
 

 

 

The Forest or the Trees? TackliŶg SiŵpsoŶ’s Paradox with 
Classification and Regression Trees 

Galit Shmueli 

and 

Inbal Yahav 

 

 

 

 

 

http://eprints.exchange.isb.edu/74  

Working Paper 

Indian School of Business 

2014 

http://eprints.exchange.isb.edu/74


 Electronic copy available at: http://ssrn.com/abstract=2392953 

The Forest or the Trees? Tackling

Simpson’s Paradox with Classification

and Regression Trees

Galit Shmueli

e-mail: galit shmueli@isb.edu

and

Inbal Yahav

e-mail: inbal.yahav@biu.ac.il

Abstract: Prediction and variable selection are major uses of data mining
algorithms but they are rarely the focus in social science research, where
the main objective is causal explanation. Ideal causal modeling is based
on randomized experiments, but because experiments are often impossi-
ble, unethical or expensive to perform, social science research often relies
on observational data for studying causality. A major challenge is to infer
causality from such data. This paper uses the predictive tool of Classifica-
tion and Regression Trees for detecting Simpson’s paradox, which is related
to causal inference. We introduce a new tree approach for detecting poten-
tial paradoxes in data that have either a few or a large number of potential
confounding variables. The approach relies on the tree structure and the
location of the cause vs. the confounders in the tree. We discuss theoretical
and computational aspects of the approach and illustrate it using several
real applications.

1. Simpson’s Paradox and macro decisioning

With the growing availability of data at more granular levels, decision mak-
ing has expanded from aggregate-level to personalized decisions. In medicine,
we see a shift towards personalized medicine. In marketing, personalized offers
and customized customer experiences are now common. Data-driven decision
making is important at different aggregation levels: population aggregates are
needed for overall policy making (“macro decisioning”), while micro-data are
used for personalized decisioning (“micro decisioning”1). An important ques-
tion is therefore, what data are needed for what level of decision making?. This
question relates to the concept of Information Quality, or InfoQ (Kenett and
Shmueli (2014)), which is the potential of a dataset to achieve a specific goal
using a given empirical analysis method. One of the dimensions of InfoQ is data
resolution, which refers to the measurement scale and aggregation level of the
data. This dimension is the focus of this paper. In particular, we ask which data
aggregation level is needed in the context of macro decisioning.

1The terms macro and micro decisioning were coined by Divyabh Mishra from CrowdAN-
ALYTIX.com

1
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A perplexing issue in the context of choosing the level of aggregation for
macro decisioning is Simpson’s paradox (Simpson (1951)). The paradox de-
scribes the phenomenon where the direction of a cause on an effect appears
reversed when examining the aggregate vs. disaggregates of a sample or a pop-
ulation. The practical macro decision making question that Simpson’s paradox
raises is which level of data aggregation presents the results of interest. This
practical question raises the challenge of identifying potential confounders and
then establishing a criterion for deciding if and which of the potential con-
founders should influence the decision making.

One might think that with sufficiently large samples, it is always safer to
use the disaggregate data, which are potentially more homogeneous. While this
might be true for micro decisioning (personalized decision making), it is not
necessarily the case for macro decisioning, where the goal is to evaluate an
overall effect. Pearl (2009) shows that, in many cases it is the aggregated rather
than the partitioned data that gives the correct choice of action.

Pearl (2009) describes Simpson’s paradox as “the phenomenon whereby an
event C increases the probability of E in a given population p, at the same time,
decreases the probability of E in every subpopulation of p”. Some authors have
described the paradox in non-causal language as “the reversal of an association
between two variables after a third variable (a confounding factor) is taken
into account” (Schield (1999)), or “the result that a marginal association can
have a different direction from each conditional association is called Simpson’s

paradox” (Agresti (2012), p.51). However, Pearl (2009) warns that Simpson’s
paradox can only be resolved when the observational data (frequency tables)
are combined with a causal theory. He shows that the same data table can
result from different causal paths and therefore the underlying causal structure
is unidentifiable from the data alone. In other words, once the effect, cause, and
potential confounding variable are singled out, a causal narrative is required for
determining which level of aggregation to use for decision making.

The literature on Simpson’s paradox has focused on explaining the phe-
nomenon, quantifying its magnitude (Blyth (1972); Zidek (1981)), the condi-
tions where it disappears (Bishop et al. 1975) and its frequency (Pavlides and
Perlman (2009)). Explanations range from mathematical arguments (Simpson’s

Reversal of Inequalities looks at the paradox algebraically in terms of ratios of
numbers; see Stanford Encyclopedia of Philosophy) to ‘group inhomogeneity’
explanations (subpopulations of different sample sizes) to ‘confounding factor’
explanations. Yet, there still remains the question of which result to act on in
the presence of contradicting directions. As Schield (1999) stated, “even if Simp-
son’s Paradox were readily understood, it is not easily anticipated. There is no
test for determining whether an association is spurious”. Pearl (2009) notes that
“there is no statistical criterion that would warn the investigator against draw-
ing the wrong conclusion or would indicate which table represents the correct
answer”.

The focus of this paper is identifying potential confounding variables in a
high-dimensional dataset that cause the Simpson’s paradox. High-dimensional
datasets are now common in many areas and are the basis for important policy
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decisions. Our focus is on the pre-paradox scenario, where the goal is to iden-
tify potential confounding variables among a broad set of variables. The suspect
confounders are those that would lead to Simpson’s paradox. Once the potential
confounders are identified, the researcher can investigate plausible causal nar-
ratives (such as self-selection) to determine the adequate data aggregate level
to use.

The challenge of identifying confounding variables is encountered in fields
where data from multiple sources are combined to obtain richer information for
the purpose of stratifying records into more homogeneous groups. For example,
actuaries gather data from many sources on states, companies and years of
experience for computing insurance rates (Stenmark and Wu (2004)). These
data are then aggregated across years, states, etc. for decision making purposes.
Our approach is useful in such cases.

We take a data-driven approach that searches the terrain of possible rela-
tionships between the outcome of interest and the set of cause and potential
confounders. A tree-based approach is applied to micro-level data and automat-
ically identifies existing relationships and their structure. The result graphically
displays potential confounders and the structure of confounding, allowing the
researcher or decision maker to identify potential Simpson’s paradox relation-
ships to be further investigated with a causal toolkit such as Pearl’s “back-door”
test.

The paper proceeds as follows: In Section 2 we briefly describe classification
and regression trees in the context of prediction and discuss several differences
when using trees for an explanatory task. We then introduce a novel approach
of using trees in the context of Simpson’s paradox. Section 3 describes the use
of full-grown trees and conditional inference trees for single confounders. In
Section 4 we introduce a new type of tree, the X-terminal tree, for detecting
Simpson’s paradox in datasets with many potential confounding variables. The
paper concludes with a discussion in Section 5.

