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Abstract

Assortment planning under a logit demand model is a difficult problem when there are
product-specific fixed costs. We develop a new continuous relaxation of the problem that is
based on the parametrization of the problem on the total assortment attractiveness. This
relaxation provides an upper bound and a heuristic integer solution, for which we develop
performance guarantees. We analytically prove that it provides a close-to-optimal solution
when products are homogeneous in terms of preference weights. Moreover, our formulation
can be easily extended to incorporate additional constraints on the assortment, or multiple
customer segments. Finally, we provide numerical experiments that show that our method
yields tight upper bounds and performs competitively with respect to other approaches found
in the literature.

1 Introduction

The optimization of assortment plans is an important problem for most retailers. In the very

broad literature on this topic, product fixed costs have been identified as one of the drivers

that make optimization difficult. At the same time, these costs may be very significant. They

may arise from store or shelf preparation costs and may be especially high for slow movers even

if these have high margins. In situations where product assortments change often (e.g., for

stores selling new phones or apparel, see Caro and Mart́ınez-de Albéniz 2015), this is even more

important, because such fixed costs need to be recovered in a short time.

In this paper, we consider assortment planning under a multinomial logit (MNL) demand

model where products involve fixed costs, together with different margins and attractiveness

(preference weights). The objective in our approach is to maximize the expected profit, i.e.,

the expected sales contribution margin minus fixed assortment costs. The resulting optimiza-

tion problem is known to be NP-hard (Kunnumkal et al. 2009). To circumvent this difficulty,
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we develop a tractable relaxation of the assortment optimization problem that is based on a

parametric continuous knapsack formulation. We use the total attractiveness of the assortment

including the attractiveness of the no-purchase option as a parameter in our relaxation. Our

relaxation involves (1) solving a continuous knapsack problem for each value of the total at-

tractiveness parameter, and (2) selecting the best possible value of the parameter. This process

generates an upper bound on the optimal expected profit.

With this approach, we obtain several useful results. First, we prove that the upper bound

can be obtained efficiently. In particular, we show that the best possible value of the total

attractiveness parameter, and hence the upper bound can be obtained in polynomial time,

namely O(n3) where n is the total number of products available.

In addition, we provide an analytical characterization of the gap between optimal expected

profit and our upper bound. Specifically, we show that the upper bound obtained by our

relaxation is never more than twice that of the optimum. In addition, we construct a family of

assortment problems which shows that the worst-case gap of 2 is in fact tight. While similar

bounds based on the continuous knapsack formulation of the assortment problem under different

choice models and assumptions appear in the assortment literature (Kunnumkal et al. 2009,

Davis et al. 2014, Gallego and Topaloglu 2014), to our knowledge, the tightness of the worst-

case gap is new. We find that the worst-case gap is achieved when one product is significantly

different than the rest in terms of margins and attractiveness. This situation may not occur very

frequently in practice especially when we think of the products as being potential substitutes.

When the characteristics of the products are more similar, we obtain two sharper bounds: 3/2

without making strong assumptions on the parameter space, and a ratio quite close to one

when the number of products is large. An appealing feature of the latter bound is that it is a

simple function of only the product attractiveness parameters and is independent of the profit

margins and the product fixed costs. The sharper bounds are more likely to be applicable in

many practical situations and are thus useful in providing a more accurate characterization of

the performance of our method.

Our performance bounds are obtained by comparing the upper bound given by our relaxation

with the expected profits achieved by certain candidate assortments. Therefore, our continuous

relaxation allows us to generate heuristics solutions that perform well, since if a candidate

assortment generates a profit that is within a certain factor of our upper bound, then it also

within the same factor of the optimal profit. In our computational study, we find that our
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relaxation generally obtains bounds that are very close to optimal, with average optimality gaps

below 1% and worst-case gaps of a few percentage points. Our heuristic thus provides very

competitive performance at a reasonable computational cost.

Finally, by taking a novel dual perspective, we extend the relaxation idea to incorporate

additional modelling elements. We show that incorporating general linear constraints on the

assortment and multiple customer classes (i.e., a mixture of multinomial logit models) still

allows us to calculate the upper bound by minimizing a finite number of functions. It turns out

that the number of functions to consider is of order O
(
nD+E

)
whereD is the number of customer

classes and E the number of constraints. So it is only useful when the number of classes and

constraints is small. These results can be extended further when there is a single customer class,

in which case we show that the complexity of obtaining the upper bound is O
(
n3(1+E)

)
. When

there are constraints on the assortment, we cannot obtain guarantees on the performance of our

heuristic in general. However, we are able to recover the performance guarantee of 2 for some

classes of constraints that are common in the assortment literature: (1) cardinality constraints

which limit the total number of products offered and (2) product precedence constraints which

require that a certain set of products be included in the assortment if a given product is part of

the assortment.

Our results thus advance the understanding of assortment planning with product fixed costs.

We make three main contributions to the literature. First, we build on Kunnumkal et al. (2009)

to obtain a new, tractable upper bound on the optimal expected profit. Second, we show that our

heuristic has provable performance guarantees, and our computational study further indicates

that the heuristic method is efficient and has very competitive performance. Our analytical

results explain the good practical performance of the heuristic to a large extent. And third, our

approach can be applied to more difficult problems that include constraints on the assortment

and multiple customer classes.

The rest of the paper is organized as follows. Section 2 reviews the related literature. Section

3 formulates the problem and Section 4 develops the continuous relaxation and the heuristic.

Section 5 adds constraints and customer classes to the problem. Section 6 shows a numerical

study of the performance of our heuristic and Section 7 concludes. Proofs of the analytical

results are included in the Appendix.
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2 Literature Review

We provide a concise review of the assortment planning literature under variants of the MNL

choice model. We refer the reader to Kök et al. (2009) for a more detailed review of the

assortment planing literature and Anderson et al. (1992) for a background on discrete choice

models.

There is a growing literature on assortment optimization under the MNL model and varia-

tions of it. Talluri and van Ryzin (2004) show that the assortment optimization problem under

the MNL choice model can be solved efficiently and that the optimal assortment is a revenue-

ordered set, one consisting of a certain number of the products with the highest margins. The

assortment problem becomes difficult in general when we move beyond the MNL choice model.

Rusmevichientong et al. (2014) and Miranda Bront et al. (2009) show that the assortment op-

timization problem is NP-hard for the mixture of multinomial logits (MMNL) model. Davis

et al. (2014) show that the assortment optimization problem under the nested logit model is

tractable under some conditions on the choice parameters, but is intractable in general. They

propose approximation schemes to obtain assortments with provable worst-case guarantees in

the cases where the assortment optimization problem is intractable. The papers referred to in

this paragraph do not model product fixed costs or constraints on the assortment.

The constrained assortment planning problem has been the focus of recent research. The

problem becomes hard even under the MNL model when there is a single constraint that limits

the total space consumed by the products in the assortment (Rusmevichientong et al. 2009).

Tractable models typically include those with cardinality constraints and precedence constraints.

Rusmevichientong et al. (2010) show that the cardinality constrained problem under the MNL

model can be solved tractably, while Gallego and Topaloglu (2014) and Feldman and Topaloglu

(2014) show similar results for the nested logit model. Davis et al. (2013) show that the assort-

ment optimization problem under the MNL model can be solved efficiently when the constraint

matrix is totally unimodular. Again, these papers do not model product fixed costs.

Kunnumkal et al. (2009) consider assortment optimization under the MNL model when there

are product fixed costs. They show that the resulting assortment optimization problem becomes

NP-hard. So the authors focus on approximation schemes to obtain assortments with worst-

case guarantees on the expected profit. The authors propose a 2-approximation algorithm and

a polynomial time approximation scheme. The first algorithm obtains an assortment which is
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guaranteed to obtain at least 50% of the optimal expected profit, while the second one obtains

assortments with improved guarantees but at the expense of increased computational effort.

Although there is a somewhat limited literature on the assortment problem with product

fixed costs, the model itself is relevant in a number of contexts. As mentioned, constrained

assortment optimization is difficult in general and one approach to obtain tractable models is

to dualize the difficult constraints by associating Lagrange multipliers with them. The resulting

relaxation has precisely the same form as the fixed costs problem if we interpret the Lagrange

multipliers as the product fixed costs. Indeed, Feldman and Topaloglu (2015) consider relaxing

certain constraints in the assortment optimization problem under the MMNL model by associ-

ating Lagrange multipliers with them and the relaxation they obtain is an assortment problem

with product fixed costs.

Given the connection to constrained assortment optimization, it is not surprising that the

fixed costs model has applications in revenue management as well. The revenue management

problem can be viewed as solving a sequence of assortment problems that are linked together by

resource constraints. Kunnumkal and Topaloglu (2008) dualize the resource capacity constraints

and the sub-problems in their method end up being assortment optimization problems with fixed

costs.

The papers closest to ours are Kunnumkal et al. (2009) and Feldman and Topaloglu (2015),

but there are some important differences. Kunnumkal et al. (2009) are concerned with approx-

imation schemes that obtain assortments with provable profit guarantees, while our focus is on

obtaining tight upper bounds on the optimal expected profit. Now the assortments obtained by

Kunnumkal et al. (2009) do provide an implicit bound on the optimal profit, since if a candi-

date assortment is guaranteed to obtain at least a fraction θ of the optimal profit, then we can

conclude that the optimal profit is no more than 1/θ of the profit obtained by that assortment.

However, since the guarantees are from a worst-case perspective, they can be quite conservative

in practice and may not provide a good indication of the extent of suboptimality. Therefore,

it is important to obtain tight upper bounds on the optimal profit to be able to better assess

the suboptimality of candidate assortments and to benchmark their performance. In that sense,

our work complements Kunnumkal et al. (2009). Moreover, we extend our approach to handle

general constraints on the assortment. Our method remains tractable provided the number of

constraints is not too large and we recover the performance guarantees from the unconstrained

case for certain types of assortment constraints.
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Feldman and Topaloglu (2015) propose a Lagrangian relaxation approach to obtain an upper

bound on the optimal revenue of the assortment problem under the MMNL model. The relaxed

problem ends up being an assortment problem with product fixed costs, which is still difficult to

solve. So they obtain an upper bound using a grid-based approximation and the quality of their

bound and the computational work involved both depend on the density of the grid. Our method

can be viewed as a version of the grid-based approximation of Feldman and Topaloglu (2015)

that works with an infinitely dense grid. However, the computational work required to obtain

our bound does not depend on the density of the grid and is instead polynomial in the number

of products. We also note that the upper bound obtained by the grid-based approximation

lacks the theoretical guarantees of our method. Subsequent to a working version of our paper,

Kunnumkal (2015) adapted our method to refine the Lagrangian relaxation approach of Feldman

and Topaloglu (2015) to the assortment problem under the MMNL model.

Finally we note that there is a body of work on assortment planning with inventory costs;

see for example van Ryzin and Mahajan (1999). This line of work is primarily concerned with

inventory levels of the different products that balance the trade-off between stock-outs and

inventory carrying costs, and an underlying assumption is that customers make their choice

without considering the availability of the products. We do not rely on this assumption and in

our model customers choose after observing the assortment.

3 Problem Formulation

We have a set of n products and we have to decide which of them to include in the assortment.

We let J = {1, 2, . . . , n} denote the set of products and for product j ∈ J , we let pj denote its

profit margin and cj the fixed cost of including it in the assortment. We let xj ∈ {0, 1} indicate

if product j is included in the assortment. Given an assortment, customers choose among the

offered products according to the multinomial logit (MNL) model. The MNL model associates

a preference weight vj with product j and a preference weight v0 associated with not making a

purchase. The probability that a customer purchases product j is given by vjxj/(v0+
∑

k∈J vkxk)

and the no-purchase probability is given by v0/(v0 +
∑

k∈J vkxk). Letting

Z(x) =

∑
j∈J pjvjxj

v0 +
∑

j∈J vjxj
−
∑
j∈J

cjxj (1)
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denote the expected profit associated with offering the assortment x = {xj | ∀j}, the optimal

expected profits can be obtained by solving the problem

(OPT ) ZOPT = max Z(x)

s.t. xj ∈ {0, 1}.

The optimal assortment can be obtained efficiently in certain special cases. For example,

OPT is tractable if the preference weights for all the products are identical, or if the no-purchase

preference weight v0 = 0. It is also tractable if the fixed costs are identical for all the products:

cj = c for all j. However Kunnumkal et al. (2009) show that problem OPT is NP-hard in

general.

Although OPT is a nonlinear integer program, it can be reformulated as the linear mixed-

integer program

ZOPT = max
∑
j∈J

pjuj −
∑
j∈J

cjxj (2)

s.t. v0
vj
uj ≤ u0 ∀j (3)

uj ≤ vj
v0+vj

xj ∀j (4)∑
j∈J uj + u0 = 1 (5)

uj ≥ 0, xj ∈ {0, 1} (6)

by using the transformation uj = vjxj/(v0 +
∑

k∈J vkxk); see for example Topaloglu (2013).

