex. These assumptions are somewhat limiting, but they are satisfied

by a variety of functions. For example, C(x) = ρ [x + η]−α and C(x) = ρ e−α x − γ x with strictly

positive ρ, η, α and γ, and small enough γ satisfy these assumptions. It may also be possible to

approximate a variety of functions by using a function that satisfies our assumptions. For example,

although a linear function does not satisfy our assumptions, we can use ρ [x + η]−α for judicious

choices of ρ, η and α to approximate a linear function over the interval [0, b].

The service agreement requires the supplier to cover the customer demand in each time period

with probability β. The unsatisfied customer demand is backlogged. Due to disruptions in its

operations, the customer incurs a cost of π per unit backlogged per time period. The supplier

replenishes its inventory from an infinite source through a lead time of ` time periods. The unit

cost of the replenishments is c. The holding cost of the supplier is v per unit per time period. The

unit price charged to the customer is p. We do not discount the future costs, and concentrate on

the expected costs incurred by the supplier and the customer per time period. This assumption is

appropriate when the discount factor is close to one.

The following events occur in time period t. First, the supplier receives the replenishment that

it ordered in time period t − `. Second, the customer demand occurs and the supplier meets the

demand as much as possible from its on-hand inventory. The excess demand is backlogged. Third,

the supplier places a replenishment order. The holding and backlogging costs are calculated over the

ending inventory. To characterize the inventory policy of the supplier, we define the following.

Ot, Bt = On-hand inventory and backlogs of the supplier after covering the demand in time

period t.

Tt = Total in-transit replenishments of the supplier after receiving the replenishment and

before placing a replenishment order in time period t.
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Lt, Pt = Inventory level and inventory position of the supplier after covering the demand and

before placing a replenishment order in time period t. That is, Lt = Ot − Bt and

Pt = Ot −Bt + Tt.

In time period t, the policy of the supplier is to order St−Pt units, where St is the base-stock level of

the supplier. We shortly show that we have St−Pt ≥ 0 and the order quantity is positive. Base-stock

policies are optimal in many situations (Zipkin (2000)), but we are primarily motivated by the fact

that a base-stock policy provides a simple way for the supplier to maintain the service level β. A

standard computation shows that

Lt+` = Ot −Bt + [St − Pt] + Tt −
∑t+`

s=t+1 Ds = St −
∑t+`

s=t+1 Ds. (1)

To maintain the service level β in time period t+ `, the supplier chooses St such that P
{
Lt+` ≥ 0

}
=

P
{
St −

∑t+`
s=t+1 Ds ≥ 0

}
= β, where we use P{·} to denote the probability of an event. Assuming

that the demands in different time periods are independent, this implies that St = ` µ+z
√

` x, where

z is the β-th quantile of the standard normal distribution.

Since the replenishment quantity of the supplier in time period t − 1 is St−1 − Pt−1, we have

Pt = Pt−1 +[St−1−Pt−1]−Dt = St−1−Dt. Therefore, the replenishment quantity of the supplier in

time period t is St−Pt = St− [St−1−Dt] = Dt, which is positive as long as the demand is positive.

Denoting the expectation of a random variable by E{·} and max{0, x} by [x]+, and letting N be the

standard normal random variable, the expected cost incurred by the supplier in time period t is

cE
{
St − [St−1 −Dt]

}
+ v E

{
[Lt]+

}− pE
{
Dt

}
= c µ + v E

{[
` µ + z

√
` x−∑t

s=t−`+1 Ds

]+}− p µ

= c µ + v
√

`E
{
[z −N ]+

}
x− p µ

= c µ + g µ x− p µ, (2)

where the first equality uses (1), the second equality uses the fact that
∑t

s=t−`+1 Ds is normally

distributed with mean ` µ and standard deviation
√

` x, and we let g = v
√

`E
{
[z − N ]+

}
/µ in the

third equality. Since the future costs are not discounted, the expressions above assume that the

revenue from the backlogged demand is collected as soon as the backlog occurs. On the other hand,

the expected cost incurred by the customer in time period t is

µ C(x) + π E
{
[−Lt]+

}
+ pE

{
Dt

}
= µ C(x) + π E

{[∑t
s=t−`+1 Ds − ` µ− z

√
` x

]+}
+ p µ

= µ C(x) + π
√

`E
{
[N − z]+

}
x + p µ

= µ C(x) + hµ x + p µ, (3)

where we let h = π
√

`E
{
[N−z]+

}
/µ in the third equality. The customer does not incur any holding

cost because it uses the product as soon as it is received from the supplier.
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The supplier and the customer concentrate on minimizing the cost functions in (2) and (3),

respectively. Dropping the constant c µ in (2), and normalizing (2) and (3) by dividing by µ for

brevity, we henceforth denote the cost functions of the supplier and the customer by g x − p and

C(x) + hx + p, respectively. Our inventory model is clearly somewhat stylized, but it captures the

essential relationship between the demand variability and the costs of the supplier and the customer.

2 Pricing Scheme

Let x̄ be the current standard deviation of the customer demand and p̄ be the current price that the

supplier charges to the customer. If the customer is willing to reduce the standard deviation of its

demand to x, then the cost incurred by the supplier decreases by g x̄ − g x. We propose a pricing

scheme where the supplier transfers a fixed fraction of these cost savings to the customer by reducing

the price to p̄ − r̃ [g x̄ − g x], where the discount parameter r̃ is a decision variable for the supplier.

For brevity, we let r = r̃ g and use p̄−r x̄+r x to denote the pricing scheme adopted by the supplier.

Therefore, the supplier, knowing all cost components of itself and the customer, first chooses a

discount parameter r and reveals the pricing scheme p̄−r x̄+r x to the customer, which is to say that

if the customer sets the standard deviation of its demand to x, then the supplier charges the price

p̄−r x̄+r x. Then, the customer, knowing how the supplier adjusts the price, decides to what level the

standard deviation of its demand should be set. In this section, we show that both the supplier and

the customer realize cost savings under such a pricing scheme, and the supplier, by having the power

to dictate the set of standard deviation-price pairs that can be chosen by the customer, realizes larger

cost savings than does customer. We also examine whether the standard deviation that minimizes

the total system cost can be generated through the proposed pricing scheme. It is important to note

that the discount parameter r characterizes how the cost savings from the proposed pricing scheme

are allocated between the supplier and the customer. The fact that r is a decision variable for the

supplier is different from some of the work in the supply chain contracts literature. Cachon (1998)

and Tsay et al. (1998) give nice overviews of this literature.

To avoid trivialities, we assume that Ċ(0) + g + h < 0 < Ċ(b) + g + h, which means that if the

standard deviation of the customer demand is b (or 0), then the total marginal benefit of the supplier

and the customer from reducing the standard deviation of the customer demand is greater (or less)

than 0. In this case, noting that the total system cost function is [g x − p] + [C(x) + hx + p], the

derivative of the total system cost function is strictly negative at x = 0 and strictly positive at x = b.

Therefore, xs, the minimizer of the total system cost function, satisfies the first order condition

Ċ(xs) + g + h = 0 (4)

and we have 0 < xs < b. We note that we have g + h > 0 because of the assumption that
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Ċ(b) + g + h > 0. We also assume that the current standard deviation of the customer demand is

large in the sense that xs < x̄ ≤ b. Using the same arguments, one can show that all of our results

continue to hold when 0 ≤ x̄ < xs, but we do not analyze this case for brevity.

2.1 Preliminaries

If the supplier adopts the pricing scheme p̄− r x̄ + r x, then the customer decides to what level the

standard deviation of its demand should be set by solving

min
x∈[0,b]

C(x) + hx + p̄− r x̄ + r x. (5)

Since C̈(·) > 0, the optimal solution to this problem is unique and we use X(r) to denote the optimal

solution as a function of the discount parameter r. Since the customer sets the standard deviation of

its demand to X(r) in response to the pricing scheme p̄− r x̄+ r x, the supplier chooses the discount

parameter by solving

min
r

g X(r)− [p̄− r x̄ + r X(r)] . (6)

We begin by characterizing the basic properties of problems (5) and (6).