2. Classification and Regression Trees for Prediction vs. Explanation

2.1. Trees in Predictive Modeling

Classification and Regression Trees (“trees”) are a popular machine learning
algorithm for predicting an outcome from a set of predictors. Trees use the
notion of recursive partitioning, where at each step the sample is partitioned
into subsamples to create the most homogeneous subsamples in terms of the
outcome. Partitioning is obtained by searching (heuristically) across all the pre-
dictors and all their values for the best split. The best split is the one that
splits the data into the most homogeneous sub-samples in terms of the outcome
variable. The result of a single step is therefore a split on one predictor at a
particular value (or in the case of a categorical predictor, a split into groups
of categories). Given a partition from one step, the algorithm seeks the next
(conditional) split. The end result is a set of rules based on predictor threshold-
ing (“if Age<20 and Employed=Yes”) that splits the data into non-overlapping
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subsamples. Tree algorithms differ in terms of the criteria for variable selection,
splitting rules, and avoiding over-fitting the data. Classic machine learning al-
gorithms such as CART, C4.5 and C5.0 use “node impurity” measures to select
variables and splits for generating the full tree, followed by a pruning step that
cuts back partitions that do not improve predictive power. In contrast, CHAID
and conditional-inference (CI) trees (Hothorn et al., 2006a) use statistical tests
of association of the predictors with Y . In this scheme of recursive partitioning,
at each stage predictors are ordered according to the significance of their (con-
ditional) association with Y , and the strongest associated predictor is chosen
for splitting. However, the split is only performed if the significance level ex-
ceeds a pre-determined threshold. Tree growth is stopped when the significance
threshold is not met, thereby implying insufficient association strength.

In either case, the resulting tree is used for predicting the outcome for new
records.

Similar to stepwise selection techniques in regression, trees are also a use-
ful tool for variable selection and dimension reduction. Important predictors
are those chosen by the algorithm for splitting the sample into homogeneous
subsamples. The presence or absence of a predictor from a tree is therefore
informative of its importance. Due to the recursive nature of the algorithm,
predictors that appear at the top of the tree (generating early splits) are more
likely to have stronger predictive power.

An advantage of trees over other predictive algorithms is that a tree is inter-
pretable in terms of the relationship between the predictors and the outcome,
and can be translated to a set of easily understood IF-THEN rules.

2.2. Trees for Explanatory Modeling

While trees are common in predictive analytics, they are nearly absent from
causal modeling. In predictive modeling, trees are used for micro-decisioning,
where a prediction is required for each new record. In this paper we consider
an approach for using trees in macro decisioning in the context of explana-
tory modeling, and in particular, for automatically identifying confounders that
might cause Simpson’s paradox.

Our use of trees in this explanatory modeling context differs from predictive
modeling in a few ways. First, we are interested in the tree structure itself: not
only which predictors are present, but also which predictors are absent, and im-
portantly, what is the ordering of the splits. Second, unlike predictive modeling,
we do not use the tree to predict (“score”) new records. Third, in some cases
we use full grown trees (“full trees”) which overfit the sample2, for the purpose
of identifying the tree structure. Fourth, to account for sampling variance, and
when applicable, we prefer conditional-inference trees (Hothorn et al. (2006a))
where variable choice and splitting values are based on statistical tests of in-
dependence over trees that rely on cross-validation or holdout data pruning.
And lastly, we develop a new stopping criterion for tree growth for identifying

2the full tree favors bias reduction over variance reduction
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Fig 1. Schematic of the five types of trees for a single causal variables and a single confounding
variable

potential confounders in high-dimensional data. Each of these approaches are
motivated, described, and evaluated in the following sections.

3. Simpson’s Paradox and Trees: Single Confounder Case

Consider a dataset with an outcome (effect) of interest (Y ), a cause variable (X)
and a set of potential confounding variables (Z). Our tree approach starts as
follows: Fit a tree with the outcome Y and predictor set that includes X and Z.
If Y is categorical, we fit a classification tree. If Y is numerical, we fit a regression
tree. The structure of the resulting tree will then yield the potential confounders
and their confounding behavior. In particular, we examine the presence and
absence of each of X and Z variables as splitting variables in the tree, as well
as the splitting sequence.

Simpson’s paradox is classically displayed using contingency tables, where
rows and columns are used for conditioning on X and Z (or vice-versa) and the
cell values are counts, probabilities, percentages or numerical summaries such
as averages of Y . The table then allows comparing the conditional values for
different levels of Z, thereby conditioning on Z. The same information can be
clearly displayed using a full-grown tree of Y on predictors X and Z.

If we consider X and a single confounder Z, there are potentially five types
of full-grown trees (see Figure 1):

Type 1 Tree: no splits (“stub”). A stub indicates no association between
Y and X, nor between Y and Z. Hence, splitting by either does not create
more homogeneous subsamples.

Type 2 Tree: only splits on X. This structure indicates an association be-
tween X and Y , with no confounding effect of (the absent) Z.
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Type 3 Tree: only splits on Z. The absence of X indicates no association
between X and Y . The presence of Z indicates that Y is associated with
Z.

Type 4 Tree: split first on Z then on X. This tree indicates a relationship
between X and Y that is confounded by Z.

Type 5 Tree: split first on X then on Z.

Trees of types 1, 2, and 3 exclude X and/or Z as splits and therefore the
corresponding contingency tables would not exhibit Simpson’s paradox, as one
might expect. The more surprising result is that the type 5 tree will also cor-
respond to a no-paradox contingency table. The reason is that the ordering of
splits, where X occurs earlier, indicates that the X-Y relationship is stronger
than the Z-Y relationship. According to Cornfield’s condition, Simpson’s para-
dox will only occur if Z has the strength - the effect size - necessary to nullify
or reverse an observed association between X and Y (Schield (1999)).

Among the five tree types, therefore, only the type 4 tree corresponds to
a contingency table that can exhibit Simpson’s paradox. The ordering of the
splits with Z earlier than X assures that the reversal is possible according to
Cornfield’s condition. Note that a type 4 tree does not guarantee a paradox.
A type 4 tree can also correspond to a contingency table exhibiting a paradox
that is statistically insignificant, a partial paradox where the effect is reversed
only for some of the subgroups, or no paradox, where the effect for different
subgroups differs in magnitude but not direction.

The result regarding tree structure and Simpson’s Paradox is general to
full trees grown using statistical independence tests (CHAID and conditional-
inference trees) as well as impurity measures (e.g., entropy and Gini index). See
Appendix 5 for proofs for both cases.

For the case of a single potential confounder, we can easily incorporate sam-
pling error into the tree approach by considering conditional-inference (CI) trees
in place of full trees. CI trees incorporate sampling error by using statistical in-
ference for stopping tree growth. For a single confounding variable, CI trees
therefore have the advantage of providing information about the statistical sig-
nificance of the Paradox in terms of generalizing to the population. Setting the
statistical significance threshold of the paradox to a preferred value will there-
fore limit findings to potential paradoxes that are significant at least at that
level.

In Sections 3.1 and 3.2, we illustrate the full-tree approach for two classic
examples of Simpson’s Paradox. We show the advantage of the full tree and
conditional tree approach over contingency tables and compare with a logistic
regression approach (Agresti, 2012). Section 3.3 describes a two-confounder ex-
ample where the tree type eliminates the possibility of a paradox. The example
also illustrates the challenge encountered with using CI trees with more than
one confounder, thereby motivating the need for a new type of tree, which is
introduced and illustrated in Section 4.
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Table 1

Death Sentence Rate, by Defendant’s Race

Defendant’s Death Sentence
Race Rate

Black 10.24%
White 11.88%

Table 2

Death Sentence Rate, by Defendant’s Race and Victim’s Race

Defendant’s Victim’s Death Sentence
Race Race Rate

Black Black 5.83%
White 17.46%

White Black 0.00%
White 12.58%

3.1. Example 1: Death Sentence Rates

We use the example of death sentence rates from Agresti (2012). The data in-
clude information on 326 murder cases. In each case, data is available on the race
of the defendant (X={white,black}), whether the outcome was a death sentence
(Y={yes,no}), and the race of the victim (Z={white,black}). The question of
interest is whether the defendant’s race affects the probability for a death sen-
tence. The potential confounder is the race of the victim.