While the linear mixed-integer program is still intractable, it is in a form that can be readily

handled by most commercial optimization software. The mixed-integer programming formula-

tion tends to be more useful when we benchmark the performance of different approximation

methods against the optimal expected profit.

4 An Upper Bound Based on a Parametric Linear Program

In this section, we describe a tractable method to obtain an upper bound on the optimal expected

profit. If we let t = 1
v0+

∑
j∈J vjxj

, then Z(x) =
∑

j∈J (pjvjt− cj)xj =
∑

j∈J ρj(t)xj , where

ρj(t) = pjvjt− cj . (7)
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Therefore, we can write OPT equivalently as

ZOPT = max
t∈[tmin,tmax]

Γb(t) (8)

where Vk =
∑k

j=1 vj , tmin = 1
Vn+v0

, tmax = 1
minj{vj}+v0

and

Γb(t) = max
∑
j∈J

ρj(t)xj

s.t.
∑

j∈J vjxj ≤ 1
t − v0

xj ∈ {0, 1}.

Here we note that even though we have replaced the constraint
∑

j∈J vjxj = 1
t − v0 with∑

j∈J vjxj ≤ 1
t − v0, the formulation remains valid since the constraint will be satisfied as

an equality at a value of t that maximizes Γb(t). Computing Γb(t) involves solving a binary

knapsack problem, which is again intractable.

Since we are interested in obtaining a tractable upper bound on ZOPT , we consider the

continuous relaxation of the binary knapsack. In doing so, we restrict our attention to the

products contained in the set

J (t) =
{
j|vj ≤

1

t
− v0 and ρj(t) > 0

}
. (9)

This is because, if vj > 1
t − v0, then product j can never be part of any feasible solution to

the binary knapsack. On the other hand, if ρj(t) ≤ 0, then product j can be excluded from an

optimal solution to the binary knapsack. Therefore, if j /∈ J (t) it cannot be part of an optimal

solution to the binary knapsack. Consequently, we can restrict attention to the products in J (t)

when working with the continuous relaxation of the binary knapsack

Γf (t) = max
∑

j∈J (t)

ρj(t)xj (10)

s.t.
∑

j∈J (t) vjxj ≤
1
t − v0 (11)

0 ≤ xj ≤ 1. (12)
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Since Γb(t) ≤ Γf (t),

ZUB = max
t∈[tmin,tmax]

Γf (t) (13)

gives us an upper bound on the optimal expected profit.

Lemma 1. ZOPT ≤ ZUB.

While it is easy to see that ZUB is an upper bound on ZOPT , it is not immediately clear

whether the maximization in (13) can be carried out in a tractable manner. It is also not

clear how well ZUB approximates ZOPT . We explore these questions in the following sections.

We note that Kunnumkal et al. (2009) also use the parametric formulation Γb(t) of the assort-

ment problem. However, as mentioned, their focus is on obtaining candidate assortments with

performance guarantees on the expected profit.

4.1 Tractability

Problem (10)-(12) is a continuous knapsack problem and is tractable. However, its optimal

solution depends on the parameter t since the objective function coefficients and the knapsack

size are functions of t. Therefore, a potential difficulty in obtaining ZUB is that Γf (t) has to be

computed for infinitely many values of t. In this section, we show that it is sufficient to evaluate

Γf (t) at a finite, in fact a polynomial, number of values of t.

We begin with the observation that the optimal solution to a continuous knapsack problem

involves filling up the knapsack with items in decreasing order of the profit-to-space ratio until

the knapsack is completely filled. In the context of problem (10)-(12), we fill up the knapsack

of size 1
t − v0 with products in decreasing order of

ρj(t)
vj

= pjt− cj
vj
.

Since the profit-to-space ratio depends on the value of t, the order in which the items get

placed into the knapsack also depends on the value of t. We bound the number of different

orderings that are possible as we vary t. Product k1 has a higher profit-to-space ratio than

product k2 provided (pk1 − pk2)t ≥
ck1
vk1

− ck2
vk2

. Therefore, we have exactly one critical value

t̂k1,k2 =
ck1/vk1 − ck2/vk2

pk1 − pk2

at which the profit-to-space ordering of products k1 and k2 changes. Note that if t̂k1,k2 is smaller

than tmin or greater than tmax, then the profit-to-space ordering of k1 and k2 remains the same
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in the entire range of t of interest. So we find the critical values t̂k1,k2 for every pair of products

k1 and k2 and sort these O(n2) critical values from smallest to largest. This divides the interval

[tmin, tmax] into O(n2) subintervals. We note that the profit-to-space ordering of the products

does not change as t varies within a given subinterval. We conclude that there are O(n2) possible

profit-to-space orderings of the products.

Now consider a particular such subinterval [t̂l, t̂u]. For simplicity, assume that 1
t̂u

− v0 ≥

vmax = maxj{vj} and that ρj(t) > 0 for all j, so that J (t) = J for all t ∈ [t̂l, t̂u]. Note that

this is not a restrictive assumption since if 1
t − v0 < vmax, we simply work with a smaller set

of products that are admissible given the knapsack size 1
t − v0. On the other hand, if ρj(t) ≤ 0

for some j, then we can find the critical value of t at which the profit-to-space ratio of product

j becomes equal to zero and analyze the intervals to the left and right of the critical value

separately.

Now suppose that ρ1(t)/v1 ≥ . . . ≥ ρn(t)/vn > 0 for all t ∈ [t̂l, t̂u]. Since (10)-(12) is

a continuous knapsack problem, we simply fill up the knapsack with products starting with

product 1 until we use up all the space. Therefore,

Γf (t) =

κ(t)−1∑
j=1

ρj(t) + ρκ(t)(t)

(
1
t − v0 − Vκ(t)−1

vκ(t)

)

where κ(t) is the largest index k such that Vk−1 =
∑k−1

j=1 vj < 1
t − v0. Note that the index

κ(t) stays constant as long as Vk−1 < 1
t − v0 ≤ Vk. Therefore, the interval [t̂l, t̂u] can be

further partitioned into O(n) subintervals such that κ(t) does not change with t within each

subinterval. We note that Kunnumkal et al. (2009) make these observations in developing their

approximation algorithms. We build on these observations to next show that problem (13) can

be solved in a tractable manner.

Since we have O(n2) intervals where the profit-to-space ordering of the products does not

change and each such interval can be further partitioned into O(n) subintervals where the index

κ(t) remains constant, the range [tmin, tmax] can be partitioned into a total of O(n3) subintervals

and problem (13) can be obtained by solving O(n3) problems of the form maxt∈[l,u]Πκ(t) where

Πκ(t) =

κ−1∑
j=1

ρj(t) + ρκ(t)

(
1
t − v0 − Vκ−1

vκ

)
(14)

and Vκ−1 ≤ 1
u − v0 and 1

l − v0 ≤ Vκ. Let
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∆κ = pκ(v0 + Vκ−1)−
κ−1∑
j=1

pjvj . (15)

Lemma 2 below states that the problem maxt∈[l,u]Πκ(t) can be solved efficiently, essentially in

closed form.

Lemma 2. Let t̄∗ = argmaxt∈[l,u]Πκ(t). If ∆κ ≤ 0, then t̄∗ = u. Otherwise, t̄∗ = max {l,min {t∗, u}}

where

t∗ =

√
cκ/vκ
∆κ

. (16)

We thus have the following proposition.

Proposition 1. ZUB can be obtained in a running time of O(n3).

0.1 0.15 0.2 0.25 0.3

t

1.2

1.4

1.6

1.8

2

P
ro

fit

Upper bound

Figure 1: Example with n = 3 products. Product characteristics are v0 = 1, v1 = 2, v2 =
3, v3 = 4, p1 = 3.2, p2 = 2.8, p3 = 2, c1 = 0.4, c2 = 0.3, c3 = 0. The curve cor-
responds to Γf (t), while the dots correspond to the integer solutions, i.e., all the points(

1
v0+

∑3
j=1 vjxj

,
∑3

j=1 pjvjxj

v0+
∑3

j=1 vjxj
−
∑3

j=1 cjxj

)
for xj ∈ {0, 1}.

To illustrate this result, we describe the intervals and sub-intervals in the following example,

see Figure 1. In the example, higher profit margins are associated with higher fixed costs but

lower levels of attractiveness (smaller preference weights). It turns out the optimal integer

solution is to introduce product 2 (with weight of 3), which results in a profit of 1.8. In contrast,

the upper bound is reached at t = 0.213 with a value of 1.8238, an optimality gap of 1.32%

above the true integer optimum.
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To calculate the upper bound, we first compute t̂1,2 = 0.25, t̂1,3 = 0.166, t̂2,3 = 0.125. In

addition, we note that J (t) = {1, 2, 3} for t ≤ 0.2, J (t) = {1, 2} for t ∈ [0.2, 0.25] while

J (t) = {1} for t ∈ [0.25, 0.333]. This means, that, given that tmax = 1
v0+v1

= 0.333 and

tmin = 1
v0+v1+v2+v3

= 0.1, we must consider five intervals [0.1, 0.125], [0.125, 0.166], [0.166, 0.2],

[0.2, 0.25] and [0.25, 0.333] in computing the upper bound.

1. In the first interval [0.1, 0.125], we have J (t) = {1, 2, 3} and ρ3(t)/v3 ≥ ρ2(t)/v2 ≥

ρ1(t)/v1. In this interval, we have x3 = x2 = 1 and x1 varies between 1 and 0 and

Γf (t) is increasing in t.

2. In the second interval [0.125, 0.166], we still have J (t) = {1, 2, 3}, but ρ2(t)/v2 ≥ ρ3(t)/v3 ≥

ρ1(t)/v1. In this interval x2 = 1, x1 = 0 and x3 varies between 1 and 1/3 and Γf (t) is still

increasing in t.

3. In the third interval [0.166, 0.2] we have J (t) = {1, 2, 3} and ρ2(t)/v2 ≥ ρ1(t)/v1 ≥

ρ3(t)/v3. In this interval x2 = 1, x3 = 0 and x1 varies from 1 to 0.5 and Γf (t) is in-

creasing in t.

4. In the fourth interval [0.2, 0.25], the profit-to-space ordering of the products remains un-

changed but J (t) = {1, 2}. So we have x2 = 1 in this interval while x1 varies from 0.5 to

0. Γf (t) is concave with an interior maximizer at 0.213 (as identified by Lemma 2).

5. Finally, in the last interval [0.25, 0.333], J (t) = {1}, which means that in this range the

optimal fractional solution stays equal to x1 = 1 and Γf (t) is increasing.

4.2 Performance Guarantee

In this section, we discuss the tightness of the upper bound ZUB. Kunnumkal et al. (2009)

describe an approximation algorithm which obtains an assortment whose expected profit is

within a factor of 2 of the optimal value. The same line of analysis here implies that ZUB ≤

2ZOPT . We briefly outline the arguments which show the performance bound of 2 and we give

an example which shows that the gap of 2 is tight. On the other hand, in our computational

experiments, we observe that the gaps between ZUB and ZOPT tend to be much smaller than

the theoretical worst-case bound. To explain this, we characterize problem parameter settings

where the gaps tend to be small and provide improved performance guarantees in such cases.

12



4.2.1 A Gap of 2

The analysis in Kunnumkal et al. (2009) implies that ZUB ≤ 2ZOPT . We summarize the key

observation for completeness. By (13) and (8), it suffices to show that Γf (t) ≤ 2Γb(t). But this

follows from the well-known result that the optimal objective function value of the fractional

knapsack is within a factor of 2 of that of the binary knapsack; see for example Vazirani (2013).

We next give an example where the gap between ZUB and ZOPT asymptotically approaches

2. We note that it is not a direct extension of the classical knapsack example, since in our

setting the objective function coefficients of the products and the knapsack size both depend on

the same underlying parameter t.

Consider an assortment problem with two products so that J = {1, 2}. Let v2 > v1 and p2 >

p1 >
p2v2
v0+v2

. Let c1 =
v1

(v0+v2)(v0+v1+v2)
[p1(v0+v2)−p2v2] and c2 =

v2
v0+v1+v2

[p2− p1v1
v0+v1

], and note

that c1, c2 > 0. Since v2 > v1, tmin = 1
v0+v1+v2

, tmax = 1
v0+v1

and ZUB = maxt∈[tmin,tmax] Γ
f (t).

It can be verified that ρ1(t)/v1 ≥ ρ2(t)/v2 > 0 for all t ∈ [tmin, tmax]. Therefore when t = 1
v0+v2

,

the knapsack includes product 1 and a fractional amount of product 2, so that

Γf

(
1

v0 + v2

)
= ρ1

(
1

v0 + v2

)
+ ρ2

(
1

v0 + v2

)(
v2 − v1

v2

)
= Z{1} −

p1v1(v2 − v1)

(v0 + v1)(v0 + v2)
+

(
1− v1

v2

)
Z{2},

where we use ZS to denote the expected profit associated with offering assortment S and the

last equality follows from using (7) and rearranging terms. Therefore Z{1} = ρ1

(
1

v0+v1

)
denotes

the expected profit from offering the assortment consisting of product 1 alone, while Z{2} =

ρ2

(
1

v0+v2

)
denotes the expected profit from offering the assortment consisting of product 2

alone.