Lemma 1 1) If Ċ(0) + r + h ≤ 0 ≤ Ċ(b) + r + h, then X(r) uniquely satisfies

Ċ(X(r)) + r + h = 0. (7)

Therefore, X(·) is differentiable over the interval [−Ċ(b)− h,−Ċ(0)− h].

2) The objective function of problem (6) is differentiable and strictly convex over the interval [−Ċ(b)−
h,−Ċ(0)− h].

3) The optimal solution to problem (6) lies in the interval (−Ċ(b)− h,−Ċ(0)− h).

Proof We defer the proof of the third part to the appendix. If Ċ(0) + r + h ≤ 0 ≤ Ċ(b) + r + h, then

the derivative of the objective function of problem (5) is negative at x = 0 and positive at x = b.

Therefore, X(r) satisfies the first order condition in (7). Differentiability of X(·) follows from (7) and

this establishes the first part. Since X(·) is differentiable over the interval [−Ċ(b)−h,−Ċ(0)−h], the

objective function of problem (6) is differentiable over this interval as well. Dropping the constant

term, we write the objective function of problem (6) as [g + h] X(r) + r x̄ − [r + h] X(r). We now

show that Ẍ(·) > 0 and [r + h] X(r) is a concave function of r, which establishes the second part.

Differentiating (7) with respect to r two times, we obtain

Ẋ(r) C̈(X(r)) + 1 = 0 (8)

Ẍ(r) C̈(X(r)) + [Ẋ(r)]2
...C (X(r)) = 0. (9)
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Therefore, since C̈(·) > 0 and
...C (·) < 0, we have Ẋ(·) < 0 and Ẍ(·) > 0. Differentiating [r + h]X(r)

with respect to r two times, we obtain

2 Ẋ(r) + [r + h] Ẍ(r) = Ẋ(r)

{
2− [r + h] Ẋ(r)

...C (X(r))
C̈(X(r))

}
= Ẋ(r)

{
2− Ċ(X(r))

...C (X(r))
[C̈(X(r))]2

}
≤ 0,

where the first equality uses (9), and the second equality uses (7) and (8). The final inequality follows

from the assumption that Ċ(x)
...C (x) ≤ 2 [C̈(x)]2. ¤

The optimal solution to problem (6) lies in the interval
(−Ċ(b) − h,−Ċ(0) − h

)
, over which the

objective function is differentiable. Therefore, we can use the first order condition to characterize

the optimal solution to problem (6). The following lemma shows important properties of the optimal

solutions to problems (5) and (6). We defer its proof to the appendix.

Lemma 2 Let ro be the optimal solution to problem (6) and xo = X(ro).

1) We have −Ċ(x̄)− h < ro < g and xs < xo < x̄.

2) There exists an x̃ satisfying C(x̃) + h x̃ + p̄− ro x̄ + ro x̃ < C(x̄) + h x̄ + p̄.

Lemma 2 implies that if the supplier adopts the pricing scheme p̄ − ro x̄ + ro x, then the customer

responds to this pricing scheme by reducing the standard deviation of its demand from x̄ to xo. In

this case, the cost incurred by the supplier decreases by g x̄ − g xo and the supplier can reduce the

price by as much as g x̄ − g xo. Since ro < g and xo < x̄, we have ro x̄ − ro xo < g x̄ − g xo and the

price reduction is indeed less than g x̄− g xo.

2.2 Analysis of the pricing scheme

We are now ready to show that if the customer behaves rationally, then both the supplier and the

customer can realize cost savings by using the proposed pricing scheme.

Proposition 3 Let ro be the optimal solution to problem (6) and xo = X(ro). Assume that the

supplier adopts the pricing scheme p̄− ro x̄ + ro x.

1) The costs of the supplier and the customer under the standard deviation-price pair (xo, p̄− ro x̄ +

ro xo) are strictly less than their costs under the standard deviation-price pair (x̄, p̄).

2) Assume that the customer sets the standard deviation of its demand to x̃, which satisfies C(x̃) +

h x̃+ p̄− ro x̄+ ro x̃ < C(x̄)+h x̄+ p̄. (The existence of such an x̃ is guaranteed by Lemma 2.) Then,

the costs of the supplier and the customer under the standard deviation-price pair (x̃, p̄− ro x̄ + ro x̃)

are strictly less than their costs under the standard deviation-price pair (x̄, p̄).
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Proof We first show the second part. Since C̈(·) > 0 and C(x̃)+h x̃+ p̄− ro x̄+ ro x̃ < C(x̄)+h x̄+ p̄,

we have Ċ(x̄) [x̃ − x̄] < C(x̃) − C(x̄) < −[ro + h][x̃ − x̄]. Having Ċ(x̄) [x̃ − x̄] < −[ro + h][x̃ − x̄]

implies that x̃ − x̄ < 0, because if we have x̃ − x̄ > 0, then we obtain Ċ(x̄) < −[ro + h] and this

contradicts Lemma 2. Since ro < g by Lemma 2 and x̃ − x̄ < 0, we have ro [x̃ − x̄] > g [x̃ − x̄],

which implies that g x̃− [p̄− ro x̄+ ro x̃] < g x̄− p̄. Therefore, the supplier is strictly better off under

the standard deviation-price pair (x̃, p̄ − ro x̄ + ro x̃). The customer is strictly better off under the

standard deviation-price pair (x̃, p̄− ro x̄ + ro x̃) by definition of x̃. This establishes the second part.

Since C̈(·) > 0, xo is the unique solution to the problem minx∈[0,b] C(x) + hx + p̄ − ro x̄ + ro x.

By Lemma 2, we have xo 6= x̄, which implies that C(xo) + h xo + p̄ − ro x̄ + ro xo < C(x̄) + h x̄ + p̄.

Therefore, the first part follows from the second part by letting x̃ = xo. ¤

The second part of Proposition 3 is stronger than the first part. The first part shows that if the

supplier chooses the discount parameter by solving problem (6) and the customer decides to what

level the standard deviation of its demand should be set by solving problem (5), then both parties

are better off. The second part shows that the customer does not need to set the standard deviation

of its demand to the level that minimizes its cost. If the customer sets the standard deviation of

its demand to any level that makes itself better off, then both parties are better off. In the next

proposition, we compare the cost savings of the supplier with those of the customer.

Proposition 4 Let ro be the optimal solution to problem (6) and xo = X(ro). We have

{C(x̄) + h x̄ + p̄
}− {C(xo) + hxo + p̄− ro x̄ + ro xo

}
<

{
g x̄− p̄

}− {
g xo − [p̄− ro x̄ + ro xo]

}
.

Proof Since C̈(·) > 0 and
...C (·) < 0, we have C(x̄)+ Ċ(x̄) [xo− x̄] < C(xo) and Ċ(xo)+ C̈(xo) [x̄−xo] >

Ċ(x̄). Noting that xo − x̄ < 0 by Lemma 2, multiplying the second inequality by xo − x̄ and adding

the two inequalities, we obtain C(x̄)− C(xo)− Ċ(xo) [x̄− xo] < C̈(xo) [x̄− xo]2.

Since ro is the optimal solution to problem (6), it satisfies the first order condition g Ẋ(ro) + x̄−
ro Ẋ(ro)−X(ro) = 0. Multiplying this equality by C̈(X(ro)), we obtain

C̈(X(ro)) [g Ẋ(ro) + x̄− ro Ẋ(ro)−X(ro)] = −g + C̈(X(ro)) [x̄−X(ro)]− Ċ(X(ro))− h = 0, (10)

where we use (7) and (8). Therefore, we have

{C(x̄) + h x̄ + p̄
}− {C(xo) + h xo + p̄− ro x̄ + ro xo

}

= C(x̄)− C(xo) + h [x̄− xo] + [Ċ(xo) + h][xo − x̄] < C̈(xo) [x̄− xo]2

=
{C̈(xo) [x̄− xo]− Ċ(xo)− h

}
[x̄− xo] + [Ċ(xo) + h][x̄− xo]

= g [x̄− xo]− ro [x̄− xo] =
{
g x̄− p̄

}− {
g xo − [p̄− ro x̄ + ro xo]

}
,

10



where the first equality follows by (7), the inequality follows by the inequality we derive at the

beginning of the proof and the third equality follows by (7) and (10). ¤

In our setting, the supplier can be viewed as the dominant party in the sense that, by choosing the

discount parameter, it dictates what standard deviation-price pairs can be chosen by the customer.