Examining the contingency tables of the aggregate and disaggregate data
indicates Simpson’s paradox. The aggregate table (Table 1) indicates that white
defendants are more likely to get the death sentence than black defendants. In
contrast, the contingency table disaggregated by victim race (Table 2) indicates
that white defendants are less likely to get the death sentence, when the victim
is black as well as when the victim is white.

Figure 2 shows the full-grown classification tree of death on predictors X

(defendant’s race) and Z (victim’s race). As expected, the resulting tree is of
type 4, with an initial split on Z followed by splits on X. The tree also clearly
displays a higher death sentence rate for black defendants (nodes 3,5) compared
to white defendants (nodes 4,6). Figure 3 shows a conditional inference tree
with statistical significance threshold set to 5%. In contrast to the full tree, the
CI tree has a single split on victim’s race (tree type 3), thereby indicating that
the Simpson’s paradox observed in the contingency table (and full-grown tree)
is not generalizable to the population. In other words, the death sentence rate
is unrelated to the race of the defendant (at 5% significance).

Lastly, we compare to an alternative approach that accounts for sampling er-
ror: fitting a logistic regression. A logistic regression of death sentence on victim
race, defendant race and their interaction results in a statistically significant ef-
fect only for the victim’s race (see Table 3; sequential elimination of insignificant
covariates results in a model with only the victim’s race), indicating that the
confounding effect of the defendant’s race seen in the sample is not generalizable
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Fig 2. Full-grown classification tree based on the death sentence disaggregate data, with de-
fendant and victim race as predictors

Fig 3. Conditional-inference classification tree for the death sentence data
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to the population. Hence, in this example where the paradox does not generalize
to the population, the same result is indicated by the logistic regression and the
CI tree.

Table 3

Logistic regression model for death sentence with predictors defendant race, victim race, and
their interaction

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7830 0.4207 -6.62 0.0000
defendant -13.7831 799.8483 -0.02 0.9863
victim 1.2296 0.5358 2.29 0.0217
defendant×victim 13.3981 799.8485 0.02 0.9866

3.2. Example 2: Berkeley Admissions

Probably the most famous example of Simpson’s paradox is the Berkeley admis-
sions case. Given data on admissions to the different departments at Berkeley,
and given the gender of each applicant, the aggregate data indicated a lower
rate of admissions for women (see Table 4). However, when broken down by de-
partment, admission rates were higher for women in almost every department.
The question that arose was the existence of a gender bias in admissions.

The full-grown classification tree of the data (Figure 4) is, as expected, of
type 4, where splits on department (Z) precede splits on gender (X).

Table 5 shows the estimated logistic regression model for gender, department
and their interaction. In this case, gender, several department dummy variables
and almost all interaction terms are statistically significant. However, this does
not guarantee that the Simpson’s paradox occurs, because it is unclear whether
the effect of department is stronger than that of gender.

This example highlights two advantages of the tree over the logistic regression
approach. First and most importantly, the hierarchical nature of the tree allows
us to determine whether X appears before or after Z which is required for
meeting Cornfield’s criterion (as in tree type 4). While a logistic regression tells
us only whether an interaction term is statistically significant, it does not tell
us whether the Z − Y relationship is stronger than the X − Y relationship. In
contrast, Figure 5, showing the tree for the Berkeley admissions data, is a type
4 tree thereby indicating a potential Simpson’s Paradox that generalizes to the
population at a 5% significance level.

Second, the tree automatically explores interaction terms, and in cases of
multi-category or numerical covariates the binning is automated (see grouping
of departments in Figure 5).

3.3. Example 3: Injury in Automobile Accidents and Seat-Belt Use

To further compare the tree approach and regression approach, and to illus-
trate the challenge of CI trees in the case of more than one confounder, con-
sider the following example with two confounders. Agresti (2012) analyzes a
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Table 4

1970’s Berkeley Admissions, by gender and department

Fig 4. Full-grown classification tree based on Berkeley admissions data, with gender and
department as predictors
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Table 5

Logistic regression model for Berkeley admissions with predictors gender and department
and their interaction terms

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.5442 0.2527 6.11 0.0000
deptB -0.7904 0.4977 -1.59 0.1122
deptC -2.2046 0.2672 -8.25 0.0000
deptD -2.1662 0.2750 -7.88 0.0000
deptE -2.7013 0.2790 -9.68 0.0000
deptF -4.1250 0.3297 -12.51 0.0000
genderMale -1.0572 0.2627 -4.02 0.0001
deptB×genderMale 0.8372 0.5104 1.64 0.1009
deptC×genderMale 1.1821 0.2995 3.95 0.0001
deptD×genderMale 0.9752 0.3026 3.22 0.0013
deptE×genderMale 1.2574 0.3303 3.81 0.0001
deptF×genderMale 0.8683 0.4027 2.16 0.0310

Fig 5. Conditional-inference classification tree for the Berkeley admissions data
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dataset on 68,694 passengers in auto and light trucks involved in accidents dur-
ing one year in the state of Maine. For each accident, information is available
on whether the passenger used a seat-belt (yes/no) and whether the passenger
was injured (yes/no). In addition, information is available on the passenger’s
gender (male/female) and the accident location (rural/urban). The relationship
of interest is between the use of seat-belts (X) and the chance of injury (Y ).
Passenger gender and accident location are potential confounding variables.

A logistic regression with all three predictors and interaction terms between
seat-belt use and the other covariates shows statistical significance for the main
effects and for the interaction of seat-belt with location (see Table 6). The
significant interaction indicates that Simpson’s paradox will not manifest when
the data are disaggregated by gender, but it might manifest when the data are
broken down by location. In contrast, the tree approach gives conclusive results.

Figure 6 shows the full classification tree of injury (Y ) on predictors seat-
belt use (X), gender (Z1), and location (Z2). We see that the first split is on
seat-belt, followed by splits on location and gender. Hence, this tree is of type
5, and therefore contingency tables of injury on seat-belt use will not display
Simpson’s paradox when disaggregated by either gender or location. This result
can be seen in Table 7, which shows that the injury rate is higher without a
seat-belt, both overall as well as when the sample is broken down by gender
and/or by location.

Table 6

Estimated logistic regression model for seat-belt data, with interaction terms between
seat-belt use and the other covariates (gender=1 for Male, location=1 for Urban, seatbelt=1

for Yes)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1962 0.0311 -38.45 0.0000
seatbelt -0.8654 0.0463 -18.69 0.0000
gender -0.5422 0.0350 -15.51 0.0000
location -0.8013 0.0349 -22.93 0.0000
seatbelt×gender -0.0095 0.0559 -0.17 0.8647
seatbelt×location 0.1074 0.0550 1.95 0.0506

Note that in this two-confounder case we use the full tree (significance thresh-
old=1) rather than setting a threshold to the significance level of interest. While

Table 7

Percent injuries by seat-belt use, gender and location

Gender Location Without Seat-belt With Seat-belt
Female Urban 12% 6%
Female Rural 23% 11%
Male Urban 7% 3%
Male Rural 15% 7%
Total Female 16% 8%
Total Male 10% 5%
Total Urban 9% 5%
Total Rural 18% 9%
Overall Total 13% 6%
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Fig 6. Full-grown classification tree based on accidents and seat-belt use data, with seat-belt
use, gender and accident location as predictors
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either tree is useful for determining whether it is a type 4 tree or not, the statis-
tical significance threshold in a type 4 tree with more than two layers of splits
does not directly map to the significance threshold imposed on the paradox.
For example, consider a tree with a top split by Z1, followed by a split by Z2,
followed by a split by X. This is a type 4 tree indicating a possible paradox. The
paradox can be with respect to Z1 or with respect to Z2|Z1. Hence, the tree’s
significance threshold which applies separately to each split3 does not provide
a suitable threshold for the conditional paradox.