Now set v0 = 1, v1 = ϵ2, v2 = ϵ, p1 = 1/ϵ2 and p2 = 1/ϵ3, where 0 < ϵ < 1. It can be verified

that Z{1} and Z{2} tend to 1 as ϵ approaches 0 and the limit of ZOPT as ϵ approaches 0 is 1. Since

ZUB ≤ 2ZOPT , it follows that the limiting value of ZUB is no more than 2. On the other hand,

the limit of Γf
(

1
v0+v2

)
as ϵ approaches 0 is 2. Since ZUB = maxt∈[tmin,tmax] Γ

f (t) ≥ Γf ( 1
v0+v2

),

it follows that the limiting value of ZUB as ϵ approaches 0 is 2. Therefore, the gap between ZUB

and ZOPT approaches 2 asymptotically.
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4.2.2 Performance on Randomly Generated Instances

The example in §4.2.1 requires the preference weights and the profit margins of the products to

differ by orders of magnitude and this may not be the case in many situations, especially when

we think of the products as being substitutes of each other. So we investigate the performance

of the upper bound ZUB on randomly generated test problems.

We generate our test problems in a manner similar to Feldman and Topaloglu (2015). We

have n = 10 products. We set the preference weight of product j as vj = Xj/
∑n

k=1Xk, where

Xj is uniformly distributed on [0, 1]. We set v0 =
Φ

1−Φ

∑
j∈J vj , where Φ ∈ [0, 1] is a parameter

that we vary in our computational experiments. Note that the no-purchase probability when

all the products are offered is Φ. We sample pj from the uniform distribution on [0, 2000] and

sample cj from the uniform distribution on [0, γpjvj/(v0 + vj)], where γ ∈ [0, 1] is a second

parameter that we vary in our computational experiments. We note that if γ is small, then

the fixed costs are relatively small compared to the profits. On the other hand, if γ is large,

then the fixed costs are roughly comparable to the profits. We vary Φ ∈ {0.75, 0.50, 0.25} and

γ ∈ {1.00, 0.50, 0.25}. For each (Φ, γ) combination, we generate 50 test problems by following

the procedure described above.

Table 1 compares the upper bound ZUB with the optimal expected profit ZOPT . In our

computational experiments, we obtain ZOPT by solving its linear mixed-integer programming

formulation (2)-(6). The first column of Table 1 gives the problem parameters (n,Φ, µ). As

mentioned, for each (Φ, γ) pair we generate 50 test problems and the second column of Table 1

gives the average percentage difference between ZUB and ZOPT over the 50 test problems. The

third column gives the 5th percentile of the difference, while the fourth column gives the 95th

percentile. The last column reports the fraction of instances where ZUB coincides with ZOPT .

We observe that ZUB is remarkably close to ZOPT in our computational experiments. The

average percentage difference is at most 0.58% and the 95th percentile of the difference is no

more than 3.49%. Moreover, ZUB coincides with ZOPT for at least half of the test problems.

We next provide a theoretical basis for these observations.

4.2.3 A Gap of 3/2

The example in §4.2.1 indicates that the gap between ZUB and ZOPT is essentially 2. On the

other hand, our computational experiments in §4.2.2 indicate that the performance of ZUB tends

to be much better than the worst-case bound of 2. In this section, we establish conditions for
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Problem % difference between ZUB and ZOPT % optimal
(n,Φ, γ) Avg. 5th percentile 95th percentile

(10, 0.75, 1.00) 0.32 0.00 2.16 64
(10, 0.75, 0.50) 0.16 0.00 0.54 72
(10, 0.75, 0.25) 0.03 0.00 0.18 82
(10, 0.5, 1.00) 0.34 0.00 1.71 60
(10, 0.5, 0.50) 0.18 0.00 1.33 64
(10, 0.5, 0.25) 0.10 0.00 0.59 66
(10, 0.25, 1.00) 0.58 0.00 3.49 60
(10, 0.25, 0.50) 0.16 0.00 1.07 66
(10, 0.25, 0.25) 0.21 0.00 0.87 58

Table 1: Performance gap between ZUB and ZOPT for test problems with 10 products.

an improved performance guarantee on the upper bound ZUB.

By the discussion in §4.1, it follows that ZUB can be obtained by solving O(n3) problems

of the form maxt∈[l,u]Πκ(t) where Vκ−1 =
∑κ−1

j=1 vj ≤ 1
u − v0 and 1

l − v0 ≤ Vκ =
∑κ

j=1 vj .

Equivalently, u ≤ τκ−1 = 1
v0+Vκ−1

and l ≥ τκ = 1
v0+Vκ

. So, to bound the gap between ZUB

and ZOPT , it suffices to obtain a uniform bound on the gap between maxt∈[l,u]Πκ(t) and ZOPT .

In the following analysis, we assume that 1
u − v0 > vmax and J (t) = J for all t ∈ [l, u]. We

emphasize that the assumptions are only to reduce the notational burden and that all of our

results continue to hold on relaxing them.

Lemma 3. If ∆κ ≤ 0, then maxt∈[l,u]Πκ(t) ≤ ZOPT .

Lemma 4. Let t∗ = argmaxtΠκ(t). If ∆κ > 0 and t∗ ≥ τκ−1 or t∗ ≤ τκ, then maxt∈[l,u]Πκ(t) ≤

ZOPT .

Lemma 5. Let t∗ = argmaxtΠκ(t). If ∆κ > 0, t∗ ∈ (τκ, τκ−1) and t∗ ≤ 1
v0+vκ

, then maxt∈[l,u]Πκ(t) ≤
3
2Z

OPT .

Note that the only case not covered by Lemmas 3-5 is when ∆κ > 0 and 1
v0+vκ

< t∗ < τκ−1.

That is, Vκ−1 < 1
t∗ − v0 < vκ. We note that for this situation to occur the preference weight of

product κ has to be greater than the sum of the preference weights of products {1, . . . , κ− 1}.

This is unlikely to be the case if the preference weights of the products are roughly similar and κ is

relatively large. That is, we are considering assortments that include a large number of products.

In the cases that are covered by Lemmas 3-5, the gap between ZUB and ZOPT is no more than

3/2. More interestingly, in the cases covered by Lemmas 3 and 4, we have ZOPT = ZUB and

there is no gap between the optimal expected profit and the upper bound. This explains to a

certain degree the good performance of ZUB that we observe in our computational experiments.
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4.2.4 A Parametric Bound

The performance guarantees in §4.2.1 and §4.2.3 do not depend on the problem parameters. In

this section, we establish a bound that depends only on the preference weights of the products

(and is independent of the margins and product costs) and that can be potentially much tighter.

Recall that we can partition the interval [tmin, tmax] into O(n2) subintervals where the profit-

to-space ordering of the products do not change. Let [t̂l, t̂u] be such a subinterval and suppose

that we have ρ1(t)/v1 ≥ . . . ≥ ρn(t)/vn > 0 for all t ∈ [t̂l, t̂u]. Let κu be the largest index such

that t̂u ≤ τk = 1
v0+Vk

and κl be the smallest index such that t̂l ≥ τk = 1
v0+Vk

and note that

κl > κu. So we can write [t̂l, t̂u] = ∪κ∈{κl,...,κu+1}Iκ where Iκl
= [t̂l, τκl−1] , Iκ = [τκ, τκ−1] for

κ ∈ {κl − 1, . . . , κu + 2} and Iκu+1 = [τκu+1, t̂u] and

max
t∈[t̂l,t̂u]

Γf (t) = maxκ∈{κl,...,κu+1}

{
maxt∈Iκ Πκ(t)

}
.

Therefore, in order to bound the gap between ZUB = maxt∈[tmin,tmax] Γ
f (t) and ZOPT , it suffices

to bound the gap between maxt∈Iκ Πκ(t) and ZOPT , which we proceed to do next.

For κ ∈ {κl, . . . , κu + 1}, let

rκ = min

{
maxt∈Iκ Πκ(t)

Z{1,...,κ−1}
,
maxt∈Iκ Πκ(t)

Z{1,...,κ}

}
− 1. (17)

Recall that Πκ(t) gives the expected profit for the assortment comprising of products {1, . . . , κ−

1} along with a fractional amount of product κ. Therefore, rκ can be interpreted as a measure

of the local optimality gap between the continuous relaxation and assortments obtained by

“rounding down” and “rounding up” the fractional product. We have

maxt∈Iκ Πκ(t)

ZOPT
≤ min

{
maxt∈Iκ Πκ(t)

Z{1,...,κ−1}
,
maxt∈Iκ Πκ(t)

Z{1,...,κ}

}
= 1 + rκ

where the inequality follows from noting that ZOPT ≥ max{Z{1,...,κ−1}, Z{1,...,κ}}. Therefore, rκ

is an upper bound on the relative gap between maxt∈Iκ Πκ(t) and ZOPT .

In the remainder of this section, we establish a bound on rκ when κ ∈ {κl − 1, . . . , κu + 2}.

The analysis can be adapted to the cases when κ ∈ {κl, κu + 1}; we defer the details to the

Online Appendix.

We let κ ∈ {κl − 1, . . . , κu +2} and consider different scenarios. First, if ∆κ ≤ 0, then Πκ(t)

is decreasing (Lemma 2). Therefore, maxt∈Iκ Πκ(t) = Πκ (τκ−1) = Z{1,...,κ−1}, where the last
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equality uses τκ−1 = 1
v0+Vκ−1

. As a result, we have rκ = 0. Next consider the case that ∆κ > 0

and let t∗ denote the unconstrained maximizer of Πκ(t) (Lemma 2). If ∆κ > 0, Πκ(t) is concave.

So if t∗ ≥ τκ−1, then maxt∈Iκ Πκ(t) = Πκ (τκ−1) = Z{1,...,κ−1} and rκ = 0. On the other hand, if

t∗ ≤ τκ, then maxt∈Iκ Πκ(t) = Πκ (τκ) = Z{1,...,κ} and again rκ = 0. The three cases considered

so far result in a trivial bound on rκ. To obtain a nontrivial bound, we consider the case that

∆κ > 0 and t∗ ∈ [τκ, τκ−1], so that maxt∈Iκ Πκ(t) = Πκ(t
∗). Lemma 6 below shows that rκ is

maximal when the assortments {1, . . . , κ− 1} and {1, . . . , κ} obtain the same expected profits.

Lemma 6. Let κ ∈ {κl− 1, . . . , κu+2}. If ∆κ > 0 and t∗ ∈ [τκ, τκ−1], then rκ is maximal when

Z{1,...,κ−1} = Z{1,...,κ}.

Since we are interested in obtaining an upper bound on the gap between ZOPT and maxt∈Iκ Πκ(t) =

Πκ(t
∗), we restrict ourselves to the case where rκ is maximal. If Z{1,...,κ−1} = Z{1,...,κ}, it implies

cκ
vκ

=
∆κ

(v0 + Vκ−1)(v0 + Vκ)
. (18)

Using (18) in Equation (35) and simplifying, we have

rκ =
∆κ

(√
v0 + Vκ −

√
v0 + Vκ−1

)2
(v0 + Vκ−1)(v0 + Vκ)Z{1,...,κ−1}

. (19)

Lemma 7 below gives a lower bound on Z{1,...,κ−1} which we use, in turn, to bound rκ.

Lemma 7. Let κ ∈ {κl − 1, . . . , κu + 2}. If ∆κ > 0 and t∗ ∈ [τκ, τκ−1], then

Z{1,...,κ−1} ≥
∆κVκ−1

v0(v0 + Vκ−1)

(
1−

√
v0 + Vκ−1

v0 + Vκ

)
.

Using the lower bound from Lemma 7 in Equation (19), we have the following proposition.

Proposition 2. Let κ ∈ {κl − 1, . . . , κu + 2}. If ∆κ > 0 and t∗ ∈ [τκ, τκ−1], then

rκ ≤ v0vκ

Vκ−1

√
v0 + Vκ(

√
v0 + Vκ +

√
v0 + Vκ−1)

.

Proposition 2 together with the observations preceding Lemma 6 provide a complete char-

acterization of the performance gap for the intervals Iκ with κ ∈ {κl − 1, . . . , κu +2}: if ∆κ > 0
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and t∗ ∈ [τκ, τκ−1], then the bound in Proposition 2 applies, otherwise rκ = 0. As mentioned,

it is possible to adapt the analysis to obtain similar bounds for the intervals Iκl
and Iκu+1; we

defer the details to the Online Appendix.

Applying the parametric bound to the example in Figure 1, we obtain a bound of 2
3
√
6(
√
6+

√
3)

=

6.51%. This follows from using Proposition 2 to the interval where product 2 is fully included

and the marginal product is 1: v0 = 1, vκ = 2, Vκ−1 = 3.