Due this dominance, the cost savings of the supplier end up being larger than those of the customer.

Nonetheless, we emphasize that since the customer is free to set the standard deviation of its demand

to any level in [0, b], it has the final word on the benefits of the pricing scheme. For example, the

customer can set the standard deviation of its demand to x̄, in which case the supplier charges price

p̄ and both parties are neither better nor worse off. Lal and Staelin (1984) give examples of industries

where the supplier has the power to decide on the structure of the pricing scheme.

Another important question is whether xs, the “socially optimal” standard deviation, can be

achieved through our pricing scheme. The first part of Lemma 2 shows that if the supplier and

the customer concentrate on minimizing their own cost functions, then our pricing scheme does not

generate xs. However, we now show that if the supplier and the customer use our pricing scheme

repeatedly, then level to which the customer sets the standard deviation of its demand converges to

xs. Specifically, let the sequences {xn}, {pn} and {rn} be generated through

xn+1 = X(rn) and pn+1 = pn − rn xn + rn xn+1, (11)

where rn = argminr g X(r) − [pn − r xn + r X(r)], x1 = x̄ and p1 = p̄. This corresponds to the

situation where the supplier and the customer start from the standard deviation-price pair (x1, p1).

The supplier adopts the pricing scheme p1 − r1 x1 + r1 x, in response to which the customer sets the

standard deviation of its demand to x2 and the supplier charges price p2. When the time for next

negotiation comes, the supplier adopts the pricing scheme p2 − r2 x2 + r2 x. The customer sets the

standard deviation of its demand to x3 and the supplier charges price p3. We note that X(r2) still

gives the response of the customer to the pricing scheme p2 − r2 x2 + r2 x, because

X(r2) = argmin
x∈[0,b]

C(x) + hx + p̄− r2 x̄ + r2 x = argmin
x∈[0,b]

C(x) + hx + p2 − r2 x2 + r2 x.

We have the following result.

Proposition 5 We have limn→∞ xn = xs.

Proof By Lemma 2, we have xs < x2 = X(r1) < x1. Starting from the standard deviation-price

pair (x2, p1 − r1 x1 + r1 x2) and reapplying Lemma 2, we have xs < x3 = X(r2) < x2. Continuing

in this fashion, we obtain xs < . . . < xn+1 < xn < . . . < x1. Therefore, {xn} converges to some

11



x∗ ≥ xs. We want to show that x∗ = xs. Assume that x∗ > xs. Since C̈(·) > 0, (4) implies that

Ċ(x∗) + g + h > Ċ(xs) + g + h = 0. Using the same argument used to derive (10), we can show that

Ċ(xn+1) + g + h = Ċ(X(rn)) + g + h = C̈(X(rn)) [xn −X(rn)] = C̈(xn+1) [xn − xn+1]

holds for all n. Since C̈(·) > 0,
...C (·) < 0 and x∗ < xn+1 < xn, we have 0 < Ċ(x∗)+g+h < Ċ(xn+1)+g+

h = C̈(xn+1) [xn−xn+1] < C̈(x∗) [xn−xn+1]. Therefore, we have xn−xn+1 > [Ċ(x∗)+g+h]/C̈(x∗) > 0

for all n, which contradicts the fact that {xn} converges. ¤

Since xs is the minimizer of the total system cost function, if xn = xs for some n, then neither the

supplier nor the customer can be better off without making the other party worse off. Therefore,

Proposition 5 shows that the supplier and the customer can “squeeze” the maximum possible savings

from the system by using the proposed pricing scheme repeatedly. Furthermore, the proposed pricing

scheme gives a natural mechanism to allocate the savings between the supplier and the customer.

3 Manipulation of the Pricing Scheme

In many settings, the cost component C(·) is private information for the customer and the customer

may not reveal this cost component accurately to the supplier. In this section, we show that distorting

this cost component is beneficial for the customer. Furthermore, under certain assumptions, we show

that both parties can still realize cost savings, even if the customer does not reveal the cost component

C(·) accurately. We also reexamine the ability of the proposed pricing scheme to generate xs. The

proofs in this section are similar to those in Section 2 and we defer most of them to the appendix.

3.1 Preliminaries

Assume that the customer reveals the cost component C(·) to the supplier as λ C(·), where λ > 0 is

a decision variable for the customer. Then, the belief of the supplier is that the customer solves

min
x∈[0,b]

λ C(x) + hx + p̄− r x̄ + rx (12)

to decide to what level the standard deviation of its demand should be set. Since λ > 0 and C̈(·) > 0,

the problem above has a unique optimal solution. The next lemma shows that this optimal solution

can be captured by using the notation we previously defined.

Lemma 6 The optimal solution to problem (12) can be written as X
(

r+h
λ − h

)
.

Proof If Ċ(0)+ r+h
λ ≤ 0 ≤ Ċ(b)+ r+h

λ , then we have Ċ(X(
r+h
λ −h

))
+ r+h

λ −h+h = 0 by (7), which

implies that

λ Ċ(X(
r+h
λ − h

))
+ r + h = 0. (13)
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This shows that the first order condition to problem (12) is satisfied at X
(

r+h
λ − h

)
. Therefore, the

optimal solution to problem (12) is X
(

r+h
λ −h

)
when Ċ(0) + r+h

λ ≤ 0 ≤ Ċ(b) + r+h
λ . We consider the

cases Ċ(0) + r+h
λ > 0 and Ċ(b) + r+h

λ < 0 in the appendix. ¤

Since the supplier believes that the customer responds to the pricing scheme p̄− r x̄ + r x by setting

the standard deviation of its demand to X
(

r+h
λ − h

)
, the supplier chooses the discount parameter

by solving

min
r

g X
(

r+h
λ − h

)−
[
p̄− r x̄ + r X

(
r+h
λ − h

)]
. (14)

Lemma 7 below shows that the optimal solution to problem (14) is unique and we use R(λ) to denote

the optimal solution to this problem as a function of the distortion parameter λ. Therefore, if the

customer reveals the cost component C(·) as λ C(·), then the supplier adopts the pricing scheme

p̄ − R(λ) x̄ + R(λ) x. We note that, contrary to what our notation suggests, the supplier does not

need to know the value of λ to solve problem (14). By (13), X
(

r+h
λ − h

)
is the inverse of λ Ċ(·)

evaluated at −[r + h]. Therefore, the knowledge of λ C(·), which implies the knowledge of λ Ċ(·), is

sufficient for the supplier to solve problem (14).

Finally, to decide how much to distort the cost component C(·), the customer solves

min
λ∈[δ,∞)

C(X(R(λ)+h
λ − h

))
+ hX

(R(λ)+h
λ − h

)
+ p̄−R(λ) x̄ + R(λ)X

(R(λ)+h
λ − h

)
, (15)

where δ is small and strictly positive. Lemma 8 below shows that it is enough to choose δ ≤ 1. The

way that problem (15) is formulated implies that if the supplier chooses the discount parameter as

R(λ), then the customer sets the standard deviation of its demand to X
(R(λ)+h

λ − h
)
, which is the

minimizer of the cost function λ C(x) + hx + p̄ − R(λ) x̄ + R(λ) x (instead of setting the standard

deviation of its demand to X(R(λ)), which is the minimizer of the cost function C(x) + hx + p̄ −
R(λ) x̄ + R(λ) x). The reason for this is that the supplier believes that the cost component C(·)
is λ C(·), and the goal of the customer is to “appear” to be rational to the supplier by setting the

standard deviation of its demand to X
(R(λ)+h

λ − h
)
. This also makes it impossible for the supplier

to infer the value of λ by a “reverse” computation. We begin by characterizing the basic properties

of problem (14).

Lemma 7 1) The objective function of problem (14) is differentiable and strictly convex over the

interval [−λ Ċ(b)− h,−λ Ċ(0)− h].