To summarize, the advantage of CI trees over a regression approach is that
trees can easily identify no-paradox situations based on the tree type. Their
limitation is the ability to locate only statistical significant paradoxes, when
the paradox is in fact conditional on a combination of confounders. In such a
case, the full tree must be used, and statistical tests performed for each of the
candidate conditional paradoxes.

4. Multiple Potential Confounders: X-Terminal Trees

Our result regarding tree structure applies not only to a single confounder Z,
but to multiple confounding variables Z. In this case, the full grown tree will
contain X and the Zi (i = 1, . . . , k) splits. As in the single Z case, the ordering
of the splits is the key to detecting a possible paradox. Trees of types 1, 2, and 3,
which exclude X and/or Z, will correspond to a no-paradox contingency table.
Trees of type 5, where X is the top split and one or more Zi’s appear lower in the
tree, also correspond to a no-paradox contingency table. The reason, again, lies
in the strength of the X-Y relationship, compared with the Zi-Y relationships
for the Zi’s in the tree.

Simpson’s paradox can only occur in a type 4 tree, in which Zi ∈ Z is the top
split and X is a split that appears somewhere in the tree. Simpson’s paradox
can exist in any of the Zi-X relationships, in which Zi precedes X, and will
not exist in all other relationships. A contingency table filtered by Z splits that
precede the X split might therefore exhibit Simpson’s paradox.

With multiple potential confounding variables, the advantage of using trees
over scanning all possible contingency tables is clear: the tree approach easily
scales up using automated variable selection, thereby detecting confounding
variables that might display Simpson’s paradox. Another advantage of the tree
over contingency tables is that it easily generalizes to variables X and Z that
are not categorical. In such cases, creating a contingency table requires binning
the continuous variables, yet how to bin those variables is unclear. In contrast,
the tree will automatically choose the best binning in terms of the strongest
Z-Y association and if that association exists, it will be displayed in the tree as
splits based on those bins.

3Conditional inference trees, as implemented in the R packages party and partykit, cor-
rect for multiple testing using either Bonferonni or minimum p-value resampling; a possible
improvement would be using the False Discovery Rate approach (Benjamini and Hochberg
(1995)), which is useful especially when a small subset of the effects does exist.
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Compared to the regression approach, the tree approach is more computation-
ally efficient. A stepwise regression that searches all interaction terms between
X and the potential covariates can be computationally slow and suffer from
pitfalls of spurious collinearity, among other challenges (see Agresti, 2012, p.
279). In comparison, the tree solution is extremely fast.

Yet, with more than a single potential confounder, we can no longer use CI
trees since the statistical significance threshold on the complete paradox cannot
be easily mapped to the threshold to use at each split. In addition, with high
dimensional data, a full tree can become difficult to navigate due to the many
splits and terminal nodes. Moreover, it is wasteful to construct the full tree,
when all we need are paths that end in a split by the cause X. We therefore
introduce a tree with a new stopping rule: the X-terminal tree, where growth is
stopped when an X split is encountered. We describe this tree next.

4.1. X-Terminal Trees for Detecting Simpson’s Paradox

In data with a large number of potential confounders, the resulting full tree
might be overwhelming in size. For detecting confounders that might lead to
Simpson’s paradox, we have a sequential process: First detect tree type. If not
type 4, then no paradox and stop here. If type 4, then examine only tree paths
that lead to a split on X. This constrained space of information can be achieved
by growing trees so that when an X split is encountered that branch is no longer
grown. Using this process, the resulting tree will either be a non-paradox full-
grown tree (of type 1,2,3 or 5), or else it will be a type 4 tree with at least one
terminal node at X.

Algorithm 1 summarizes the process of growing an X-terminal tree for iden-
tifying Simpson’s paradox in data with a large number of potential confounding
variables. When a type 4 tree is encountered, we search for a paradox using the
Zi’s that appear above every X split. These Zi’s are inspected conditionally, so
that each Z is conditional on Zi’s from higher splits. A conditional paradox is
equivalent to filtering the data by confounders from higher splits.

In the following, we use apply the tree approach with the proposed algorithm
to two studies with multiple potential confounders. The goal is to identify para-
doxes, and especially those that are statistically significant. In both examples,
we find a type 4 tree that indicates a potential paradox. Recall that a type 4
tree can also imply a partial paradox, or a non-paradox. The examples illustrate
these different possible findings. We illustrate through these examples the types
of information that our proposed tree approach reveals.

4.2. Example 3: Impact of eGov Services in India

This example illustrates the usefulness of our approach in the case of high-
dimensional data, where there is a large number of potential Z variables.

In the early 2000s, The Government of India (GoI) launched a national eGov
plan to deliver government information and services to its citizens. The plan
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Construct full-grown tree T using {Y , X, Z}
Trim the tree at X nodes. Alternatively, stop tree from growing when an X node is
reached
if X ∈ T then

if X is the top split of T then
/*Tree Type 2 or 5*/
No significant paradox

else
/*Tree Type 4*/
Full or partial paradox might exist
for all terminal X node do

Examine terminal X nodes for paradox
if Paradox detected then

Paradox exists in path p =
⋃

i
Zi to X

/*Note: Paradox might be insignificant*/
Examine

⋃
j
Zj ⊆ p for additional paradoxes

else
No significant paradox

end if
end for

end if
else

/*Tree Type 1 or 3*/
No significant paradox

end if

Algorithm 1: Algorithm for detecting Simpson’s paradox in high-dimensional
data
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Table 8

Performance outcomes, as defined by the Government of India (Table 1.1 from Government
of India (2008))

included creating an income tax portal, online delivery of passport services,
and online delivery of services provided by the Ministry of Company Affairs
(MCA), among others. Following the implementation of these online services,
an impact study was carried out. The purpose of the study was to evaluate the
success of the new electronic services in terms of several intended outcomes.
For that purpose, in 2006 GoI commissioned a satisfaction survey among users
of the new (online) and old (offline) services. The Indian Institute of Manage-
ment, Ahmedabad designed the survey and overall assessment framework while
eleven independent market research firms were empanelled to conduct the survey
across the country. The survey queried users about various dimensions of their
service experience including transaction costs, quality of service, and overall sat-
isfaction. The survey also provided information on characteristics of individual
respondents and the latter’s ex ante perceptions of various service parameters
such as clarity of rules and procedures or convenience of service facilities (see
Government of India, 2008).

We focus on the assessment of one of the eGov portals, namely, the online
delivery of passport services. Responses to the survey of passport services con-
stitute a representative sample of 13 passport offices selected from different
regions of the country. A sample of 9500 users was drawn from cities/towns
where these offices were located. The study was designed as a quasi-experiment,
where a large group of offline users was selected to match a group of online
users in terms of their geography and demographics (age group, education level,
etc.). Table 8 presents the outcome variables (Y ’s) of interest, as defined by the
government. Table 9 describes the key survey questions.