We note that the numerator of the bound in Proposition 2 depends on the preference weight

of product κ, while the denominator is a function of the sum of the preference weights of

products {1, . . . , κ − 1}, Vκ−1, and the sum of the preference weights of products {1, . . . , κ},

Vκ. The bound becomes large when vκ is much larger than Vκ−1 and its worst case value is not

better than 2. On the other hand, if the preference weights of the products are not dramatically

different and we are considering assortments with a relatively large number of products, then

we expect the denominator of the upper bounding term to dominate the numerator and rκ to

be quite small. In such cases, we expect ZUB to be quite close to ZOPT as well. The parametric

bound thus provides more insight into why the gap between ZUB and ZOPT is often small in

our computational experiments.

5 Assortment Planning with Fixed Costs, Constraints and Mul-

tiple Classes

In this section, we consider the assortment problem with fixed costs with additional constraints

on the assortment and multiple customer classes, i.e., mixture of logit demands. To solve this

more complex problem, we provide a dual formulation for our upper bound. We then study the

tractability of the solution method and discuss its performance guarantees.

We now add a total of E constraints that limit the assortments can that be offered:

∑
j∈J

αe,jxj ≤ βe ∀e ∈ E (20)

where E = {1, . . . , E} denotes the set of constraints.

We also consider multiple customer classes d ∈ D = {1, . . . , D} and let θd denote the fraction

of customers belonging to class d so that
∑

d∈D θd = 1. We let vj,d denote the preference weight

associated with class d for product j (we keep v0,d = v0 without loss of generality) and p̆j,d its
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corresponding margin. Let Z(x) =
∑

d∈D θd

∑
j∈J p̆j,dvj,dxj

v0+
∑

j∈J vj,dxj
−
∑

j∈J cjxj =
∑

d∈D

∑
j∈J pj,dvj,dxj

v0+
∑

j∈J vj,dxj
−∑

j∈J cjxj , where pj,d = θdp̆j,d can be interpreted as the expected margin for product j from

class d. The optimal expected profits for this extension can be obtained by solving

(OPT ) ZOPT = max Z(x)

s.t. (20), xj ∈ {0, 1}.

Note that this formulation is generic enough to allow for the same product to be sold at

different prices to different customer classes. This may be useful in situations where the different

classes are mapped to different retail stores and there is flexibility in terms of setting the store

prices.

As in the unconstrained case, we can write the constrained assortment optimization problem

equivalently as ZOPT = maxt1,...,tD|td∈[td,min,td,max] Γ
b(t1, . . . , tD) where

Γb(t1, . . . , tD) = max
∑

j∈J
(∑

d∈D pj,dvj,dtd − cj
)
xj (21)

s.t. xj ∈ {0, 1}∑
j∈J αe,jxj ≤ βe ∀e ∈ E∑

j∈J vj,dxj ≤ 1
td

− v0∀d ∈ D

and td,min = 1
v0+

∑
j∈J vj,d

and td,max = 1
v0+minj{vj,d} . Even with a single customer class (D = 1),

Γb(t1, . . . , tD) is a multidimensional binary knapsack problem and is intractable to solve. We

again obtain an upper bound by working with the continuous relaxation of Γb(t):

Γf (t1, . . . , tD) = max
∑

j∈J
(∑

d∈D pj,dvj,dtd − cj
)
xj (22)

s.t. 0 ≤ xj ≤ 1∑
j∈J αe,jxj ≤ βe ∀e ∈ E∑

j∈J vj,dxj ≤ 1
td

− v0∀d ∈ D.

We have that ZUB = maxt1,...,tD|td∈[td,min,td,max] Γ
f (t1, . . . , tD) is an upper bound on ZOPT .

As in the unconstrained single-class case, we can further tighten the continuous relaxation by

restricting attention to the products contained in the set J (t1, . . . , tD) = {j|vj,d ≤ 1
td

− v0 ∀d};

we suppress the dependence for ease of notation.
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5.1 The Dual

The linear program in (22) can be rewritten through the dual and the strong duality theorem

(Bertsimas and Tsitsiklis 1997), as follows. In this formulation, λd represents the dual variable

associated with the constraint
∑

j∈J vj,dxj ≤ 1
td
−v0, µe that with the constraint

∑
j∈J αe,jxj ≤

βe and zj the dual variable for xj ≤ 1.

Γf (t1, . . . , tD) = min
∑
d∈D

λd

(
1

td
− v0

)
+
∑
e∈E

µeβe +
∑
j∈J

zj

s.t. zj +
∑
d∈D

λdvj,d +
∑
e∈E

µeαj,e ≥
∑
d∈D

pj,dvj,dtd − cj

λd, µe, zj ≥ 0

= min
∑
d∈D

λd

(
1

td
− v0

)
+
∑
e∈E

µeβe

+
∑

j∈J
(∑

d∈D pjdvjdtd − cj −
∑

d∈D λdvjd −
∑

e∈E µeαje

)+
(23)

s.t. λd, µe ≥ 0

where x+ = max{x, 0}. As we can see, this dual formulation only requires the optimization of a

piecewise-linear objective over λd, µe ≥ 0. This suggests that, given (t1, . . . , tD), the upper bound

can be computed quickly, by inspecting all the break-points of the piecewise-linear function.

5.2 Alternative View of the Single-class, Unconstrained Case

When we have a single class and no constraints (D = 1, E = 0), then we recover the continuous

knapsack problem described in §3: indeed the minimum of (23) is reached at λ equal to 0 or

[ρj(t)/vj ]
+ = [pjt − cj/vj ]

+ for some j, where we drop the customer class index d from the

subscripts to simplify the notation. Assuming without loss of generality (as before in §4.1) that

ρ1(t)/v1 ≥ . . . ≥ ρn(t)/vn ≥ 0, then the primal solution associated with λ = ρκ(t)/vκ is to select

xj = 1 for j ≤ κ−1, a fractional value for xκ, and xj = 0 for j > κ, which results in an objective

equal to

Gκ(t) =

κ−1∑
j=1

ρj(t)vj +
ρκ(t)

vκ

1

t
− v0 −

κ−1∑
j=1

vj

 .

We define for completeness νn+1(t) = 0 so Gn+1(t) =
∑

j∈J (ρj(t)vj − cj) and

Γf (t) = min
κ∈J

Gκ(t). (24)
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As a result, if we now want to maximize this value by changing t (within the interval such that

the order of ρj(t)/vj does not change), then the maximum over t can be either interior, i.e.,

there is κ such that t∗ = argmaxGκ(t), or at a breakpoint t such that Gκ(t) = Gκ+1(t). In the

case we have an interior solution, the first-order condition is

0 =

κ−1∑
j=1

pjvj + pκ

1

t
− v0 −

κ−1∑
j=1

vj

−
(
pκt−

cκ
vκ

)
1

t2
=

κ−1∑
j=1

(pj − pκ)vj − pκv0 +
cκ
vκ

1

t2

which is the same value identified in Lemma 2. In the case we have a solution at a breakpoint,

Gκ(t) = Gκ+1(t) yields a quadratic equation in t. One root of the quadratic equation satisfies

(pκ − pκ+1)t =
cκ
vκ

− cκ+1

vκ+1
,

i.e., t = t̂κ,κ+1. The second root satisfies t = 1
v0+Vκ

. We thus recover all the results presented

in §4.1. Specifically, with this alternative view we again see that the complexity to identify the

best value of t is O(n3): for each ordering of {ρj(t)/vj |∀j} (possibly O(n2) of them), we need to

consider O(n) interior candidates and O(n) breakpoint candidates. This is the same structure

as the one described for the primal.

5.3 General Case

In the general case with assortment constraints and multiple customer classes, the problem in

(23) is a minimization of a piecewise-linear function of {λd|∀d ∈ D} and {µe|∀e ∈ E}. Compared

to §5.2, instead of a search over one dimension (that of λ), we must now search a space of D+E

dimensions, so the number of breakpoints to consider for each (t1, . . . , tD) is
n!

(D+E)!(n−D−E)! , thus

O(nD+E), polynomial in n but exponential in D + E. Still the structure conceptually remains

the same as the single-class unconstrained case. Lemma 8 below is the analog of Equation (24)

in the unconstrained case.

Lemma 8. Γf (t1, . . . , tD) is the minimum of O(nD+E) functions of the form

Gκ(t1, . . . , tD) =
∑

d1,d2∈D
ηκ,d1,d2

td1
td2

+
∑
d∈D

ξκ,dtd +
∑
d∈D

χκ,d
1

td
+ ϕκ, (25)

for appropriately defined ηκ,d1,d2 , ξκ,d, χκ,d, ϕκ.

Hence, in the general case, we find that Γf (·) can still be computed relatively easily for a
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given (t1, . . . , tD). However, the existence of multiple classes complicates the functional shape of

Gκ(·), which are fractional functions of (t1, . . . , tD). The coefficients of Gκ(·), ηκ,d1,d2 , ξκ,d, χκ,d

and ϕκ are specified in the proof of the lemma and are more complex to compute since they

require the inversion of a square matrix of dimension D+E. This can be done in a complexity

of O
(
max(D,E)3

)
, by Gauss-Jordan elimination for example.

To generate the upper bound ZUB, we must now search for values of (t1, . . . , tD) that max-

imize Γf (·). This is an easy task when there is a single class.

Lemma 9. When D = 1, Γf (t) is either maximized at:

1. t∗κ =
√

χκ

ξκ
(when the term inside the square root is positive);

2. or, t̂κ1,κ2 one of the two solutions of

ηκ1 + ϕκ1 + ξκ1t+ χκ1

1

t
= ηκ2 + ϕκ2 + ξκ2t+ χκ2

1

t
.

Hence, under a single customer class, it is sufficient to inspect a polynomial number of values

of t. The number to inspect is dominated by the number of t̂κ1κ2 : O(n2+2E), the order of the

square of the number of functions Gκ(t) that we consider. For each of these values of t, we then

need to compare the O(n1+E) values of Gκ(t). Taking into account that matrix inversion in this

case takes O(E3), we thus have the following proposition.

Proposition 3. When D = 1, ZUB can be obtained in a running time of O(E3n1+E + n3+3E).

This extends Proposition 1 by incorporating assortment constraints. In the constrained case,

we obtain a pseudo-polynomial complexity. Given that typically the number of products is very

large but the number of constraints small (constraints on the total number of products and/or

space consumed by the products), this means that our heuristic will run reasonably fast in an

application.

When we have multiple classes, the problem becomes more complicated. Indeed, the maxi-

mizer of Γf (t1, . . . , tD) can be of two kinds. One possibility is that it is the minimizer of a given

Gκ(·), in which case we need to first characterize such a minimizer (as in the first case of Lemma

9), and then to guarantee that there is a polynomial number of those. The other possibility

is that the solution happens to be at a (t1, . . . , tD) such that multiple Gκ(·) attain the same

value (although it is not a local minimum for any of the Gκ(·)), in which case we need to solve

equations such as those in the second case of Lemma 9.
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There are some special cases where the problem becomes more tractable. We focus here on

one such case: the upper bound can be obtained efficiently when the preference weights of the

products are identical across the different classes. That is, we have vj,d = vj for all d and j.

Customer heterogeneity can be incorporated by using different v0,d, as well as different prices.

Without loss of generality, let us assume that for d ∈ {2, . . . , D}, v0,d = v0,1 + wd with wd ≥ 0.

This implies that we can write 1
td

= 1
t1
+ wd. Thus, Equation (25) turns into

Gκ(t1, . . . , tD) = Gκ(t1) = ξ̃κt1 +
∑
d∈D

χ̃κ,d
1

t1 + wd
+ ϕ̃κ, (26)

for appropriately defined ξ̃κ, χ̃κ,d, ϕ̃κ.

Lemma 10. When D ≥ 2 and vj,d = vj for all d and j, Γf (t1) is either maximized at:

1. one of the at most D maxima of Gκ(t1);

2. or, one of the at most D + 1 solutions of Gκ1(t1) = Gκ2(t1).

Hence, in this case one should find solutions of a polynomial equation of degree 2D equal to

zero (the first case, in which only D of the 2D solutions correspond to a maximum of Gκ(·));

and of a polynomial equation of degree D+1. Approximate solutions of these equations can be

quickly obtained via standard numerical methods. Overall, finding the upper bound maxt1 Γ
f (t1)

can be done with the following procedure:

• Compute Gκ(t1) for all κ (the number of such functions is O(nD+E), the complexity to

find one is O
(
(D + E)3

)
).

• Identify the candidate values of t at which Γf (t) may be maximized:

– For each κ, find t∗κ,m, for m = 1, . . . , O(D), maxima of Gκ(t);

– For each κ1, κ2, find t̂κ1,κ2,m, for m = 1, . . . , O(D), solution to Gκ1(t) = Gκ2(t).