2) The optimal solution to problem (14) lies in the interval (−λ Ċ(b)− h,−λ Ċ(0)− h).

Similar to Lemma 1, Lemma 7 enables us to concentrate on the objective function of problem (14)

only over the interval [−λ Ċ(b) − h,−λ Ċ(0) − h] and use the first order condition to characterize
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the optimal solution. The following lemma shows important properties of the optimal solutions to

problems (12), (14) and (15).

Lemma 8 Let λo be the optimal solution to problem (15), ro = R(λo) and xo = X
(

ro+h
λo

− h
)
.

1) We have 1 < λo < −[g + h]/Ċ(x̄), −λo Ċ(x̄)− h < ro < g and xs < xo < x̄.

2) There exists an x̃ satisfying λo C(x̃) + h x̃ + p̄− ro x̄ + ro x̃ < λo C(x̄) + h x̄ + p̄.

From this lemma, since λo > 1, the customer prefers to overstate the cost component C(·).

3.2 Analysis of the pricing scheme under manipulation

In the next result, we show that the supplier and the customer can still be better off by employing

the proposed pricing scheme.

Proposition 9 Let λo be the optimal solution to problem (15), ro = R(λo) and xo = X
(

ro+h
λo

− h
)
.

Assume that the supplier adopts the pricing scheme p̄− ro x̄ + ro x.

1) The costs of the supplier and the customer under the standard deviation-price pair (xo, p̄− ro x̄ +

ro xo) are strictly less than their costs under the standard deviation-price pair (x̄, p̄).

2) Assume that the customer sets the standard deviation of its demand to x̃, which satisfies λo C(x̃)+

h x̃+ p̄−ro x̄+ro x̃ < λo C(x̄)+h x̄+ p̄. (The existence of such an x̃ is guaranteed by Lemma 8.) Then,

the costs of the supplier and the customer under the standard deviation-price pair (x̃, p̄− ro x̄ + ro x̃)

are strictly less than their costs under the standard deviation-price pair (x̄, p̄).

Clearly, the customer increases its cost savings by distorting the cost component C(·), otherwise we

would have λo = 1. However, when the customer does not reveal the cost component C(·) accurately,

the cost savings realized by the customer do not necessarily exceed the cost savings realized by the

supplier. In fact, the relative magnitudes of the cost savings of the two parties can depend on the

problem parameters and we do not have a result comparable to Proposition 4 when the customer

does not reveal the cost component C(·) accurately. Section 5 gives numerical examples illustrating

the effects of the problem parameters on the cost savings of the two parties.

We close this section by examining the ability of the proposed pricing scheme to generate the

socially optimal standard deviation. The first part of Lemma 8 shows that if the supplier and the

customer concentrate on minimizing their own cost functions, then our pricing scheme does not

generate xs. However, if the supplier and the customer use our pricing scheme repeatedly, then

the level to which the customer sets the standard deviation of its demand converges to xs and the
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motivation for the customer to distort the cost component C(·) diminishes. Specifically, let the

sequences {xn}, {pn} and {λn} be generated through

xn+1 = X
(Rn(λn)+h

λn
− h

)
and pn+1 = pn −Rn(λn) xn + Rn(λn) xn+1, (16)

where

Rn(λ) = argmin
r

g X
(

r+h
λ − h

)− [
pn − r xn + r X

(
r+h
λ − h

)]
(17)

λn = argmin
λ∈[δ,∞)

C(X(Rn(λ)+h
λ − h

))
+ hX

(Rn(λ)+h
λ − h

)

+ pn −Rn(λ) xn + Rn(λ) X
(Rn(λ)+h

λ − h
)
, (18)

x1 = x̄ and p1 = p̄. This corresponds to the situation where the supplier and the customer start

from the standard deviation-price pair (x1, p1). The customer reveals the cost component C(·) as

λ1 C(·). The supplier adopts the pricing scheme p1 −R1(λ1) x1 + R1(λ1) x, in response to which the

customer sets the standard deviation of its demand to x2 and the supplier charges price p2. When

the time for next negotiation comes, the customer reveals the cost component C(·) as λ2 C(·). We

have the following result.

Proposition 10 We have limn→∞ xn = xs and limn→∞ λn = 1.

4 Applications to Advance Demand Information Acquisition

This section shows how the results of Sections 2 and 3 apply to a situation where the supplier is

willing to offer a price discount to the customer in exchange for advance demand information.

We assume that the customer demand in time period t has the form

Dt = µ +
√

y At +
√

1− y Zt, (19)

where y ∈ [0, 1] is a decision variable for the customer, and At and Zt are independent normally

distributed random variables with mean zero and standard deviation σ. The value of the random

variable At becomes known in time period t − τ , where τ is a positive time lag, but the value of

the random variable Zt becomes known in time period t. In this way, At captures the portion of

the customer demand that is known in advance and y captures the “amount” of advance demand

information that the customer acquires. Therefore, Dt has standard deviation σ when “viewed” from

a time period before t − τ , but has standard deviation σ
√

1− y when viewed from a time period

after t− τ and before t. To avoid trivialities, we assume that τ ≤ `.

The specific form for Dt in (19) may arise from the assumption that the customer demand in

time period t is the sum of the demands generated by K independent “sources,” and, in time period
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t− τ , the customer acquires advance demand information for a fraction of these sources to find out

whether they will generate demands in time period t. In this case, letting q be the probability that a

particular source generates a unit of demand and y be the fraction of sources for which the customer

acquires advance demand information, we have Dt = Ãt + Z̃t, where Ãt and Z̃t are independent

binomially distributed random variables with parameters (q, Ky) and (q, K[1−y]), respectively. The

values of the random variables Ãt and Z̃t become known in time periods t − τ and t, respectively.

If K is large, then we can approximate Ãt and Z̃t by normally distributed random variables with

mean-standard deviation pairs (qKy,
√

q[1− q]Ky) and (qK[1−y],
√

q[1− q]K[1− y]), respectively.

Letting µ = qK and σ =
√

q[1− q]K, we obtain (19).

We assume that if the amount of advance demand information that the customer acquires is y,

then the customer incurs a cost of µ C(σ
√

1− [τ/`] y) per time period, where C(·) satisfies the as-

sumptions in Section 1. As will be clear shortly, the multipliers µ and σ are simply for normalization.

The multiplier σ also ensures that the argument of C(·) has standard deviation “units.” We note

that when the supplier places a replenishment order in time period t, the random portion of the

customer demand over the lead time is
√

y
∑t+`

s=t+τ+1 As +
√

1− y
∑t+`

s=t+1 Zs, which has standard

deviation σ
√

`− τy. Therefore, the argument of C(·) is related to the standard deviation of the cus-

tomer demand over the lead time. Although it limits the scope of our analysis, the specific form we

choose for C(·) is not too restrictive from the practical viewpoint. For example, C(σ
√

1− [τ/`] y) is

increasing and convex in y as long as C(·) satisfies the assumptions in Section 1. Furthermore, it may

be possible to approximate a variety of functions by using a function of the form C(σ
√

1− [τ/`] y)

for a judicious choice of C(·).

Using the same notation as in Section 1, the supplier chooses St such that

P
{
Lt+` ≥ 0 | At+1, . . . , At+τ

}

= P
{
St − ` µ−√y

∑t+`
s=t+1 As −

√
1− y

∑t+`
s=t+1 Zs ≥ 0 | At+1, . . . , At+τ

}
= β.

This implies that St = ` µ +
√

y
∑t+τ

s=t+1 As + z σ
√

`− τ y. Noting (1), we have

Lt = St−` −
∑t

s=t−`+1 Ds = z σ
√

`− τ y −√y
∑t

s=t−`+τ+1 As −
√

1− y
∑t

s=t−`+1 Zs.