The main question is whether the introduction of the online system (X =
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Table 9

Survey questions that are potential Z variables

Variable Variable Description Scale

Awareness Awareness of electronic services provided by the Binary, 1=‘aware’
Government of India

Availability Ease of availability and accessibility of information 5-point Likert scale
pertaining to the service

Experience Indicator of prior usage of any other e-Gov Binary, 1=‘prior usage’
application

Clarity of Processes Extent to which the processes and procedures 5-point Likert scale
characterizing the e-Gov application are clear and simple

Clarity of Rules Extent to which the rules and procedures 5-point Likert scale
and Procedures characterizing the e-Gov application

are stated clearly without ambiguity and mistakes

Convenience of Hours Extent to which the working hours of the 5-point Likert scale
passport center or office are perceived as convenient

Convenience of Location Extent of satisfaction with the present location 5-point Likert scale
of the passport center or office

Form Design Extent of satisfaction with the design and layout 5-point Likert scale
of the application forms

Service Area Facilities Extent of satisfaction with the service area facilities 5-point Likert scale
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Table 10

Police Bribes Rate, by Online/Offline Groups

Group Bribes Rate

Offline 42.43%
Online 48.08%

{Online, Offline}) affected the outcomes of interest.
There are two sources of potential confounding variables: the demographic

information (which was designed to be balanced across the online/offline groups)
and questions in the survey that might be informative of confounding variables
that reverse the impact of the online system on the outcome. For example, per-
haps people who live far from a passport office are affected by an online passport
service differently from people who live close to an office. The approach is then
to fit an X-terminal tree with X = {Online, Offline} and Z = {demographic
variables; survey questions}, separately for each outcome Y .

We focus on one of the important measures of the service’s success: the re-
duction in police bribes. A naive summary for answering this question compares
the police bribe rate in the online vs. offline groups. Table 10 shows the results,
which indicate that the online system leads to an average of 6% higher bribe
rates to the police (the difference is statistically significant; p-value≈0).

Applying an X-terminal classification tree withX and Z, and stopping growth
at X terminal nodes (for a type 4 tree), we obtain the tree in Figure 7. For
better visibility, we do not plot terminal nodes for paths that do not contain X

splits. For example, the left most path in the trimmed tree, where Trust ≤ 2, is
removed from the figure. The next path, where Trust > 2, contains an X split,
and therefore was not removed. The bar charts in the terminal nodes reflect the
police bribe rates for the online (left) and offline (right) groups. Terminal nodes
that exhibit Simpson’s paradox (higher bribes for the offline group) are circled.
The resulting tree is of type 4, with online/offline appearing as a split, but not
as the top split.

We examine the tree to detect potential Simpson’s paradox in the dataset.
Looking at the tree, there are several sub-zones in the dataset in which the
paradox exists. As explained earlier, the paradox might be insignificant even if
the corresponding split is significant.

Tables 11-13 summarize three paths in the tree that end at an X split, illus-
trating the three possible results in terms of a paradox:

1. The right-most path in the tree correspond to the contingency table in
Table 11, which exhibits a significant Simpson’s paradox (p-value=0.003).

2. The fourth-from-right circled terminal node corresponds to the contin-
gency table in Table 12, which exhibits an insignificant Simpson’s paradox
(p-value=0.16).

3. The second-left terminal node (not circled) corresponds to the contingency
table in Table 13, and both exhibit no Simpson’s paradox. Although there
is an X split in this path, it does not lead to Simpson’s paradox.

In paths that do not terminate at an X split, there should be no paradox.
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Table 11

Police bribes rate by Online/Offline, filtered by Z factors from right-most path in the tree

Filters

City Cochin
Occupation Not Businessman, Cultivators, Dependent, Others
Convenience of Hours ≥ 3
HH Role Family Member
Clarity of Process ≥ 4
Group Bribes Rate

Offline 87.93%
Online 52.38%

Table 12

Police bribes rate by Online/Offline, filtered by Z middle path in the tree

Filters

City Delhi
Awareness Yes
Experience Yes
Trust > 4
Education Diploma, Higher Secondary, Illiterate, Literate without Education, Matric
House Not Temporary
Age > 36
Convenience Hours ≥ 3
Group Bribes Rate

Offline 100%
Online 92.5%

Two possibilities are a path that appears in the full tree but does not lead to an
X split, and a path that does not appear in the tree altogether. The first case
is shown in Table 14, which presents a path with no X split4. As expected, the
corresponding contingency table does not exhibit Simpson’s paradox. Table 15
illustrates the second case, of a path that is not in the tree. The corresponding
contingency table, as expected, does not exhibit Simpson’s paradox.

In addition to searching for a paradox right next to X splits (by filtering the
data by all the Zs on the path), we use Algorithm 1 to also examine partial
paths. A strong paradox in a particular area of the data might still appear even
when we look at larger sub-zones of the data. Table 16 presents an example of
this case, where a partial path exhibits a significant paradox.

4.3. Example 4: Kidney Transplant Waitlist

The last study illustrates the application of our tree approach to a large dataset
with multiple potential confounders, in which we obtain a type 4 tree, but
uncover no Simpson’s paradox. In this example, the outcome of interest is con-
tinuous and therefore we use a regression X-terminal tree.

Acute renal failure, also referred to as acute kidney failure, is a medical
condition in which the kidneys are no longer able to remove waste from the

4Note that the actual path is not visible in the tree. All paths that do not contain an X

split were removed from the tree for better visibility.
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Fig 7. X-terminal Classification tree for eGov data with group, demographic, and survey
variables as predictors; bar charts show bribe rate for offline (right) and online (left) groups.
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Table 13

Police bribes rate by Online/Offline, filtered by Z factors from second-left path in the tree

Filters

City Hyderabad, Jammu, Panaji, Ranchi
Occupation Businessman, Cultivators, Dependent, Others, Pensioner, Self Employed, Student
Convenience of Hours > 2
House Permanent, Semi-Permanent
Clarity of Process ≤ 2

Group Bribes Rate

Offline 11.22%
Online 40.00%

Table 14

Police bribes rate by Online/Offline, filtered by Z factors from the complement of the
right-most path in the tree (no Simpson’s Paradox)

Filters

City Cochin
Occupation Not Businessman, Cultivators, Dependent, Others
Convenience of Hours ≥ 3
HH Role Family Member
Clarity of Process < 4
Group Bribes Rate

Offline 87.02%
Online 95.14%

Table 15

Police bribes rate by Online/Offline, filtered by Z factors that do not appear in the tree (no
Simpson’s Paradox)

Filters

City Jalandhar
Awareness Yes
service area facilities ≤ 3

Group Bribes Rate

Offline 43.59%
Online 53.68%

Table 16

Police bribes rate by Online/Offline, filtered by subset of Z factors from right-most path in
the tree

Filters

City Cochin
Clarity of Process ge4
Group Bribes Rate

Offline 88.41%
Online 78.69%
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Table 17

Waitind time in days, by Patient’s Race

Race Waiting Time

Black 716.86
White 472.49
Total 545.38

blood and control the level of fluid in the body. Treatments for acute kidney
failure include dialysis and a kidney transplant. Dialysis treatment is available
to everyone. However, it is not the preferred option by most patients, as it
significantly reduces quality of life. In contrast, for kidney transplant, there is a
continual supply shortfall: approximately 13,500 transplant options are offered
annually in the USA, compared to 30,000 new patients with renal failure.

The United Network for Organ Sharing (UNOS, www.unos.org) is a private,
non-profit organization that manages the organ transplant system in the USA
under contract with the federal government. UNOS manages patients waitlists
per organ and an allocation policy that determine the order in which candidates
are offered an organ, when one becomes available. Under the current kidney al-
location system in the United States, kidneys are allocated to patients primarily
through a combination of tissue matching, sensitization level (the level of sensi-
tization to donor antigens, measured by Panel Reactive Antibody), and waiting
time.