• Compare for each candidate t = t∗κ,m, t̂κ1,κ2,m the values of Gκ(t) for all κ and set the

minimum to be Γf (t) (the number of such candidates is O(n2(D+E)), the complexity to

find one minimum is O(nD+E)).

• Select the maximum of Γf (t) for each candidate t = t∗κ,m, t̂κ1,κ2,m.
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In summary, the more general problem is tractable when D = 1 and at least in one particular

case when D ≥ 2. However, we need to resort to numerical optimization methods in the general

case D ≥ 2.

5.4 Primal Solutions and Performance Guarantees

The dual approach outlined above provides a way of computing ZUB. However, it is not a priori

clear that we can generate primal solutions easily. In the unconstrained case, the upper bound

was associated with a fractional solution xj such that at most one product had a non-integer

value. We found that including or excluding this item in the assortment provided a solution

with a guaranteed performance (see §4.2). When there are multiple products with non-integer

values, then one must consider including or excluding any of them, and there may potentially an

exponential number of such combinations. This has two implications. First, there is no direct

way to obtain a good solution from the tractable computation of the upper bound. Second, we

may not be able to guarantee the performance of such a heuristic, as we did before.

Fortunately, we identify in this section some common cases where the “rounding” process

can be done in a simple way, without degrading the performance guarantee obtained for the

unconstrained case. Throughout we assume D = 1, t ≤ 1
v0+max{vj} and J (t) = J .

5.4.1 Cardinality Constraints

Consider that we have a constraint on the size of the assortment, so that the total number of

items offered is no more than K:
∑

j∈J xj ≤ K, where K ≥ 1. Cardinality constraints arise

when there is a need to limit the total number of products in the assortment for operational

reasons; see Rusmevichientong et al. (2010), Gallego and Topaloglu (2014). We show below that

Γf (t) ≤ 2Γb(t) when we have cardinality constraints.

For a given t, let x̂ denote an optimal primal solution to Γf (t). If constraint (20) is nonbind-

ing, then the problem reduces to the unconstrained case and we have Γf (t) ≤ 2Γb(t) from the

earlier arguments. On the other hand, if constraint (11) is nonbinding, then Γf (t) = Γb(t) and

the result again follows.

So we consider the case where both constraints (11) and (20) are binding. Therefore, we must

have at least n−2 of the remaining constraints (0 ≤ xj ≤ 1) binding, which implies that at least

n− 2 of the variables are either at their upper or lower bounds. Equivalently there are at most

two variables that take fractional values. Let F = {j | 0 < x̂j < 1} so that Fc = {j | x̂j ∈ {0, 1}}.
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Assume without loss of generality that F = {1, 2}. We have

v1x̂1 + v2x̂2 = ŷ

x̂1 + x̂2 = K̂,

where ŷ = 1
t̂
− v0 −

∑
k∈Fc vkx̂k and K̂ = K −

∑
k∈Fc x̂k. Note that K̂ ∈ {0, 1, 2}. If K̂ = 0 or

K̂ = 2, then x̂1 and x̂2 are integer, which contradicts F = {1, 2}.

So it must be the case that K̂ = 1. Solving for x̂1 and x̂2, we have x̂1 = (ŷ − v2)/(v1 − v2)

and x̂2 = (v1 − ŷ)/(v1 − v2). Since x̂1 ≥ 0 and x̂2 ≥ 0, we must either have v1 ≥ ŷ ≥ v2 or

v2 ≥ ŷ ≥ v1. Let us assume that v1 ≥ ŷ ≥ v2 (the other case is symmetric). We show that

Γf (t) ≤ 2Γb(t) by constructing two solutions x̃ and x̄ from x̂ that are feasible to Γb(t).

We construct the solution x̃ in the following manner. We set x̃1 = 0, x̃2 = 1 and x̃j = x̂j

for j ∈ Fc. We argue that x̃ is feasible to Γb(t). We have
∑

j∈J vj x̃j = v2 +
∑

j∈Fc vj x̂j ≤

ŷ +
∑

j∈Fc vj x̂j = 1
t̂
− v0, where the inequality holds since v2 ≤ ŷ. We also have

∑
j∈J x̃j =

x̃2 +
∑

j∈Fc x̃j = K̂ +
∑

j∈Fc x̂j = K, where we use x̃2 = 1 = K̂. Therefore x̃ is feasible to Γb(t)

which implies

ρ2(t) +
∑
j∈Fc

ρj(t)x̂j =
∑
j∈J

ρj(t)x̃j ≤ Γb(t). (27)

We next describe the construction of the solution x̄. We set x̄1 = 1, x̄2 = 0 and x̄j = 0 for

all j ∈ Fc. By assumption v1 ≤ maxj vj ≤ 1
t̂
− v0 and so

∑
j∈J vj x̄j ≤ 1

t̂
− v0. The cardinality

constraint is trivially satisfied by x̄. Therefore the solution x̄ is feasible to Γb(t) and we have

ρ1(t) =
∑
j∈J

ρj(t)x̄j ≤ Γb(t). (28)

Putting the above inequalities together,

Γf (t) = ρ1(t)x̂1 + ρ2(t)x̂2 +
∑
j∈Fc

ρj(t)x̂j

≤ ρ1(t) + ρ2(t) +
∑
j∈Fc

ρj(t)x̂j

≤ 2Γb(t)

25



where the first inequality uses the facts that x̂1, x̂2 ≤ 1 and ρ1(t), ρ2(t) ≥ 0. The second

inequality uses (27) and (28). This implies the following result.

Proposition 4. For the assortment problem with fixed costs and a cardinality constraint, we

have ZUB ≤ 2ZOPT .

We note that the bound can be extended to the case with nested cardinality constraints.

That is, we have nested subsets of products S1 ⊂ . . . ⊂ Sm with cardinality restrictions K1 ≤

. . . ≤ Km, respectively. The arguments also apply to the case where the products are partitioned

into disjoint subsets with associated restrictions on the cardinality of each subset; see Davis et al.

(2013).

5.4.2 Product Precedence Constraints

Consider now that we have constraints which link the offer decisions for the different products.

In particular, associated with each product j, we have a subset Oj of products that have to

be offered if product j is offered. That is, we have xj − xi ≤ 0 for all i ∈ Oj . We follow the

convention that j ∈ Oj . We consider the case where the precedence constraints are nested in the

following sense: for two products j and k, we either have Oj ⊂ Ok or Ok ⊂ Oj or Oj ∩Ok = ∅.

Product precedence constraints may arise in situations where say a more expensive variant or

style cannot be included in the assortment unless a basic version of the product is also part of

the assortment; see for example Davis et al. (2013). We show below that Γf (t) ≤ 2Γb(t) when

we have nested product precedence constraints.

For a given t, we let S(t) = {j |
∑

i∈Oj
vi ≤ 1

t − v0} and note that if j /∈ S(t), then the

precedence constraints for product j preclude it from being a part of an optimal solution to

Γb(t). Therefore, we can restrict ourselves to products in S(t) while solving the continuous

relaxation Γf (t) as well. For ease of notation, we assume that S(t) = J , but this is without loss

of generality and our results continue to hold even on relaxing this assumption.

Fix t and let x̂ denote an optimal solution to Γf (t). To avoid trivial cases, we assume that

constraint (11) and at least one of the product precedence constraints are binding at t. Let

F = {j | 0 < x̂j < 1} denote the set of variables assuming fractional values and assume that F

is nonempty.

We begin with some preliminary results. The following lemma states that the optimal

solution has at most one distinct fractional value.
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Lemma 11. If 0 < x̂j , x̂k < 1, then x̂j = x̂k.

The following lemma implies that all the variables assuming fractional values are contained

in Oj for some product j. We first define the notion of a maximal element of the set F . We say

that i ∈ F is a maximal element of F if j /∈ F for all j such that i ∈ Oj . That is, if product i

is required to be offered if product j is offered, then j /∈ F .

Lemma 12. There exists a unique maximal element of F .

Corollary 1. Let i denote the unique maximal element of F .

1. F ⊂ Oi.

2. If j ∈ Oc
i , then x̂j ∈ {0, 1}.

3. If i ∈ Oj, then x̂j = 0.

4. If j ∈ Oi\F , then x̂j = 1.

5.
∑

j∈F ρj(t) ≥ 0.

We are now ready to show that Γf (t) ≤ 2Γb(t). We show the bound by constructing two

solutions x̃ and x̄ from x̂ that are feasible to Γb(t).

We construct the solution x̃ in the following manner. We set x̃j = x̂j for j ∈ Oc
i and x̃j = 0

for j ∈ Oi, where i is the unique maximal element of F . By the second statement of Corollary

1, x̃j ∈ {0, 1} for all j. Since x̃j ≤ x̂j for all j, we have that x̃ satisfies constraint (11). Next

we verify that x̃ satisfies the product precedence constraints. Since x̃j = 0 for all j ∈ Oi, the

product precedence constraints are satisfied as equalities for all j ∈ Oi. Next, for j such that

i ∈ Oj , using the third statement of Corollary 1 we have x̃j = x̂j = 0 and so that product

precedence constraints x̃j − x̃k ≤ 0 are satisfied for all k ∈ Oj . Finally, if Oi ∩ Oj = ∅, then

x̃k = x̂k for all k ∈ Oj and the product precedence constraints are trivially satisfied for all

k ∈ Oj . It follows that x̃ is a feasible solution to Γb(t) and we have

∑
j∈Oc

i

ρj(t)x̃j =
∑
j∈J

ρj(t)x̃j ≤ Γb(t). (29)

Next we describe how we construct the solution x̄. We set x̄j = 0 for all j ∈ Oc
i and x̄j = 1

for all j ∈ Oi. Since i ∈ S(t) we have
∑

k vkx̄k =
∑

k∈Oi
vk ≤ y and so x̄ satisfies constraint

(11). We clearly have x̄j − x̄k = 0 for all j ∈ Oi. On the other hand for j ∈ Oc
i , we have x̃j = 0

and so the constraint x̃j − x̃k ≤ 0 is trivially satisfied for all k ∈ Oj . Therefore, x̄ is also feasible
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to Γb(t) and we have

∑
j∈Oi

ρj(t)x̄j =
∑
j∈J

ρj(t)x̄j ≤ Γb(t).

Putting everything together we

Γf (t) =
∑

j∈J ρj(t)x̂j

=
∑

j∈Oc
i
ρj(t)x̃j +

∑
j∈Oi

ρj(t)x̂j

≤ Γb(t) +
∑

j∈F ρj(t)x̂i +
∑

j∈Oi\F ρj(t)

≤ Γb(t) +
∑

j∈F ρj(t)x̄j +
∑

j∈Oi\F ρj(t)x̄j

≤ 2Γb(t)

where the second equality follows from the fact that x̃j = x̂j for all j ∈ Oc
i . The first inequality

uses (29), the fact that x̂j = x̂i for all j ∈ F and the fourth statement of Corollary 1 which

implies that x̂j = 1 for j ∈ Oi\F . The last statement of Corollary 1 implies that
∑

j∈F ρj(t) ≥ 0.

This together with the facts that x̂i < 1 = x̄j for all j ∈ F yields the second inequality. The

last inequality follows from (30). The above chain of inequalities shows that Γf (t) ≤ 2Γb(t) and

this implies the following result.

Proposition 5. For the assortment problem with fixed costs and nested product precedence

constraints, we have ZUB ≤ 2ZOPT .

6 Computational Experiments

We compare the performance of our tractable approximation method with that of benchmark

solution methods on test problems with a larger number of products. We consider the single-

class unconstrained assortment optimization problem with fixed costs and generate our test

problems in the same manner as described in §4.2.2. We compare the upper bound obtained

by the method proposed in §4, ZUB, with the optimal expected profit, ZOPT . In addition,

we include two other benchmark solution methods in our computational experiments that we

describe next.

The first benchmark we use is the linear programming relaxation of problem (2)-(6). We

let ZLP denote the optimal objective function value of the linear programming relaxation. This
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gives an upper bound on ZOPT and it can be obtained in a tractable manner.

As the second benchmark, we use the method proposed in Feldman and Topaloglu (2015)

which involves solving a relaxation of problem (10)-(12) over a discrete grid. Let T = {ts|s ∈

{1, . . . , s̄(σ)}} be a set of s̄(σ) grid points which cover the interval [tmin, tmax] where σ > 0 is

a parameter that controls the size of the grid. Feldman and Topaloglu (2015) propose using an

exponential grid so that ts = (1 + σ)ts−1. As σ becomes smaller, the spacing between the grid

points decreases and we obtain denser grids. Further, Feldman and Topaloglu (2015) propose

solving a relaxation of problem (10)-(12) over the intervals defined by the grid points and take

the maximum of these values to obtain an upper bound on the optimal expected profit. We

denote the upper bound obtained by this method as ZDG(σ) where the argument emphasizes

the dependence of the solution on the density of the grid. In our computational experiments,

we consider three different grid densities by varying σ over the set {0.1, 0.01, 0.001}. Note that

the grids get progressively denser as σ varies from 0.1 to 0.001.