The expected cost incurred by the supplier in time period t is

cE
{
St − [St−1 −Dt]

}
+ v E

{
[Lt]+

}− pE
{
Dt

}

= cE
{
µ +

√
y At+τ +

√
1− y Zt

}

+ v E
{[

z σ
√

`− τ y −√y
∑t

s=t−`+τ+1 As −
√

1− y
∑t

s=t−`+1 Zs

]+}− p µ

= c µ + v
√

`E
{
[z −N ]+

}
σ
√

1− [τ/`] y − p µ

= c µ + g µ σ
√

1− [τ/`] y − p µ, (20)
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where the second equality uses the fact that
√

y
∑t

s=t−`+τ+1 As +
√

1− y
∑t

s=t−`+1 Zs is normally

distributed with mean zero and standard deviation σ
√

`− τ y. Since we have St − [St−1 − Dt] =

µ +
√

y At+τ +
√

1− y Zt, the replenishment quantity in time period t is normally distributed with

mean µ and standard deviation σ, and it is positive with high probability as long as σ is small

compared to µ. The expected cost incurred by the customer in time period t is

µ C(σ
√

1− [τ/`] y) + π E
{
[−Lt]+

}
+ pE{Dt}

= µ C(σ
√

1− [τ/`] y) + π E
{[√

y
∑t

s=t−`+τ+1 As +
√

1− y
∑t

s=t−`+1 Zs − z σ
√

`− τ y
]+}

+ p µ

= µ C(σ
√

1− [τ/`] y) + π
√

`E
{
[N − z]+

}
σ
√

1− [τ/`] y + p µ

= µ C(σ
√

1− [τ/`] y) + hµ σ
√

1− [τ/`] y + p µ. (21)

Letting σ
√

1− [τ/`] y = x, (20) and (21) have the same form as (2) and (3), and the results of

Sections 2 and 3 apply. Comparing (2) and (3) with (20) and (21) shows that if the amount of

advance demand information that the customer acquires is y, then the “effective” standard deviation

of the customer demand is σ
√

1− [τ/`] y. In the next section, we refer to σ
√

1− [τ/`] y simply as

the standard deviation of the customer demand, although, in reality, the standard deviation of the

customer demand is fixed at σ.

5 Numerical Illustrations

This section presents numerical examples to illustrate the behavior of the proposed pricing scheme.

We use the setting in Section 4 with σ = 6, ` = 12, τ = 5, β = 0.9, v = 0.05, π = 1.5, C(x) =

ρ [x + 10−6]−4 and ρ = 8. The small term 10−6 in [x + 10−6]−4 ensures that C(·) satisfies the

assumptions in Section 1. We assume that the customer currently does not acquire advance demand

information so that x̄ = σ
√

1− [τ/`] 0 = 6. As a side remark, noting (20) and (21), a standard

computation shows that the value of z that minimizes the total system cost function

µ C(σ
√

1− [τ/`] y) +
√

`
[
v E

{
[z −N ]+

}
+ π E

{
[N − z]+

}]
σ
√

1− [τ/`] y + c µ

satisfies P{z ≥ N} = π/[v + π] and the service agreement that minimizes the total system cost

function requires the supplier to satisfy the customer demand with probability 1.5/[0.05+1.5] ≈ 0.97.

Therefore, the service agreement with β = 0.9 that we consider in this section deviates somewhat

from the service agreement that minimizes the total system cost function. We also note that although

our results are on one set of parameters, they are representative of the behavior over a wide range

of parameters. To give an idea about the magnitude of the cost savings, we normalize each cost

figure by dividing by [C(x̄)+g x̄+h x̄]/100, which is the total system cost under the current standard

deviation of the customer demand.

Letting ro be the optimal solution to problem (6) and xo = X(ro), the cost savings of the supplier
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Figure 1: Cost savings realized by the supplier and the customer as a function of v, π and ρ.

and the customer are
{
g x̄− p̄

}−{
g xo− [p̄−ro x̄+ro xo]

}
and

{C(x̄)+h x̄+ p̄
}−{C(xo)+hxo + p̄−

ro x̄+ ro xo

}
, respectively. In Figure 1, the solid data series show how these cost savings change with

v, π and ρ. We observe that both the supplier and the customer benefit from the proposed pricing

scheme especially when the uncertainty in the customer demand costs highly either to the supplier

(v) or to the customer (π), or when the cost of acquiring advance demand information (ρ) is small.

Section 3 shows that it is beneficial for the customer not to reveal the cost component C(·)
accurately. If the customer reveals the cost component C(·) as λ C(·), then the supplier chooses the

discount parameter as R(λ), the customer sets the standard deviation of its demand to X
(R(λ)+h

λ −h
)
,

and the cost savings of the supplier and the customer become
{

g x̄− p̄
}
−

{
g X

(R(λ)+h
λ − h

)−
[
p̄−R(λ) x̄ + R(λ) X

(R(λ)+h
λ − h

)]}
and

{
C(x̄) + h x̄ + p̄

}
−

{
C(X(R(λ)+h

λ − h
))

+ hX
(R(λ)+h

λ − h
)

+ p̄−R(λ) x̄ + R(λ) X
(R(λ)+h

λ − h
)}

,

respectively. In Figure 1, the solid data series show how these cost savings change with v, π and ρ

when λ = 1, whereas the dashed data series show how these cost savings change with v, π and ρ when

λ = λo, where λo is the optimal solution to problem (15). We observe that the customer increases

its cost savings by revealing the cost component C(·) as λo C(·), but this results in a decrease in the

cost savings of the supplier. As shown in Proposition 4, the cost savings of the supplier are always

larger than those of the customer when λ = 1, but this is not necessarily true when λ = λo.

Propositions 5 and 10 show that if the proposed pricing scheme is used repeatedly, then the level

to which the customer sets the standard deviation of its demand converges to xs. We let {xT
n} and

{pT
n} be generated through (11), and {xF

n } and {pF
n } be generated through (16). Therefore, the

standard deviation-price pairs {(xT
n , pT

n )} and {(xF
n , pF

n )} respectively correspond to the cases where

the customer does and does not reveal the cost component C(·) accurately. On the left side of Figure

2, we plot {xT
n} and {xF

n } as a function of n. Noting that the cumulative cost savings of the supplier

and the customer over n negotiations can respectively be written as
[
g xi

1 − pi
1

] − [
g xi

n − pi
n

]
and

[C(xi
1) + hxi

1 + pi
1

] − [C(xi
n) + hxi

n + pi
n

]
for i ∈ {T, F}, we plot these cumulative cost savings as
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Figure 2: Standard deviation of the customer demand, and cost savings realized by the supplier and
the customer when the proposed pricing scheme is used repeatedly.

a function of n on the right side of Figure 2. Both {xT
n} and {xF

n } converge to xs before n reaches

14-15. We observe that the customer can significantly increase its cost savings by not revealing the

cost component C(·) accurately.

6 Conclusions

This paper considered the relationship between a supplier and a customer operating under a service

agreement. The supplier carries a certain amount of safety stock to fulfill the service agreement,

whereas the customer is able to reduce its demand variability, albeit by incurring an extra cost.

Since a reduction in the customer demand variability reduces the safety stock of the supplier, the

supplier is willing to offer a price discount. We studied a pricing scheme where the supplier returns a

fraction of its potential cost savings from a reduction in the customer demand variability back to the

customer through a price discount. We showed that both the supplier and the customer benefit from

such a pricing scheme and the cost savings of the supplier are larger than those of the customer. If

the two parties repeatedly use our pricing scheme, then the customer eventually keeps the standard

deviation of its demand at the level that minimizes the total system cost. Our pricing scheme

continues to provide cost savings to both the supplier and the customer even when the customer

does not reveal the cost component C(·) accurately. Numerical illustrations showed that our pricing

scheme is especially beneficial to the supplier and the customer when the uncertainty in the customer

demand costs highly either to the supplier or to the customer, or when the cost of reducing the

uncertainty in the customer demand is small. Furthermore, the customer can significantly increase

its cost savings by not revealing the cost component C(·) accurately.