A question of interest is whether waitlist patients’ race (X) affects the time
they wait for a kidney (Y ). A naive summary for answering this question com-
pares recipients’ waiting time (in days) by race. Table 17 shows the results,
where black recipients appear to wait longer than white recipients.

This difference is statistically significant (p-value≈0), and more importantly5,
it appears practically significant. The waitlist dataset6 includes many variables
with information about waitlist patients, which are potential confounders (Z):

INIT YEAR Year placed on waiting list
MED COND TCR Recipient medical condition at registration
FUNC STAT TCR Recipient functional status at registration
DGN TCR Primary diagnosis at registration
ON DIALYSIS Indicator of whether recipient is on dialysis
DIAB Indicator of whether recipient has diabetes
ABO Blood type
AGE Recipient’s age at registration
ORGAN Organ that the patient is listed for: kidney (KI), pancreas (PA), or

both (KP)
HLAMIS Mean patient’s antigen match with donor’s pool

The question is whether Simpson’s paradox will manifest when any of these vari-
ables are included. To address this question, we apply an X-terminal regression
tree with Y = Wait− time, X = RACE and Z. The resulting tree is plotted in

5Statistical significance is not surprising, given the very large sample.
6For detailed information about the dataset and its context, see Yahav and Shmueli (2014).
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Figure 8 and is of type 4 (RACE appears in the tree, but not as the top split).
Following Algorithm 1, we examine all paths that terminate with RACE. It
turns out that none of them exhibit Simpson’s paradox. We therefore conclude
that there is no paradox in the dataset, that is, black recipients wait longer for
kidney transplants compared to white recipients across all the subgroups that
we examined7.

5. Discussion

We have introduced and adapted the use of a popular predictive algorithm, clas-
sification and regression trees, to a context where it is rarely used: explanatory
modeling and in particular, identifying potential confounders that lead to Simp-
son’s paradox. Using trees in this different context warrants several conceptual
differences in its use as well as adaptations to tree growth criteria. First, we are
mostly interested in the presence or absence of X and Z as splitting variables
in the tree and especially in the sequence of splitting by X and Z. In predictive
modeling, the main interest is in the terminal nodes, which provide the pre-
dicted value or class. The absence of presence of predictors in the tree are useful
as a secondary goal of variable selection.

Second, in predictive modeling the main concern is over-fitting the tree to the
training data, so that it is unable to generalize to new records, thereby having
low predictive power. Hence, there exist various approaches to avoiding over-
fitting, the most common approach by pruning the tree using a holdout dataset
or cross-validation. In the Simpson’s paradox scenario, we are most interested
in detecting the tree splitting sequence to determine whether the tree is of type
4 or not. With a single potential confounder, we can use CI trees and set the
splitting threshold equal to the statistical significance required for the paradox.
With multiple potential confounders, the significance threshold of the splitting
criterion no longer coincides with the overall paradox significance. Hence, we
cannot use CI trees. While we could potentially use full-grown trees, they are
typically too large and complicated, thereby providing an inefficient solution
for detecting tree type and potential paradox paths. We therefore introduce an
efficient algorithm that stops tree growth whenever encountering an X split. The
resulting X-terminal tree is smaller than the full tree and helps eliminate many
paths that necessarily lead to non-paradox terminal nodes.

The tree approach helps the decision maker explore four types of questions
related to Simpson’s paradox:

1. Is there indication of an X−Y relationship at all? If an association exists,
we expect to find X as a splitting variable in the tree. Hence, trees of
types 1 and 3 indicate no effect while types 2, 4 and 5 indicate an effect.

2. Does the variable Z confound the cause-effect relationship? The presence
of Z before X (tree type 4) indicates a possibility of such confounding.

7Other explanations to this phenomena may apply, such as distribution of donors’ antigen
levels or religious beliefs
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Fig 8. Conditional-inference classification tree based on kidney waitlist data, with multiple
patient variables as predictors
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3. What is the form of the confounded relationship? Given tree type 4, the
actual splits on Z give an indication of the structure of the confounding.
For example, for a multi-category confounding variable, the tree auto-
matically identifies the particular grouping of categories that should be
treated separately. Similarly, for a continuous confounding variable, the
tree automatically identifies the splitting value for that variable.

4. What is the magnitude of the effect of X on Y ? Given that X is present
in the tree (tree types 2, 4 and 5), the corresponding terminal nodes of the
tree can be compared to quantify the effect. In tree types 2 and 5, where
an aggregate decisioning is warranted, each terminal node corresponds to
the a category (or category groups) of X that differ form other categories
in terms of Y . In tree type 4, where a disaggregate level decisioning is
warranted, effect magnitudes should be compared separately within each
level of Z.

Generating an exact classification or regression tree is a computationally dif-
ficult problem that involves exhaustive search, and practically, infeasible. The
reason is that searching the optimal splits in continuous variables involves rank-
ing, and hence is of order n log n. For categorical variables with K categories,
the number of possible splits is 2K−1 − 1. Therefore, a fast heuristic is typically
used to generate a sub-optimal tree for big data.

The conditional-inference tree algorithm used in this paper, is the common
algorithm by Strasser and Weber (1999). This algorithm is a ‘greedy’ heuristic
to construct CI trees, in which splits are selected based on local minimization
criteria. Moreover, only a small subset of possible splits is evaluated at each
step. Specifically, the algorithm works as follows8:

1. (a) Test the null hypothesis of independence between each input vari-
able (X,Z) and the response (Y ). The test can be multivariate if X
and/or Z are not binary. Stop if this hypothesis cannot be rejected.
Otherwise select the input variable with strongest association to the
response, measured by the univariate p-value. This selection avoids
selection bias favoring input variables with multiple possible splits.

(b) After selecting a split, compute its p-value. For non-binary input
variables, Monte Carlo simulation is used to generate random per-
mutations. P-values are computed for each permutation.

2. Split the tree by the selected input variable, using a binary split.
3. Recursively repeat steps 1 and 2.

The implication of the heuristic to our approach is that weak paradoxes and
paradoxes in small sub-samples might not be detected. For example, consider a
non-binary confounder Z (either continuous, or categorical with K > 2 levels).
Assume also that the X−Y relationship is stronger than the overall (multivari-
ate) Z − Y relationship, yet for a specific cutoff c (Zc = {Z < c, Z ≥ c}) that
reverses the X − Y relationship, the Zc − Y relationship is actually stronger

8For a detailed description of the methodology see Hothorn et al. (2006a,b)
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than the X−Y relationship. In this case, the algorithm described above will not
detect the Simpson’s paradox. Another example is a case where the multivariate
relationship Z−Y is in fact stronger than the relationship X−Y , yet the cutoff
c was not tested in step 1(b) of the heuristic.

An alternative to our tree-based method that might overcome this challenge is
a forest-based approach. Here, a relatively large number of bootstrap samples are
used to generate multiple CI trees. It is likely that at least one of the trees in the
forest will detect the weak paradox described above. However, due to sampling
error, it is also possible that the forest will detect paradoxes in subset(s) of the
data that do not occur in the entire dataset. The forest therefore might lead to
over-detection of both real and false paradoxes.



Shmueli and Yahav/Tackling Simpson’s Paradox with Trees 28

References

Agresti, A. (2012) Categorical Data Analysis, Third Edition, Wiley and Sons.
Alin, A. (2010). “Simpson’s paradox”. Wiley Interdisciplinary Reviews: Com-

putational Statistics, vol 2(2), pp. 247–250.
Benjamini, Y. and Hochberg, Y, “Controlling the false discovery rate: a practical
and powerful approach to multiple testing”. Journal of the Royal Statistical

Society, Series B, vol 57 (1), pp. 289–300.
Blyth, C. R. (1972). “On Simpson’s paradox and the sure-thing principle”. J.