It is possible to show that the ZUB bound is provably tighter than the linear programming

relaxation as well as the discrete grid approximation bounds. In our computational experiments

we study the relative tightness of the upper bounds and how much ZUB improves upon ZLP

and ZDG(σ).

Table 2 gives the tightness of the upper bounds obtained by the different solution methods

for assortment problems with n = 50 products. The first column describes the problem charac-

teristics using (n,Φ, γ). For each parameter combination, we generate 50 test problems in the

manner described in §4.2.2. The second column of the table gives the average percentage differ-

ence between ZUB and ZOPT , while the third column gives the 95th percentile of the difference.

The fourth column reports the value of the parametric bound described in §4.2.4 averaged over

the 50 problem instances. The remaining columns report the averages and the 95th percentiles

for ZLP , ZDG(0.1), ZDG(0.01) and ZDG(0.001), respectively.

The percentage difference between ZUB and ZOPT is around 0.04% on average. The gaps

tend to decrease as γ gets smaller. Recall that if γ is small, then the fixed costs of including

the products are quite small comparable to their profit margins and the problem becomes closer

to the assortment problem without fixed costs, where ZUB and ZOPT coincide. While the LP

relaxation also displays the same trend, its performance tends to be quite poor in comparison

and the gaps are around 25% on average. The quality of the upper bound obtained by the grid-

based method, ZDG(σ), improves as σ becomes smaller. ZDG(0.1) is somewhat loose, ZDG(0.01)
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is tighter and ZDG(0.001) is quite close to ZUB. Finally we note that the parametric bound of

§4.2.4 gives a more accurate picture of the performance of ZUB compared to the constant factor

bounds of 2 and 3/2 (which would imply percentage differences of 100% and 50%, respectively).

Table 3 gives the CPU seconds required to obtain ZOPT as well as the different upper bounds

for the test problems with 50 products. All of our computational experiments are carried out

on a Pentium Core 2 Duo desktop with 3-GHz CPU and 4-GB RAM. We use CPLEX 11.2 to

solve all linear programs. ZLP and ZDG(0.1) can be obtained in less than 1/100 of a second.

The other methods take slightly longer but all the upper bounds can be obtained in a fraction

of a second. The solution time of the grid-based method increases as σ becomes smaller (and

thus the number of grid points becomes larger).

Table 4 gives the tightness of the upper bounds obtained by the different solution methods

for assortment problems with n = 100 products. The columns have the same interpretation as

in Table 2. Overall, the results display similar trends to the test problems with 50 products.

ZUB and ZDG(0.001) are good approximations to ZOPT , while the ZLP and ZDG(0.1) bounds

are somewhat loose. The parametric performance guarantee for ZUB is significantly tighter

compared to the case with 50 products. This is in line with Proposition 2 which indicates that

the gap between ZUB and ZOPT is likely to be small for assortments including a large number

of products. To our knowledge, similar theoretical guarantees are not available for the linear

programming relaxation and the grid-based approximation.

Feldman and Topaloglu (2015) show that if the fixed costs satisfy a particular scaling prop-

erty, then no grid, no matter how dense, can improve upon ZDG(σ) by more than a factor of

(1 + σ). However, if the fixed costs do not satisfy the scaling property, then the performance

guarantee in Feldman and Topaloglu (2015) does not hold. In our test problems the product

fixed costs do not scale in the manner described in Feldman and Topaloglu (2015) and indeed,

we observe that their performance guarantee also does not hold. ZUB can be viewed as the

limiting value of ZDG(σ) as σ tends to zero and we have an infinitely dense grid. In tables 2

and 4 we observe that ZUB can improve upon ZDG(0.1), ZDG(0.01) and ZDG(0.001) by more

than 10%, 1% and 0.1%, respectively.

Table 5 gives the CPU seconds required to obtain ZOPT as well as the different upper bounds

for the test problems with 100 products. The time required to obtain the optimal solution is

noticeably greater than that for the upper bounds, and we observe instances where it can take

several minutes to compute ZOPT . This follows naturally from OPT being an NP-hard problem.
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On the other hand, ZUB can still be obtained in a fraction of a second. As mentioned, ZUB can

be viewed as the limiting value of ZDG(σ) as σ tends to zero. The solution time of the grid-based

method increases as σ decreases. On the other hand, ZUB can be computed in roughly the same

time as ZDG(0.001).

% difference with ZOPT

ZUB ZLP ZDG(0.1) ZDG(0.01) ZDG(0.001)
Problem Avg. 95% Param. Avg. 95% Avg. 95% Avg. 95% Avg. 95%
(n,Φ, γ) bound

(50, 0.75, 1.00) 0.06 0.15 2.12 30 56 15 18 1.54 1.79 0.21 0.32
(50, 0.75, 0.50) 0.01 0.03 1.01 26 37 14 16 1.38 1.60 0.15 0.19
(50, 0.75, 0.25) 0.00 0.00 0.42 16 30 12 13 1.23 1.33 0.13 0.13
(50, 0.50, 1.00) 0.13 0.32 2.27 31 55 14 17 1.54 1.72 0.27 0.46
(50, 0.50, 0.50) 0.02 0.08 1.57 31 44 13 15 1.34 1.50 0.15 0.22
(50, 0.50, 0.25) 0.01 0.06 0.67 20 31 12 13 1.25 1.34 0.13 0.18
(50, 0.25, 1.00) 0.08 0.35 3.32 33 56 14 16 1.43 1.97 0.21 0.52
(50, 0.25, 0.50) 0.02 0.09 1.72 31 47 13 14 1.28 1.46 0.15 0.23
(50, 0.25, 0.25) 0.02 0.14 1.07 24 33 12 14 1.25 1.37 0.15 0.26

Table 2: Comparison of upper bounds for assortment problems with n = 50 products.

Problem CPU secs.
(n,Φ, γ) ZOPT ZUB ZLP ZDG(0.1) ZDG(0.01) ZDG(0.001)

(50, 0.75, 1.00) 0.08 0.04 0.00 0.00 0.01 0.10
(50, 0.75, 0.50) 0.38 0.04 0.00 0.00 0.01 0.11
(50, 0.75, 0.25) 0.27 0.03 0.00 0.00 0.01 0.10
(50, 0.50, 1.00) 0.08 0.05 0.00 0.00 0.01 0.12
(50, 0.50, 0.50) 0.59 0.06 0.00 0.00 0.01 0.14
(50, 0.50, 0.25) 0.30 0.03 0.00 0.00 0.01 0.12
(50, 0.25, 1.00) 0.03 0.06 0.00 0.00 0.02 0.17
(50, 0.25, 0.50) 0.14 0.07 0.00 0.00 0.02 0.17
(50, 0.25, 0.25) 0.28 0.05 0.00 0.00 0.02 0.18

Table 3: CPU seconds to obtain ZOPT and the different upper bounds for assortment problems
with n = 50 products.

% difference with ZOPT

ZUB ZLP ZDG(0.1) ZDG(0.01) ZDG(0.001)
Problem Avg. 95% Param. Avg. 95% Avg. 95% Avg. 95% Avg. 95%
(n,Φ, γ) bound

(100, 0.75, 1.00) 0.01 0.06 0.60 27 42 15 18 1.53 1.79 0.16 0.19
(100, 0.75, 0.50) 0.01 0.01 0.36 23 39 14 16 1.43 1.62 0.15 0.16
(100, 0.75, 0.25) 0.00 0.01 0.23 14 27 12 13 1.24 1.34 0.13 0.14
(100, 0.50, 1.00) 0.01 0.04 0.60 31 45 14 16 1.44 1.64 0.15 0.18
(100, 0.50, 0.50) 0.03 0.11 0.65 28 37 13 15 1.36 1.54 0.16 0.23
(100, 0.50, 0.25) 0.00 0.02 0.44 19 34 12 13 1.24 1.34 0.13 0.14
(100, 0.25, 1.00) 0.04 0.38 1.73 33 57 13 15 1.35 1.58 0.17 0.49
(100, 0.25, 0.50) 0.03 0.06 0.98 29 40 12 14 1.27 1.44 0.15 0.18
(100, 0.25, 0.25) 0.01 0.02 0.65 25 32 12 13 1.24 1.34 0.13 0.15

Table 4: Comparison of upper bounds for assortment problems with n = 100 products.
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Problem CPU secs.
(n,Φ, γ) ZOPT ZUB ZLP ZDG(0.1) ZDG(0.01) ZDG(0.001)

(100, 0.75, 1.00) 55 0.17 0.01 0.00 0.01 0.09
(100, 0.75, 0.50) 354 0.13 0.01 0.00 0.01 0.09
(100, 0.75, 0.25) 133 0.10 0.01 0.00 0.01 0.10
(100, 0.50, 1.00) 38 0.21 0.01 0.00 0.01 0.12
(100, 0.50, 0.50) 411 0.23 0.01 0.00 0.02 0.15
(100, 0.50, 0.25) 232 0.15 0.01 0.00 0.01 0.15
(100, 0.25, 1.00) 3 0.27 0.00 0.00 0.02 0.21
(100, 0.25, 0.50) 60 0.30 0.00 0.00 0.02 0.22
(100, 0.25, 0.25) 277 0.24 0.01 0.00 0.02 0.20

Table 5: CPU seconds to obtain ZOPT and the different upper bounds for assortment problems
with n = 100 products.

7 Conclusion

This paper has developed a new continuous relaxation of the assortment planning problem

with product fixed costs. This formulation uses a parameter related to the total assortment

attractiveness, and simplifies the problem into a parametric continuous knapsack. We prove that

this approach requires evaluating a finite and polynomial number of values for the parameter,

which means that the upper bound can be calculated in polynomial time, while the original

integer program is NP-hard. We also prove that the heuristic based on the relaxation obtains

an optimality gap equal to 2 in general, but much tighter when products are all similar. In

numerical experiments with random instances, the gap is still tighter, below 1%. Moreover, our

methodology can be extended to consider multiple classes and constraints on the assortment.

Our results can be exploited further. One future line of research is to employ our parametric

formulation to other assortment demand models, in particular nested demand models. Another

direction of work is to develop stronger parametric formulations for the mixed MNL model,

where it might be possible to relate through simple relationships the variables (t1, . . . , tD),

thereby reducing the number of dimensions of the problem and allowing us to provide stronger

heuristics and performance guarantees.
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Anderson, Simon P., André De Palma, Jacques-François Thisse. 1992. Discrete choice theory of product

differentiation. MIT Press.

Bertsimas, Dimitris, John N. Tsitsiklis. 1997. Introduction to linear optimization, vol. 6. Athena Scientific

Belmont, MA.

Caro, Felipe, Victor Mart́ınez-de Albéniz. 2015. Fast fashion: Business model overview and research op-

32



portunities. Narendra Agrawal, Stephen A. Smith, eds., Retail Supply Chain Management: Quan-

titative Models and Empirical Studies, 2nd Edition. Springer, New York, 237–264.

Davis, James M., Guillermo Gallego, Huseyin Topaloglu. 2013. Assortment planning under the multino-

mial logit model with totally unimodular constraint structures. Working paper, Cornell University.

Davis, James M., Guillermo Gallego, Huseyin Topaloglu. 2014. Assortment optimization under variants

of the nested logit model. Operations Research 62(2) 250–273.

Feldman, Jacob B., Huseyin Topaloglu. 2014. Capacity constraints across nests in assortment optimization

under the nested logit model. Working paper, Cornell University.

Feldman, Jacob B., Huseyin Topaloglu. 2015. Bounding optimal expected revenues for assortment op-

timization under mixtures of multinomial logits. Production and Operations Management Forth-

coming N/A.

Gallego, Guillermo, Huseyin Topaloglu. 2014. Constrained assortment optimization for the nested logit

model. Management Science 60(10) 2583–2601.

Kök, A. Gürhan, Marshall L. Fisher, Ramnath Vaidyanathan. 2009. Assortment planning: Review of

literature and industry practice. Retail supply chain management . Springer, 99–153.

Kunnumkal, Sumit. 2015. On upper bounds for assortment optimization under the mixture of multinomial

logit models. Operations Research Letters 43(2) 189–194.

Kunnumkal, Sumit, Paat Rusmevichientong, Huseyin Topaloglu. 2009. Assortment optimization under

the multinomial logit model with product costs. Working paper, Cornell University.

Kunnumkal, Sumit, Huseyin Topaloglu. 2008. A refined deterministic linear program for the network

revenue management problem with customer choice behavior. Naval Research Logistics Quarterly

55 563–580.

Miranda Bront, Juan José, Isabel Méndez-Dı́az, Gustavo Vulcano. 2009. A column generation algorithm

for choice-based network revenue management. Operations Research 57 769–784.

Rusmevichientong, Paat, Zuo-Jun Max Shen, David B. Shmoys. 2009. A ptas for capacitated sum-of-

ratios optimization. Operations Research Letters 37(4) 230–238.