7 Appendix

Proof of Lemma 1 We now show the third part. By (7), we have Ċ(X(−Ċ(b)−h))−Ċ(b)−h+h = 0,

which implies that X(−Ċ(b) − h) = b. Letting ε > 0, if r = −Ċ(b) − h − ε, then the derivative of
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the objective function of problem (5) at x = b is Ċ(b) − Ċ(b) − h − ε + h < 0, which implies that

X(−Ċ(b)−h−ε) = b. Therefore, over the interval (−∞,−Ċ(b)−h], the objective function of problem

(6) becomes g b − [p̄ − r x̄ + r b], which, noting that x̄ ≤ b, is decreasing in r. Also, the right-hand

derivative of the objective function of problem (6) at r = −Ċ(b)− h is

g Ẋ(−Ċ(b)− h) + x̄− [−Ċ(b)− h] Ẋ(−Ċ(b)− h)−X(−Ċ(b)− h)

= [Ċ(b) + g + h] Ẋ(−Ċ(b)− h) + x̄− b < 0,

where we use the fact that Ẋ(·) < 0 and the assumption that Ċ(b) + g + h > 0. Therefore, the

optimal solution cannot lie in the interval (−∞,−Ċ(b) − h]. By using the same argument, one can

show that the optimal solution cannot lie in the interval [−Ċ(0)− h,∞) either. ¤

Proof of Lemma 2 Since 0 < xs < x̄ ≤ b and C̈(·) > 0, (4) implies that Ċ(0) + h < Ċ(xs) + h =

−g < Ċ(x̄)+h ≤ Ċ(b)+h. Therefore, −Ċ(x̄)−h and g both lie in the interval [−Ċ(b)−h,−Ċ(0)−h],

over which the objective function of problem (6) is differentiable. To show that ro > −Ċ(x̄)− h, we

show that the derivative of the objective function of problem (6) at −Ċ(x̄) − h is strictly negative.

By (7), we have Ċ(X(−Ċ(x̄)− h))− Ċ(x̄)− h + h = 0, which implies that X(−Ċ(x̄)− h) = x̄. Since

C̈(·) > 0, we have Ċ(x̄) + g + h > Ċ(xs) + g + h = 0. Thus, the derivative of the objective function

of problem (6) at −Ċ(x̄)− h is g Ẋ(−Ċ(x̄)− h) + x̄− [−Ċ(x̄)− h] Ẋ(−Ċ(x̄)− h)−X(−Ċ(x̄)− h) =

[Ċ(x̄) + g + h] Ẋ(−Ċ(x̄)− h) < 0, where the last inequality uses the fact that Ẋ(·) < 0. Similarly, to

show that ro < g, we show that the derivative of the objective function of problem (6) at g is strictly

positive. By (7), we have Ċ(X(g)) + g + h = 0 = Ċ(xs) + g + h, which implies that X(g) = xs. Thus,

the derivative of the objective function of problem (6) at g is g Ẋ(g)+ x̄−g Ẋ(g)−X(g) = x̄−xs > 0.

We now show that xs < xo < x̄. By (4), (7) and the fact that ro < g, we have Ċ(xs) + g + h = 0 =

Ċ(X(ro))+ro+h < Ċ(X(ro))+g+h. Since C̈(·) > 0, this chain of inequalities yields xs < X(ro) = xo.

Similarly, by (7) and the fact that ro > −Ċ(x̄)−h, we have Ċ(X(ro))−Ċ(x̄) < Ċ(X(ro))+ro +h = 0.

Since C̈(·) > 0, we obtain xo = X(ro) < x̄. This establishes the first part.

The assumption that Ċ(0)+g+h < 0 and the first part imply that Ċ(0) < −g−h < −ro−h < Ċ(x̄).

Therefore, there exists an x̃ ∈ (0, x̄) such that Ċ(x̃) = −ro − h. Thus, since C̈(·) > 0, we have

C(x̃)− [ro + h][x̄− x̃] = C(x̃) + Ċ(x̃) [x̄− x̃] < C(x̄), which implies that C(x̃) + h x̃ + p̄− ro x̄ + ro x̃ <

C(x̄) + h x̄ + p̄. ¤

Proof of Lemma 6 We now consider the cases Ċ(0)+ r+h
λ > 0 and Ċ(b)+ r+h

λ < 0. If Ċ(0)+r+h > 0,

then the derivative of the objective function of problem (5) is strictly positive at x = 0 and we have

X(r) = 0. Therefore, if Ċ(0) + r+h
λ − h + h > 0, then we have X

(
r+h
λ − h

)
= 0. On the other hand,

if Ċ(0) + r+h
λ > 0, then the derivative of the objective function of problem (12) is strictly positive at

x = 0 and the optimal solution to problem (12) is also 0. Therefore, the optimal solution to problem
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(12) is X
(

r+h
λ − h

)
when Ċ(0) + r+h

λ > 0. By using the same argument, one can also check that the

optimal solution to problem (12) is X
(

r+h
λ − h

)
when Ċ(b) + r+h

λ < 0. ¤

Proof of Lemma 7 Both parts follow by Lemma 1, because if the customer reveals the cost

component C(·) as λ C(·), then the supplier makes its computations assuming that the cost component

C(·) is λ C(·). Thus, we can assume that the cost component C(·) is λ C(·) and apply Lemma 1. ¤

Lemma 11 (This lemma is useful for proving Lemma 8.) Letting M(λ) = [R(λ) + h]/λ, we have

Ṁ(λ) < 0 and Ṙ(λ) > 0 for all λ > 0.

Proof of Lemma 11 Dropping the constant term, the objective function of problem (14) can be

written as [g + h] X
(

r+h
λ − h

)
+ r x̄− λF

(
r+h
λ − h

)
, where we let F (r) = [r + h]X(r). Since R(λ) is

the optimal solution to problem (14), it satisfies the first order condition

g + h

λ
Ẋ

(R(λ)+h
λ − h

)
+ x̄− Ḟ

(R(λ)+h
λ − h

)
= 0. (22)

Differentiating the expression above with respect to λ, we obtain

−g + h

λ2
Ẋ

(R(λ)+h
λ − h

)
+ Ṁ(λ)

{
g + h

λ
Ẍ

(R(λ)+h
λ − h

)− F̈
(R(λ)+h

λ − h
)}

= 0.

Since Ẋ(·) < 0, the first term above is strictly positive. Since Ẍ(·) > 0 and [r + h] X(r) is shown to

be a concave function of r in the proof of Lemma 1, the term in the curly brackets is strictly positive.

Therefore, we must have Ṁ(λ) < 0.

Letting K(r, λ) = 1
λ Ẋ

(
r+h
λ − h

)
, the first order condition in (22) can be written as

[g + h] K(R(λ), λ) + x̄− Ḟ
(R(λ)+h

λ − h
)

= 0. (23)

We have

∂K(r, λ)
∂λ

= − 1
λ2

Ẋ
(

r+h
λ − h

)− r + h

λ3
Ẍ

(
r+h
λ − h

)

= − 1
λ2

Ẋ
(

r+h
λ − h

)
{

1− [r + h] Ẋ
(

r+h
λ − h

) ...C
(
X

(
r+h
λ − h

))

λ C̈(X(
r+h
λ − h

))
}

= − 1
λ2

Ẋ
(

r+h
λ − h

)
{

1− Ċ(X(
r+h
λ − h

)) ...C
(
X

(
r+h
λ − h

))
[C̈(X(

r+h
λ − h

))]2

}
< 0, (24)

where the second equality uses (9) and the third equality uses (8) and (13). The inequality fol-

lows from the fact that Ẋ(·) < 0 and the assumption that [C̈(x)]2 < Ċ(x)
...C (x) for all x ∈ [0, b].