American Statistical Association, vol 67, pp. 364–366.
Department of Information Technology, Ministry of Communications
and Information Technology, Government of India and Indian Insti-
tute of Management, Ahmedabad (2008), “Impact Assessment of e-
Governance Projects”, Report, www.iimahd.ernet.in/egov/documents/

impact-assessment-of-egovernance-projects.pdf

Donald P. Green and Holger L. Kern, “Modeling heterogeneous treatment ef-
fects in large-scale experiments using Bayesian Additive Regression Trees”,
andrewgelman.com/movabletype/mlm/Green%20and%20Kern%20BART.pdf

Hothorn, T., Hornik, K. and Zeileis, A. (2006), “Unbiased Recursive-
Partitioning: A Conditional Inference Framework”, Journal of Computational

and Graphical Statistics, vol 15(3), pp. 651–674.
Hothorn, T., Hornik, K., Van De Wiel, M. and Zeileis, A. (2006), “A lego system
for conditional inference”, The American Statistician, vol 60(3), pp. 257-263.

Kenett, R. S., and Shmueli, G. (2014), “On Information Quality”, Journal of
the Royal Statistical Society, Series A, vol 177(1), pp. 3–38.

Lipovetsky, S and Conklin WM (2006), “Data aggregation and Simpsons para-
dox gauged by index numbers”, European journal of operational research, vol
172(1), pp. 334–351.

Pagano, M. and Gauvreau, K. (2000), Principles of biostatistics, Duxbury Pa-
cific Grove.

Pavlides, M. G. and Perlman, M. D. (2009), “How Likely is Simpson’s Para-
dox?”, The American Statistician, vol 63(3), pp. 226–233.

Judea Pearl (2009). Causality: Models, Reasoning, and Inference, Cambridge
University Press, 2nd edition.

Radelet, M. (1981), “Racial characteristics and imposition of the death penalty”,
American Sociological Review, 46, 918–927.

Schield, M. (1999), “Simpson’s Paradox and Conrfield’s Conditions”, in Pro-

ceedings of the Section on Statistical Education, Joint Statistical Meeting of

the American Statistical Association, pp. 106111.
hmueli, G., Bruce, P. B., and Patel, N. (2010), Data Mining for Business In-

telligence: Concepts, Techniques, and Applications in Microsoft Office Excel

with XLMiner, Wiley and Sons, 2nd edition.
Simpson, E.H. (1951), “The Interpretation of Interaction in Contingency Ta-
bles.” Journal of the Royal Statistical Society B 13: 238-241.

Strasser, H. and Weber, C. (1999), “On the asymptotic theory of permutation
statistics.” SFB Adaptive Information Systems and Modelling in Economics



Shmueli and Yahav/Tackling Simpson’s Paradox with Trees 29

and Management Science, WU Vienna University of Economics and Busi-

ness.
Stenmark, J. A. and Wu, C.-S. P. (2004), “Simpsons Paradox, Confounding
Variables and Insurance Ratemaking”, Proceedings of the Casuality Actuarial

Society Annual Meeting.
Yahav, I. and Shmueli, G. (2014), “Outcomes Matter: Estimating
Pre-Transplant Survival Rates of Kidney-Transplant Patients Using
Simulator-Based Propensity Scores”, Annals of Operations Research, DOI
10.1007/s10479-013-1359-7, forthcoming.

Zidek, J. (1984), “Maximal Simpson-disaggregations of 2× 2 tables”,
Biometrika, 71(1), 187-190.



Shmueli and Yahav/Tackling Simpson’s Paradox with Trees 30

Appendix: Proof of Relationship between Type 4 Tree and
Simpson’s Paradox

We prove the correspondence between a Simpson’s paradox and a Type 4 tree
for the case of binary events (X and Y ) with a single confounder Z. According
to Alin (2010), Simpson’s paradox is defined mathematically for three events
and their complements: Y = {A, Ā}, X = {B, B̄}, and Z = {C, C̄}, for which
the following relationship holds:

P (A|B) < P (A|B̄), and (1)

P (A|BC) > P (A|B̄C), and

P (A|BC̄) > P (A|B̄C̄).

These inequalities can also be encountered in the form where the symbols <

and > are reversed.
According to Blyth (1972), the probabilities P (A|B) and P (A|B̄) are equal

to the following weighted averages, respectively:

P (A|B) = P (C|B)P (A|BC) + P (C̄|B)P (A|BC̄) (2)

P (A|B̄) = P (C|B̄)P (A|B̄C) + P (C̄|B̄)P (A|B̄C̄).

Similarly, the probabilities P (A|C) and P (A|C̄) are equal to:

P (A|C) = P (B|C)P (A|BC) + P (B̄|C)P (A|B̄C) (3)

P (A|C̄) = P (B|C̄)P (A|BC̄) + P (B̄|C̄)P (A|B̄C̄).

Simpson’s paradox is only possible when B and C are dependent.

Corollary 1: The relationship P (A|BC) > P (A|B) holds if and only if
P (A|BC̄) < P (A|B) (and vice versa). Similarly, the relationship P (A|B̄C) >

P (A|B̄) holds if and only if P (A|B̄C̄) < P (A|B̄) (and vice versa).

Without loss of generality, let us assume that P (A|B) < P (A|B̄), and P (A|BC) >
P (A|B).

Observation 1: if P (A|BC) > P (A|B), then under Simpson’s paradox
P (A|B̄C̄) < P (A|B̄) and P (A|B̄C) > P (A|B̄).

Proof of Observation 1:

1. Under the assumption and the definition of Simpson’s paradox in Equa-
tion (1), P (A|B) < P (A|B̄). This implies P (A|BC) > P (A|B̄C) and
P (A|BC̄) > P (A|B̄C̄).

2. Under the assumption, P (A|BC) > P (A|B) and hence P (A|BC̄) < P (A|B).
3. Given (1) and (2), P (A|B̄C̄) < P (A|BC̄) < P (A|B) < P (A|B̄).
4. Given (3), P (A|B̄C̄) < P (A|B̄), and hence P (A|B̄C) > P (A|B̄)
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5.1. CART: Impurity-Based Trees

Proof objective: we will show that the impurity of splitting the tree by Z is
smaller than that of splitting the tree by X. Hence, in the presence of Simpson’s
paradox, an impurity based tree will necessarily be of type 4 (X appears in the
tree, but is not as the top split).

Let us consider an impurity-based classification tree for the events Y =
{A, Ā}, X = {B, B̄}, and Z = {C, C̄}.

Definition 1: An impurity function φ is defined on all K-tuples of numbers
(P1, ..., PK) satisfying Pj ≥ 0 for all values of j, and

∑
j Pj = 1. The properties

of impurity functions are:

1. φ achieves its minimum when there exists j for which Pj = 1 and Pi = 0
for all i 6= j,

2. φ achieves its maximum only for the uniform distribution, that is, when
all Pj are equal, and

3. φ is symmetric with respect to its arguments (P1, ..., PK).

Definition 2: Given an impurity function φ, we define the impurity measure,
denoted as I(T ), of node T as follows:

I(T ) = φ(P (1|T ), P (2|T ), ..., P (K|T )) (4)

The most commonly used impurity measures are Entropy and the Gini Index
(see, e.g., ?, Chap. 9.3), described in Equations (5) and (6), respectively.