Rusmevichientong, Paat, Zuo-Jun Max Shen, David B. Shmoys. 2010. Dynamic assortment optimization

with a multinomial logit choice model and capacity constraint. Operations research 58(6) 1666–1680.

Rusmevichientong, Paat, David B. Shmoys, Chaoxu Tong, Huseyin Topaloglu. 2014. Assortment op-

timization under the multinomial logit model with random choice parameters. Production and

Operations Management 23(11) 2023–2039.

Talluri, Kalyan, Garrett J. van Ryzin. 2004. Revenue management under a general discrete choice model

of consumer behavior. Management Science 50(1) 15–33.

33



Topaloglu, Huseyin. 2013. Joint stocking and product offer decisions under the multinomial logit model.

Production and Operations Management 22(5) 1182–1199.

van Ryzin, Garrett J., Siddharth Mahajan. 1999. On the relationship between inventory costs and variety

benefits in retail assortments. Management Science 45(11) 1496–1509.

Vazirani, Vijay V. 2013. Approximation algorithms. Springer Science & Business Media.

34



Appendix: Proofs

Proof of Lemma 2

Proof. Using (7) and simplifying, the derivative of Πκ(t) is such that

Π′
κ(t) =

κ−1∑
j=1

pjvj +
cκ/vκ
t2

− pκ(v0 + Vκ−1) =
cκ/vκ
t2

−∆κ

If ∆κ ≤ 0, then Π′
κ(t) ≥ 0. So Πκ(t) is an increasing function of t and the maximum occurs at

the right end-point of the interval, u. On the other hand, if ∆κ > 0, then Π′′
κ(t) < 0. Hence Πκ(t)

is concave and its unconstrained is maximizer is t∗. It follows that the constrained maximizer

t̄∗ = max {l,min {t∗, u}}.

Proof of Lemma 3

Proof. If ∆κ ≤ 0, then Π′
κ(t) ≥ 0 for all t. Therefore, Πκ(t) is nondecreasing in t. Since

u ≤ 1
v0+Vκ−1

= τκ−1, we have

max
t∈[l,u]

Πκ(t) ≤ Πκ (τκ−1) = Z{1,...,κ−1} ≤ ZOPT

where Z{1,...,κ−1} is the expected profit obtained from the assortment {1, . . . , κ− 1}.

Proof of Lemma 4

Proof. If ∆κ > 0, then Π′′
κ(t) < 0 and Πκ(t) is concave. Since t

∗ is the unconstrained maximizer

of Πκ(t), the function is increasing to the left of t∗ and decreasing to the right of t∗. When

t∗ ≤ 1
v0+Vκ

= τκ ≤ l, it follows that

max
t∈[l,u]

Πκ(t) ≤ Πκ (τκ) = Z{1,...,κ} ≤ ZOPT .

and when t∗ ≥ 1
v0+Vκ−1

= τκ−1 ≥ u,

max
t∈[l,u]

Πκ(t) ≤ Πκ (τκ−1) = Z{1,...,κ} ≤ ZOPT .

1



Proof of Lemma 5

Proof. We begin with some observations. Since t∗ is the unconstrained maximizer of Πκ(t), we

have Π′
κ(t

∗) = 0 and so

∆κ(t
∗)2 =

cκ
vκ

. (30)

Let Z{1,...,κ−1}, Z{1,...,κ} and Z{κ}, respectively, denote the expected profits associated with

the assortments {1, . . . , κ− 1}, {1, . . . , κ} and {κ}. We have

Πκ(t
∗)− Z{1,...,κ−1} =

∑κ−1
j=1 ρj(t

∗) + ρκ(t
∗)
( 1

t∗−v0−Vκ−1

vκ

)
−
∑κ−1

j=1 ρj (τκ−1)

=
(
1
t∗ − v0 − Vκ−1

)(pκ(v0+Vκ−1)−
∑κ−1

j=1 pjvj
v0+Vκ−1

t∗ − cκ
vκ

)
=

(
1
t∗ − v0 − Vκ−1

)2 cκ
vκ(v0+Vκ−1)

(31)

where the first equality uses τκ−1 = 1
v0+Vκ−1

, the second equality uses (7) and the last equality

uses (15) and (30). In a similar manner, we have

Πκ(t
∗)− Z{1,...,κ} =

(
Vκ + v0 −

1

t∗

)2 cκ
vκ(v0 + Vκ)

. (32)

Finally, we note that

Πκ(t
∗) ≤

∑κ−1
j=1 ρj (τκ−1) + ρκ

(
1

v0+vκ

)( 1
t∗−v0−Vκ−1

vκ

)
= Z{1,...,κ−1} + Z{κ}

( 1
t∗−v0−Vκ−1

vκ

)
(33)

where the inequality holds since 1
t∗ − v0 ≥ max{Vκ−1, vκ} and ρj(t) is an increasing function of

t.

We are now ready to prove the lemma. We consider two cases.

Case 1: 1
t∗ − v0 ≤ Vκ−1 + vκ

2 . In this case 1
t∗ − v0 − Vκ−1 ≤ vκ

2 and (33) implies that

Πκ(t
∗) ≤ Z{1,...,κ−1} + Z{κ}

( 1
t∗−v0−Vκ−1

vκ

)
≤ 3

2Z
OPT .
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Case 2: 1
t∗ − v0 > Vκ−1 +

vκ
2 . Using (31) and (33) we have

Z{1,...,κ−1} +

(
1

t∗
− v0 − Vκ−1

)2 cκ
vκ(v0 + Vκ−1)

= Πκ(t
∗) ≤ Z{1,...,κ−1} + Z{κ}

(
1
t∗ − v0 − Vκ−1

vκ

)
,

which in turn implies that

cκ ≤ Z{κ}
v0 + Vκ−1

1
t∗ − v0 − Vκ−1

. (34)

Using (34) in Equation (32) we have

Πκ(t
∗) ≤ Z{1,...,κ} + (Vκ + v0 − 1

t∗ )
2Z{κ}

v0+Vκ−1

( 1
t∗−v0−Vκ−1)vκ(v0+Vκ)

≤ Z{1,...,κ} + (vκ2 )
2Z{κ}

v0+Vκ−1

(vκ/2)vκ(v0+Vκ)

≤ Z{1,...,κ} + Z{κ}
v0+Vκ−1

2(v0+Vκ)

≤ 3
2Z

OPT ,

where the second inequality uses the fact that 1
t∗ − v0 > Vκ−1 +

vκ
2 .

Proof of Lemma 6

Proof. Using Equation (16) in (31), we have

Πκ(t
∗)− Z{1,...,κ−1} =

(√
∆κ

v0 + Vκ−1
−
√

cκ
vκ

(v0 + Vκ−1)

)2

. (35)

Similarly, using Equation (16) in (32), we have

Πκ(t
∗)− Z{1,...,κ} =

(√
cκ
vκ

(v0 + Vκ)−
√

∆κ

v0 + Vκ

)2

. (36)

Now, if Z{1,...,κ−1} > Z{1,...,κ}, then rκ =
(√

∆κ
v0+Vκ−1

−
√

cκ
vκ
(v0 + Vκ−1)

)2
/Z{1,...,κ−1}. Since

1
t∗ − v0 ≥ Vκ−1, we have using (16) that

√
∆κvκ
cκ

= 1
t∗ ≥ v0 + Vκ−1. It follows that

(√
∆κ

v0 + Vκ−1
−
√

cκ
vκ

(v0 + Vκ−1)

)2

is a decreasing function of cκ. Since Z{1,...,κ−1} does not depend on cκ, rκ can be increased by

decreasing cκ.
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On the other hand, if Z{1,...,κ−1} > Z{1,...,κ}, then rκ =
(√

cκ
vκ
(v0 + Vκ)−

√
∆κ

v0+Vκ

)2
/Z{1,...,κ}.

Since 1
t∗ − v0 ≤ Vκ,

√
∆κvκ
cκ

= 1
t∗ ≤ v0 + Vκ. Therefore,

(√
cκ
vκ
(v0 + Vκ)−

√
∆κ

v0+Vκ

)2
is an

increasing function of cκ. Since Z{1,...,κ} is decreasing in cκ, it follows that rκ is increasing in cκ

and can be increased by increasing cκ.

Therefore, rκ is maximal when Z{1,...,κ−1} = Z{1,...,κ}.

Proof of Lemma 7

Proof. Since t∗ ∈ [τκ, τκ−1] ⊂ [t̂l, t̂u], we have ρj(t
∗)/vj ≥ ρκ(t

∗)/vκ > 0 for all j ∈ {1, . . . , κ−1}.

Multiplying the jth inequality by vj/Vκ−1, using (7) and adding up the κ− 1 inequalities have

∑κ−1
j=1 pjvj

Vκ−1
t∗ −

∑κ−1
j=1 cj∑κ−1
j=1 vj

≥ pκt
∗ − cκ

vκ
.

Dividing both sides of the above inequality by t∗

∑κ−1
j=1 pjvj

Vκ−1
−
∑κ−1

j=1 cj∑κ−1
j=1 vj

1

t∗
≥ pκ −

cκ
vκ

1

t∗
=

∆κ +
∑k−1

j=1 pjvj

v0 + Vκ−1
− cκ

vκ

1

t∗
, (37)

where the equality follows from the definition of ∆κ. Using (18), we have t∗ =
√

ck/(∆kvk) =

1√
(v0+Vκ−1)(v0+Vκ)

=
√
τκ−1

√
τκ. Equivalently 1

t∗ =
√

(v0 + Vκ−1)(v0 + Vκ). Using this in (37)

and rearranging, we have

−
∑κ−1

j=1 cj

Vκ−1

√
(v0 + Vκ−1)(v0 + Vκ) ≥

∆κ

v0 + Vκ−1

(
1−

√
v0 + Vκ−1

v0 + Vκ

)
−

v0
∑κ−1

j=1 pjvj

(v0 + Vκ−1)Vκ−1
. (38)

We have

Z{1,...,κ−1} =

κ−1∑
j=1

ρj(Vκ−1) =

∑κ−1
j=1 pjvj

v0 + Vκ−1
−

κ−1∑
j=1

cj ≥
∑κ−1

j=1 pjvj

v0 + Vκ−1
−

κ−1∑
j=1

cj

√
(v0 + Vκ−1)(v0 + Vκ)

v0

≥ ∆κVκ−1

v0(v0 + Vκ−1)

(
1−

√
v0 + Vκ−1

v0 + Vκ

)

where the first equality uses that Vκ−1, Vκ ≥ 0, and the last inequality follows from (38).

Proof of Lemma 8

Proof. Given (t1, . . . , tD), we can partition the positive quadrant RD+E
+ into O(nD+E) regions
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(polyhedrons) limited by the n hyperplanes
∑

d∈D pj,dvj,dtd −
∑

d∈D λdvj,d −
∑

e∈E µdαj,e = cj .

Consider one such region P

P =


 λ1, . . . , λD,

µ1, . . . , µE

 ≥ 0

∣∣∣∣∣∣∣∣∣
∑
d∈D

pj,dvj,dtd −
∑
d∈D

λdvj,d −
∑
e∈E

µeαj,e ≥ cj for j ∈ J +
P ;∑

d∈D
pj,dvj,dtd −

∑
d∈D

λdvj,d −
∑
e∈E

µeαj,e ≤ cj for j ∈ J −
P

 ,

where J +
P and J −

P are disjoint and J +
P ∪J −

P = J . Thus the objective in (23) can be written as

∑
d∈D

λd

(
1

td
− v0

)
+
∑
e∈E

µeβe +
∑
j∈J+

P

(∑
d∈D

pj,dvj,dtd − cj −
∑
d∈D

λdvj,d −
∑
e∈E

µeαj,e

)
. (39)

Within P , (39) must be minimized at an extreme point, because the objective is linear in

(λ1, . . . , λD, µ1, . . . , µE). At this extreme point we have a total of D + E constraints that are

active and satisfied as equalities. Suppose for instance that a total of D + E constraints in

J +
P ∪J −

P are active and without loss of generality assume that they are numbered consecutively

so that {1, . . . , D + E} represents the set of constraints which define the particular extreme

point. As a result we can obtain (λ1, . . . , λD, µ1, . . . , µE) by solving



v1,1 . . . v1,D α1,1 . . . α1,E

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

vD+E,1 . . . vD+E,D αD+E,1 . . . αD+E,E





λ1

...

λD

µ1

...

µE



=



p1,1v1,1 . . . p1,Dv1,D
...

. . .
...

...
. . .

...

pD+E,1vD+E,1 . . . pD+E,DvD+E,D




t1
...

tD

−



c1
...

...

cD+E


.

We can write the above equations in matrix form as A

 λ⃗

µ⃗

 = Bt⃗− c⃗, so

 λ⃗

µ⃗

 = A−1Bt⃗−

A−1c⃗. Therefore, we can express (λ1, . . . , λD, µ1, . . . , µE) as a linear function of (t1, . . . , tD).
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Hence, at this vertex of P , (39) is equal to

Gκ(t1, . . . , tD) =

(
1

t1
− v̂01 . . .