Differentiating (23) with respect to λ, we obtain
{

[g + h]
∂K(r, λ)

∂r

∣∣∣∣
(R(λ),λ)

− 1
λ

F̈
(R(λ)+h

λ

)
}

Ṙ(λ)

+ [g + h]
∂K(r, λ)

∂λ

∣∣∣∣
(R(λ),λ)

+
R(λ) + h

λ2
F̈

(R(λ)+h
λ − h

)
= 0.
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Since ∂K(r, λ)/∂r = 1
λ2 Ẍ

(
r+h
λ − h

)
> 0 and F (·) is concave, the term in the curly brackets above is

strictly positive. Among the last two terms, the first one is strictly negative due to (24). The second

one is also negative, because R(λ) + h > −λ Ċ(b) > 0 by the second part of Lemma 7 and F (·) is

concave. Therefore, we must have Ṙ(λ) > 0. ¤

Proof of Lemma 8 To show that 1 < λo < −[g + h]/Ċ(x̄), we show that the derivative of the

objective function of problem (15) is strictly negative over the interval (0, 1] and strictly positive

over the interval [−[g + h]/Ċ(x̄),∞). We begin by noting that R(−[g + h]/Ċ(x̄)) = g. To see this,

noting Ḟ (r) = [r + h] Ẋ(r) + X(r), we write the first order condition in (22) as

g −R(λ)
λ

Ẋ
(R(λ)+h

λ − h
)

= X
(R(λ)+h

λ − h
)− x̄. (25)

By (7), we have

Ċ(X( g+h

−[g+h]/Ċ(x̄)
− h

))− Ċ(x̄)− h + h = 0,

which implies that X
( g+h

−[g+h]/Ċ(x̄)
−h

)
= x̄. Thus, (25) is satisfied at λ = −[g+h]/Ċ(x̄) and R(λ) = g.

Letting M(λ) = [R(λ) + h]/λ, the derivative of the objective function of problem (15) is

{
Ċ(X(R(λ)+h

λ − h
))

+ R(λ) + h
}

Ẋ
(R(λ)+h

λ − h
)
Ṁ(λ) + Ṙ(λ)

{
X

(R(λ)+h
λ − h

)− x̄
}

=
{
−R(λ) + h

λ
+ R(λ) + h

}
Ẋ

(R(λ)+h
λ − h

)
Ṁ(λ) +

Ṙ(λ)
λ

[g −R(λ)] Ẋ
(R(λ)+h

λ − h
)

= Ẋ
(R(λ)+h

λ − h
)
{

[R(λ) + h] Ṁ(λ)
[
1− 1

λ

]
+

Ṙ(λ)
λ

[g −R(λ)]

}
, (26)

where the first equality uses (7) and (25). Examining some of the terms in (26) for λ > 0, we have

Ẋ
(R(λ)+h

λ − h
)

< 0. By Lemma 7, we have R(λ) + h > −λ Ċ(b) > 0. We also have Ṁ(λ) < 0

and Ṙ(λ) > 0 by Lemma 11. Finally, since x̄ > xs, Ċ(·) < 0 and C̈(·) > 0, (4) implies that

−[g + h]/Ċ(x̄) > −[g + h]/Ċ(xs) = 1.

Consider (26) for λ ∈ (0, 1]. We have 1 − 1/λ ≤ 0. Since Ṙ(·) > 0, we also obtain g − R(λ) ≥
g − R(1) > g − R(−[g + h]/Ċ(x̄)) = 0. Therefore, (26) is strictly negative for λ ∈ (0, 1]. Similarly,

consider (26) for λ ∈ [−[g + h]/Ċ(x̄),∞). We have 1 − 1/λ > 0. Since Ṙ(·) > 0, we also obtain

g −R(λ) ≤ g −R(−[g + h]/Ċ(x̄)) = 0. Therefore (26) is strictly positive for λ ∈ [−[g + h]/Ċ(x̄),∞).

This establishes that 1 < λo < −[g + h]/Ċ(x̄).

We have −λo Ċ(x̄)−h < ro < g by Lemma 2, because if the customer reveals the cost component

C(·) as λo C(·), then the supplier makes its computations assuming that the cost component C(·) is

λo C(·). Thus, we can assume that the cost component C(·) is λo C(·) and apply Lemma 2.
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Since λo > 1 and −λo Ċ(x̄)− h < ro < g, we have

−Ċ(x̄)− h <
ro + h

λo
− h <

g + h

λo
− h < g. (27)

Since Ẋ(·) < 0, (27) implies that X(−Ċ(x̄) − h) > X
(

ro+h
λo

− h
)

= xo > X(g). By (4) and (7), we

have Ċ(X(−Ċ(x̄)−h))−Ċ(x̄)−h+h = 0 and Ċ(X(g))+ g +h = 0 = Ċ(xs)+ g +h, which imply that

X(−Ċ(x̄)− h) = x̄ and X(g) = xs. Therefore, we have x̄ > xo > xs. This establishes the first part.

Since Ċ(·) < 0, the first part implies that λo Ċ(0) < Ċ(0) < −g − h < −ro − h < λo Ċ(x̄).

Therefore, there exists an x̃ ∈ (0, x̄) such that λo Ċ(x̃) = −ro − h. Thus, since λo C̈(·) > 0, we have

λo C(x̃)− [ro + h][x̄− x̃] = λo C(x̃) + λo Ċ(x̃) [x̄− x̃] < λo C(x̄), which implies that λo C(x̃) + h x̃ + p̄−
ro x̄ + ro x̃ < λo C(x̄) + h x̄ + p̄. ¤

Proof of Proposition 9 We first show the second part. Since λo C̈(·) > 0 and λo C(x̃) + h x̃ + p̄−
ro x̄+ ro x̃ < λo C(x̄) + h x̄ + p̄, we have λo Ċ(x̄) [x̃− x̄] < λo C(x̃)−λo C(x̄) < −[ro +h][x̃− x̄]. Having

λo Ċ(x̄) [x̃ − x̄] < −[ro + h][x̃ − x̄] implies that x̃ − x̄ < 0, because if we have x̃ − x̄ > 0, then we

obtain λo Ċ(x̄) < −[ro + h] and this contradicts Lemma 8. Since λo > 1 by Lemma 8, Ċ(·) < 0 and

x̃ − x̄ < 0, we have 0 < C(x̃) − C(x̄) < λo C(x̃) − λo C(x̄) < −[ro + h][x̃ − x̄], which implies that

C(x̃) + h x̃ + p̄ − ro x̄ + ro x̃ < C(x̄) + h x̄ + p̄. Therefore, the customer is strictly better off under

the standard deviation-price pair (x̃, p̄− ro x̄ + ro x̃). The fact that the supplier is strictly better off

under this standard deviation-price pair and the first part can be shown by using the same argument

used to show Proposition 3. ¤

Lemma 12 (This lemma is useful for proving Proposition 10.) Assume that the sequences {xn} and

{pn} are generated through xn+1 = X
(Rn(λn)+h

λn
−h

)
and pn+1 = pn−Rn(λn) xn+Rn(λn) xn+1, where

Rn(λn) and λn are as defined in (17) and (18), and x1 = x̄, p1 = p̄. Let Mn(λ) = [Rn(λ) + h]/λ.

Then, there exist L1, U1, L2, U2, L3, U3, L4, U4, L5 and U6 such that, for all n, we have

0 < L1 ≤ −Ċ(xn) ≤ U1 < ∞

0 < L2 ≤ C̈(xn) ≤ U2 < ∞

0 < L3 ≤ λn ≤ U3 < ∞

0 < L4 ≤ Rn(λn) + h ≤ U4 < ∞

0 < L5 ≤ −Ṁn(λn)

Ṙn(λn) ≤ U6 < ∞.

Proof of Lemma 12 By Lemma 8, we have xs < x2 = X
(R1(λ1)+h

λ1
− h

)
< x1. Starting from the

standard deviation-price pair (x2, p2) and reapplying Lemma 8, we have xs < x3 = X
(R2(λ2)+h

λ2
−
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h
)

< x2. Continuing in this fashion, we obtain xs < . . . < xn+1 < xn < . . . < x1. Therefore,

xn ∈ [xs, x1] for all n. Since 0 < −Ċ(x) < ∞ and 0 < C̈(x) < ∞ for all x ∈ [0, b], we can set

L1 = minx∈[xs,x1]−Ċ(x), U1 = maxx∈[xs,x1]−Ċ(x), L2 = minx∈[xs,x1] C̈(x) and U2 = maxx∈[xs,x1] C̈(x).

Since xn > xs for all n, the first part of Lemma 8 implies that 1 < λn < −[g + h]/Ċ(xn) for all

n. Therefore, we can set L3 = 1 and U3 = [g + h]/L1. By (7), we have

Ċ(X(Rn(λn)+h
λn

− h
))

+
Rn(λn) + h

λn
− h + h = Ċ(xn+1) +

Rn(λn) + h

λn
= 0. (28)

Therefore, we can set L4 = L1 L3 and U4 = U1 U3.