Entropy(·) = −

K∑

i=1

Pi log2(Pi) (5)

GI(·) = 1−

K∑

i=i

P 2

i , (6)

where K is the number of classes or events (in our case, the events of interest
are Y = {A, Ā}, and therefore K = 2)

For simplicity, we restrict our analysis to the case where K = 2. The analysis
can be easily extended to cases whereK > 2. We further abbreviate the notation
in Equation (4):

I(T ) = φ(P (1|T )) (7)

We note that for the case K = 2, an impurity function is concave, that is,
the line segment between any two points on the graph of the impurity function
lies below the graph. More formally, impurity function φ satisfies:

φ(px1 + (1− p)x2) ≥ pφ(x1) + (1− p)φ(x2) (8)

for every 0 < p < 1, and x1 6= x2.
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An impurity of a split in a classification or regression tree is defined by the
weighted sum of the impurities of its children. Splits in the tree are then selected
according to the ordering of their impurity (lowest impurity selected first).

Theorem 1: Given the condition in Equation (1) (Simpson’s paradox) and a
concave impurity function φ(p), the following relationship holds: I(Z) ≤ I(X) ≤
I(Y ).

Proof of Theorem 1: Let us consider the ordering of P (A), P (A|B), P (A|B̄), P (A|C),
and P (A|C̄).

First, observe that P (A) can be rewritten as a weighted average of either
P (A|B) and P (A|B̄), or P (A|C) and P (A|C̄):

P (A) =P (B)P (A|B) + P (B̄)P (A|B̄), (9)

P (A) =P (C)P (A|C) + P (C̄)P (A|C̄).

Second, from observation 1, we get P (A|B̄C̄) < P (A|BC̄) < P (A|B). There-
fore, according to Blyth (1972):

P (A|C̄) = P (B)P (A|BC̄) + P (B̄)P (A|B̄C̄) < P (A|B). (10)

Similarly, P (A|BC) > P (A|B̄C) > P (A|B̄), and therefore

P (A|C) = P (B)P (A|BC) + P (B̄)P (A|B̄C) > P (A|B̄). (11)

Corollary 2: The ordering of P (A), P (A|B), P (A|B̄), P (A|C), and P (A|C̄),
is as follows:

P (A|C̄) < P (A|B) < P (A) < P (A|B̄) < P (A|C) (12)

From concavity of the impurity function:

I(Y ) = φ(P (A)) (13)

= φ(P (B)P (A|B) + P (B̄)P (A|B̄))

≥ P (B)φ(P (A|B)) + P (B̄)φ(P (A|B̄))

= I(X)

Let us now consider a new concave function φ̃(·), obtained by “trimming”
the impurity function with a linear line drawn between {P (A|B̄), φ(P (A|B̄))}
and {P (A|B), φ(P (A|B))}, as illustrated in Figure 9, and given by:

φ̃(p) =

{
pφ(p) + (1− p)φ(1− p) if P (A|B) ≤ p ≤ P (A|B̄)

φ̃(p) = φ(p) otherwise
(14)

From concavity of the trimmed impurity function, we get:

φ̃(P (A)) = P (B)φ(P (A|B)) + P (B̄)φ(P (A|B̄)) = I(X) (15)
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Fig 9. Illustration of Concave Function Ĩ(·) obtained by “trimming” the impurity Function
with a Linear Line Drawn Between {P (A | B̄), φ(P (A | B̄))} and {P (A | B), φ(P (A | B))}

and

φ̃(P (A)) ≥ P (C)φ̃(P (A|C)) + P (C̄)φ̃(P (A|C̄)) (16)

= P (C)φ(P (A|C)) + P (C̄)φ(P (A|C̄))

= I(Z)

Hence
=⇒ I(Z) ≤ I(X) ≤ I(Y ) (17)

The proof is illustrated for the Entropy function in Figure 10.

5.2. Conditional Inference Trees: χ
2 Statistic-Based Trees

Proof objective: we will show that the p-value of splitting the tree by Z is
smaller than that of splitting the tree by X. Hence, in the presence of Simpson’s
paradox, a χ2 statistic-based tree will be of type 4 (X appears in the tree, but
not as the top split).

Let us consider the 2×2 contingency tables of splitting Y by either X or Z

(top split in the tree). The contingencies tables are given in Table 18.
The χ2 statistics of splitting Y by X can be computed by (Pavlides and

Perlman (2009), Ch. 15, pp. 342-352):

χ2

X =
(p(AB)p(ĀB̄)− p(ĀB)p(AB̄))2 ×N

p(A)p(Ā)p(B)p(B̄)
, (18)
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Fig 10. Illustration of the proof for the Entropy function.

Table 18

Contingency Table for Splitting Y by X (left) and Z (right)

A Ā Total

B p(AB) p(ĀB) p(B)
B̄ p(AB̄) p(ĀB̄) p(B̄)
Total p(A) p(Ā) 1

A Ā Total

C p(AC) p(ĀC) p(C)
C̄ p(AC̄) p(ĀC̄) p(C̄)
Total p(A) p(Ā) 1
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Where N is the number of observations.
Using Bayes’ rule, we obtain the following relationship:

P (AB) = P (A|B)P (B). (19)

similar terms can be obtained for p(ĀB̄), p(ĀB) and p(AB̄).
Therefore, the value of χ2 can be rewritten as:

χ2

X =
p(B)2p(B̄)2(p(A|B)p(Ā|B̄)− p(Ā|B)p(A|B̄))2

p(A)p(Ā)p(B)p(B̄)
×N (20)

=
p(B)p(B̄)(p(A|B)p(Ā|B̄)− p(Ā|B)p(A|B̄))2

p(A)p(Ā)
×N

=
p(B)p(B̄)(p(A|B)(1− p(A|B̄))− (1− p(A|B))p(A|B̄))2

p(A)p(Ā)
×N

=
p(B)p(B̄)(p(A|B)− p(A|B̄))2

p(A)p(Ā)
×N

We next compute the term p(B)p(B̄) from Equation (20). Rewriting p(A)
as a weighted sum of P (A|B) and P (A|B̄), we can write p(B) as a function of
p(A), p(A|B), and p(A|B̄):

P (A) = P (B)P (A|B) + P (B̄)P (A|B̄) (21)

= P (B)P (A|B) + (1− P (B))P (A|B̄)

= P (B)P (A|B) + P (A|B̄)− P (B)P (A|B̄)

⇒ p(B) =
p(A)− p(A|B̄)

p(A|B)− p(A|B̄)

Similarly, p(B̄) equals to:

p(B̄) =
p(A)− p(A|B)

p(A|B̄)− p(A|B)
(22)

Given the terms in Equations (21) and (22), the term p(B)p(B̄) can be written
as:

p(B)p(B̄) =−
(p(A)− p(A|B))(p(A)− p(A|B̄))

(p(A|B)− p(A|B̄))2
(23)

Plugging the term in Equation (23) back into Equation (20) we get:

χ2

X =
(p(A)− p(A|B))(p(A|B̄)− p(A))

p(A)p(Ā)
×N (24)

Finally, we compare the χ2 statistics of splitting event Y by X and split-
ting event Y by Z. Essentially, the terms compared are the products absolute
distance of the relevant conditional probabilities (p(A|B) and p(A|B̄) for com-
puting χ2

X statistic, p(A|C) and p(A|C̄) for computing χ2

Z statistic) and from



Shmueli and Yahav/Tackling Simpson’s Paradox with Trees 36

the probability of the event Y = A (see Equation (24)). Following Corollary 2
(Equation 12), we get

χ2

X ≤ χ2

Z (25)

and hence,

⇒ p value(splitting Y by X) ≥ p value(splitting Y by Z) (26)