1

tD
− v̂0D β̂1 . . . β̂E

)(
A−1Bt⃗−A−1c⃗

)
+
∑
j∈J+

P

(
∑
d∈D

pj,dvj,dtd − cj)

where v̂0,d = v0+
∑

j∈J+
P
vj,d and β̂e = βe−

∑
j∈J+

P
αj,e. This is the form expressed in Equation

(25).

Proof of Lemma 10

Proof. Substituting in Equation (25) 1
td

by 1
t1
+wd yields Equation (26). So maxt1∈[t1,min,t1,max] Γ

f (t1)

can be obtained either at an interior solution where Γf (t1) = Gκ(t1) < minκ′ ̸=κGκ′(t1), or at a

point where Gκ1(t1) = Gκ2(t1).

In the first case, t1 is a local maximizer of Gκ(·): it must satisfy the first-order condition

0 = ξ̃κ −
∑
d∈D

χ̃κ,d

(t1 + wd)2
.

This can be expressed as

P (t1) = ξ̃κ
∏
d∈D

(t1 + wd)
2 −

∑
d∈D

χ̃κ,d

∏
d′ ̸=d

(t1 + wd′)
2 = 0

where P is a polynomial equation of degree 2D. From algebra’s fundamental theorem, it has

exactly 2D complex roots cl, l ∈ {1, . . . , 2D}. Hence P can be written as a constant times∏2D
l=1(t1 − cl). If a root cl is not real (the complex dimension is non-zero), then its conjugate c̄l

must also be a root, so (t1− cl)(t1− c̄l) > 0 for all t1 ∈ R. Hence there are at most 2D real roots

to P (t1) = 0. Consider a real root cl with odd degree: then at t1 = cl, the sign of P changes,

which means that if this is a maximum of Gκ(·) (sign changes from positive to negative) then the

next root is a minimum. On the other hand if a real root has even degree, then it is a saddle point

that is neither a maximum nor a minimum of Gκ(·). So half of such roots cannot be maxima

and there are at most D maxima to consider. For example if P (t1) = (t1 − 1)(t1 − 2)(t1 − 3)2,

then root 1 is a maximum, root 2 is a minimum and root 3 (double degree) is a saddle point.

In this example D = 2 and there are at most 2 maxima (there is 1 in reality).
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In the second case,

(ξ̃κ2 − ξ̃κ1)t1 +
∑
d∈D

(χ̃κ2,d − χ̃κ1,d)
1

t1 + wd
+ (ϕ̃κ2 − ϕ̃κ1) = 0

or in other words

(ξ̃κ2 − ξ̃κ1)t1
∏
d∈D

(t1 + wd) + (ϕ̃κ2 − ϕ̃κ1)
∏
d∈D

(t1 + wd) +
∑
d∈D

(χ̃κ2,d − χ̃κ1,d)
∏
d′ ̸=d

(t1 + wd′) = 0.

Again, from algebra’s fundamental theorem, there are at most D+1 real roots to this equation.

Proof of Lemma 11

Proof. Let Fj = {i | x̂i = x̂j}, v̄j =
∑

i∈Fj
vi, p̄j =

∑
i∈Fj

pivi/v̄j and c̄j =
∑

i∈Fj
cj . We define

Fk, v̄k, p̄k and c̄k in an analogous manner.

Suppose x̂j ̸= x̂k. Therefore Fj∩Fk = ∅. We construct a solution x̃ whose objective function

value is strictly larger than that of x̂, thus yielding a contradiction. Suppose

p̄jt− c̄j/v̄j < p̄kt− c̄k/v̄k. (40)

We set x̃i = x̂i+ϵ for all i ∈ Fk, x̃i = x̂i−(v̄k/v̄j)ϵ for all i ∈ Fj and x̃i = x̂i for all i /∈ Fj∪Fk. It

follows that for sufficiently small ϵ > 0, x̃ is a feasible solution to Γf (t). In particular, constraint

(11) is satisfied by x̃. All the binding precedence constraints at x̂ continue to remain binding at

x̃. Moreover, since Fj ∩ Fk = ∅ none of the nonbinding precedence constraints become binding

for sufficiently small ϵ. On the other hand, we have

∑
i∈(Fj∪Fk)c

[
pivit− ci

]
x̃i +

∑
i∈Fj

[
pivit− ci

]
x̃j +

∑
i∈Fk

[
pivit− ci

]
x̃k

>
∑

i∈(Fj∪Fk)c

[
pivit− ci

]
x̂i +

∑
i∈Fj

[
pivit− ci

]
x̂j +

∑
i∈Fk

[
pivit− ci

]
x̂k

where the inequality follows from (40). This contradicts x̂ being an optimal solution to Γf (t).

The case where p̄jt− c̄j/v̄j > p̄kt− c̄k/v̄k is symmetric and can be handled in a similar manner.

By perturbing the profit margins and the costs by infinitesimally small amounts if required, we

can assume that the case where the two terms are equal does not occur.
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Proof of Lemma 12

Proof. It can be verified that F has at least one maximal element. We show that there is exactly

one maximal element. By Lemma 11, we have x̂j = x̂k for all j, k ∈ F . Now suppose that we

have j, k ∈ F such that both are maximal. Since j is maximal and k ∈ F , we have j /∈ Ok. By a

similar argument, we have k /∈ Oj . Since the precedence constraints are nested, this means that

Oj ∩ Ok = ∅. Let Fj = {i ∈ Oj |x̂i = x̂j} and Fk = {i ∈ Ok|x̂i = x̂k}. Since Oj ∩ Ok = ∅, we

have Fj ∩Fk = ∅. By following the same steps as in the proof of Lemma 11 we can construct a

solution x̃ which strictly improves the objective function value, thus yielding a contradiction.

Proof of Corollary 1

Proof. The first part of the corollary follows by noting that if j ∈ F but j /∈ Oi, it implies that

i is not the unique maximal element of F , contradicting Lemma 12.

Since F ⊂ Oi and F contains all the products assigned fractional values, we have x̂j ∈ {0, 1}

for j ∈ Oc
i . This proves the second statement.

If j is such that i ∈ Oj , then Oi ⊂ Oj . The second part of the corollary implies that

x̂j ∈ {0, 1}. But the constraint x̂j − x̂i ≤ 0 together with 0 < x̂i < 1 implies that x̂j = 0,

proving the third statement.

Coming to the next statement, if j ∈ Oi\F , then x̂i − x̂j < 0, which implies that x̂j = 1.

The last statement follows by noting that if
∑

j∈F ρj(t) =
∑

j∈F [pjvjt− cj/vj ] < 0, then we

can construct a solution x̃ which obtains a larger objective function value that x̂ in the following

manner. We set x̃j = x̂j − ϵ for all j ∈ F , where ϵ > 0 is sufficiently small. We set x̃j = x̂j

for all j ∈ Fc. It can be verified that the solution x̃ is feasible and improves on the objective

function value compared to x̂ yielding a contradiction.

Online Appendix: Parametric Bounds for the Intervals Iκl
and

Iκu+1

We bound the gap between maxt∈Iκ Πκ(t) and ZOPT for κ ∈ {κl, κu + 1}. All the results from

§4.2.4 carry over if ∆κ ≤ 0. So we focus on the case ∆κ > 0. Let

r̄κ = min

{
Πκ(t

∗)

Z{1,...,κ−1}
,
Πκ(t

∗)

Z{1,...,κ}

}
− 1 (41)
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where t∗ is the unconstrained maximizer of Πκ(t) (Lemma 2). Since maxt∈Iκ Πκ(t) ≤ Πκ(t
∗),

we have rκ ≤ r̄κ. We establish a bound on r̄κ, which also bounds rκ and thus the optimality

gap. Moreover, just like in §4.2.4, when bounding r̄κ we restrict attention to the case where r̄κ

is maximal. It is possible to show that r̄κ is maximal when Z{1,...,κ−1} = Z{1,...,κ}. In this case,

we have t∗ =
√
τκ−1

√
τκ = 1√

v0+Vκ−1

1√
v0+Vκ

and

r̄κ =
∆κ

(√
v0 + Vκ −

√
v0 + Vκ−1

)2
(v0 + Vκ−1)(v0 + Vκ)Z{1,...,κ−1}

. (42)

Analysis for the interval Iκl

We first consider the interval Iκl
= [t̂l, τκl−1]. If t∗ ≥ t̂l, then it can be verified that the bound

described in Proposition 2 applies. So we consider the case when t∗ < t̂l. We have the following

lower bound on Z{1,...,κl−1}.

Lemma 13. If ∆κl
> 0 and t∗ < t̂l, then

Z{1,...,κl−1} ≥
∆κl

Vκl−1

v0(v0 + Vκl−1)

(
1− t∗

t̂l

√
v0 + Vκl−1

v0 + Vκl

)
.

Proof. The proof follows by noting that ρj(t̂l)/vj ≥ ρκl
(t̂l)/vκl

for all j ∈ {1, . . . , κl − 1} and

using the same arguments as in the proof of Lemma 7.

Using the lower bound from Lemma 13 in Equation (42), we have the following bound on

r̄κl
. Since rκl

≤ r̄κl
, Proposition 6 implies a bound on rκl

as well when ∆κl
> 0 and t∗ < t̂l.

Since t∗ < t̂l, the bound in Proposition 6 is in fact stronger than that in Proposition 2.

Proposition 6. If ∆κl
> 0 and t∗ < t̂l then

r̄κl
≤ v0vκl

Vκl−1

√
v0 + Vκl

(
√

v0 + Vκl
+
√

v0 + Vκl−1)

 1−
√

v0+Vκl−1

v0+Vκl

1− t∗

t̂l

√
v0+Vκl−1

v0+Vκl

 .

To summarize the analysis for the interval Iκl
, if ∆κl

> 0 and t∗ < t̂l, then we bound rκl

using Proposition 6. Otherwise, the bounds in §4.2.4 apply.
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Analysis for the interval Iκu+1

Now we consider the interval Iκu+1 = [τκu+1, t̂u]. It can be verified that the bound described in

Proposition 2 continues to apply if t∗ ≤ t̂u. So we consider the case when t∗ > t̂u. We have the

following analog of Lemma 13.

Lemma 14. If ∆κu+1 > 0 and t∗ > t̂u, then

Z{1,...,κu} ≥
∆κu+1Vκu

v0(v0 + Vκu)

(
1− t∗

t̂u

√
v0 + Vκu

v0 + Vκu+1

)
. (43)

Lemma 14 together with Equation (42) implies the following proposition, which is the direct

counterpart of Proposition 6.

Proposition 7. If ∆κu+1 > 0 and t∗ > t̂u, then

r̄κu+1 ≤
v0vκu+1

Vκu

√
v0 + Vκu+1(

√
v0 + Vκu+1 +

√
v0 + Vκu)

 1−
√

v0+Vκu
v0+Vκu+1

1− t∗

t̂u

√
v0+Vκu

v0+Vκu+1

 .

Since rκu+1 ≤ r̄κu+1, Proposition 7 bounds rκu+1 as well when ∆κu+1 > 0 and t∗ > t̂u. Since

t∗ > t̂u, t
∗/t̂u > 1. As the ratio t∗/t̂u gets close to 1, the bound in Proposition 7 tends to that

in Proposition 2. However, the bound in Proposition 7 can be quite loose if the ratio t∗/t̂u is

large. We provide an alternative bound on rκu+1 that may be more useful in such situations.

We continue to focus on the case where ∆κu+1 > 0, r̄κu+1 is maximal and t∗ > t̂u. Since

∆κu+1 > 0, Πκu+1(t) is concave (Lemma 2). Using the subgradient inequality

Πκu+1(t̂u) ≤ Z{1,...,κu+1} +
∆κu+1(Vκu+1 + v0 − 1

t̂u
)vκu+1

(v0 + Vκu+1)2(v0 + Vκu)
. (44)

Since Πκu+1(t) is concave and t∗ > t̂u, the function is increasing on Iκu+1 and maxt∈Iκu+1 Πκu+1(t) =

Πκu+1(t̂u). This together with Z{1,...,κu} = Z{1,...,κu+1} (since r̄κu+1 is maximal) implies

rκu+1 =
Πκu+1(t̂u)− Z{1,...,κu+1}

Z{1,...,κu}
. (45)

Using (44) and (43) in Equation (45), we obtain an alternative bound on rκu+1 given in Propo-
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sition 8 below. We expect the bound in Proposition 8 to dominate that in Proposition 7 when

t∗/t̂u is large.

Proposition 8. If ∆κu+1 > 0 and t∗ > t̂u, then

rκu+1 ≤
v0vκu+1

(v0 + Vκu+1)Vκu

.

To summarize the analysis for the interval Iκu+1, if ∆κu+1 > 0 and t∗ > t̂u, then we use the

minimum of the bounds in Propositions 7 and 8 as our bound on rκu+1. Otherwise, the bounds

in §4.2.4 apply.
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