Since 0 < −...C (x) < ∞ for all x ∈ [0, b], letting L7 = minx∈[xs,x1]−
...C (x) and U7 = maxx∈[xs,x1]−

...C (x),

we have 0 < L7 ≤ −...C (xn) ≤ U7 < ∞ for all n. By (8), we have

Ẋ
(Rn(λn)+h

λn
− h

) C̈(xn+1) + 1 = 0.

Therefore, 1/U2 ≤ −Ẋ
(Rn(λn)+h

λn
− h

)≤ 1/L2 for all n. By (9), we have

Ẍ
(Rn(λn)+h

λn
− h

) C̈(xn+1) +
[
Ẋ

(Rn(λn)+h
λn

− h
)]2 ...C (xn+1) = 0.

Therefore, L7/U3
2 ≤ Ẍ(Rn(λn)+h

λn
− h) ≤ U7/L3

2 for all n.

Letting F (r) = [r + h]X(r), we have

F̈
(Rn(λn)+h

λn
− h

)
= 2 Ẋ

(Rn(λn)+h
λn

− h
)

+
Rn(λn) + h

λn
Ẍ

(Rn(λn)+h
λn

− h
)
.

The proof of Lemma 1 shows that F̈ (·) ≤ 0. Therefore,

0 ≤ −F̈
(Rn(λn)+h

λn
− h

)≤ 2
L2

− L4 L7

U3 U3
2

.

We set U8 = 2 L−1
2 − L4 L7 U−1

3 U−3
2 .

Similar to (22), since Rn(λ) is the optimal solution to problem (17), it satisfies

g + h

λ
Ẋ

(Rn(λ)+h
λ − h

)
+ xn − Ḟ

(Rn(λ)+h
λ − h

)
= 0.

Differentiating the expression above with respect to λ and evaluating the derivative at λ = λn, we

obtain

−g + h

λ2
n

Ẋ
(Rn(λn)+h

λn
− h

)
+ Ṁn(λn)

[
g + h

λn
Ẍ

(Rn(λn)+h
λn

− h
)− F̈

(Rn(λn)+h
λn

− h
)]

= 0.

Therefore, we can set

L5 =

[g + h]
U2

3 U2

[g + h] U7

L3 L3
2

+ U8

.
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Let K(r, λ) = 1
λ Ẋ

(
r+h
λ − h

)
. By (24), we have

0 < − ∂K(r, λ)
∂λ

∣∣∣∣
(Rn(λn),λn)

= − 1
λ2

n

Ẋ
(Rn(λn)+h

λn
− h

)
{
Ċ(xn+1)

...C (xn+1)
[C̈(xn+1)]2

− 1

}
≤ 1

L2
3L2

{
U1U7

L2
2

− 1
}

.

We also have

∂K(r, λ)
∂r

∣∣∣∣
(Rn(λn),λn)

=
1
λ2

n

Ẍ
(Rn(λn)+h

λn
− h

) ≥ L7

U2
3 U3

2

.

We set U9 = L−2
3 L−1

2 [U1 U7 L−2
2 − 1] and L10 = L7 U−2

3 U−3
2 .

Similar to (23), since Rn(λ) is the optimal solution to problem (17), it satisfies

[g + h] K(Rn(λ), λ) + xn − Ḟ
(Rn(λ)+h

λ − h
)

= 0.

Differentiating the expression above with respect to λ and evaluating the derivative at λ = λn, we

obtain{
[g + h]

∂K(r, λ)
∂r

∣∣∣∣
(Rn(λn),λn)

− 1
λn

F̈
(Rn(λn)+h

λn

)
}

Ṙn(λn)

+ [g + h]
∂K(r, λ)

∂λ

∣∣∣∣
(Rn(λn),λn)

+
Rn(λn) + h

λ2
n

F̈
(Rn(λn)+h

λn
− h

)
= 0.

Therefore, we can set

U6 =
[g + h] U9 +

U4

L2
3

U8

[g + h] L10
. ¤

Proof of Proposition 10 As shown in the proof of Lemma 12, we have xs < . . . < xn+1 < xn <

. . . < x1. Therefore, {xn} converges to some x∗ ≥ xs. We want to show that x∗ = xs. Assume that

x∗ > xs. Since C̈(·) > 0 and xs < x∗ < xn+1, (4) implies that Ċ(xn+1) + g + h > Ċ(x∗) + g + h >

Ċ(xs) + g + h = 0. We now show that this chain of inequalities implies that xn − xn+1 > U for all n

for some U > 0, which contradicts the fact that {xn} converges.

Similar to (25), since Rn(λ) is the optimal solution to problem (17), it satisfies

g −Rn(λn)
λn

Ẋ
(Rn(λn)+h

λn
− h

)
+xn −X

(Rn(λn)+h
λn

− h
)

= − g −Rn(λn)

λn C̈
(
X

(Rn(λn)+h
λn

− h
)) + xn −X

(Rn(λn)+h
λn

− h
)

= −λn Ċ(xn+1) + g + h

λn C̈(xn+1)
+ xn − xn+1 = 0, (29)

where the first equality follows from (8) and the second equality follows from (28). Since C̈(·) > 0

and xn+1 > x∗, (29) implies that

λn C̈(xn+1) [xn − xn+1] = Ċ(xn+1) + g + h + [λn − 1] Ċ(xn+1)

> Ċ(x∗) + g + h + [λn − 1] Ċ(xn+1). (30)
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Since xn > xs, Lemma 8 implies that λn > 1. If λn ≤ 1 + Ċ(x∗)+g+h
2U1

, where U1 is as defined in

Lemma 12, then we have

Ċ(x∗) + g + h + [λn − 1] Ċ(xn+1) ≥ Ċ(x∗) + g + h− Ċ(x∗) + g + h

2U1
U1 =

Ċ(x∗) + g + h

2
.

The expression above and (30) imply that

xn − xn+1 >
Ċ(x∗) + g + h

2λn C̈(xn+1)
≥ Ċ(x∗) + g + h

2U3 U2
, (31)

where U2 and U3 are as defined in Lemma 12.

Let Mn(λ) = [Rn(λ)+h]/λ. Since λn is the optimal solution to problem (18), it satisfies the first

order condition

{
Ċ(X(Rn(λn)+h

λn
− h

))
+ Rn(λn) + h

}
Ẋ

(Rn(λn)+h
λn

− h
)
Ṁn(λn)

+ Ṙn(λn)
{

X
(Rn(λn)+h

λn
− h

)− xn

}
= 0,

which, by using the same argument used in (26), can be written as

Ẋ
(Rn(λn)+h

λn
− h

)
{

[Rn(λn) + h] Ṁn(λn)
[
1− 1

λn

]
+

Ṙn(λn)
λn

[g −Rn(λn)]

}
= 0. (32)

Since Ẋ(·) < 0, (32) implies that g−Rn(λn) = −{
[Rn(λn)+h] Ṁn(λn) [λn−1]

}
/Ṙn(λn). Therefore,

noting (28) and (30), we have

λn C̈(xn+1) [xn − xn+1] = λn Ċ(xn+1) + g + h = g −Rn(λn) = − [Rn(λn) + h] Ṁn(λn) [λn − 1]
Ṙn(λn)

.

If λn > 1 + Ċ(x∗)+g+h
2U1

, the equality above implies that

xn − xn+1 >
L4 L5

Ċ(x∗) + g + h

2U1

U3 U2 U6
, (33)

where L4, L5 and U6 are as defined in Lemma 12. Letting

U = [Ċ(x∗) + g + h] min
{

1
2U3 U2

,
L4 L5

2U1 U3 U2 U6

}
> 0,

(31) and (33) imply that xn− xn+1 > U , which contradicts the fact that {xn} converges. Therefore,

we must have x∗ = xs.

By Lemma 8, we have 1 < λn < −[g+h]/Ċ(xn) for all n. By (4) and the fact that limn→∞ xn = xs,

we have limn→∞ Ċ(xn) = Ċ(xs) = −[g + h]. Thus, we obtain limn→∞ λn = 1. ¤
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