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Abstract 

 
This paper aims to address two timely energy problems. First, significant low-cost energy 

reductions can be made in the residential and commercial sectors, but these savings have not been 

achievable to date. Second, billions of dollars are being spent to install smart meters, yet the 

energy saving and financial benefits of this infrastructure – without careful consideration of the 

human element – will not reach its full potential. We believe that we can address these problems 

by strategically marrying them, using disaggregation. Disaggregation refers to a set of statistical 

approaches for extracting end-use and/or appliance level data from an aggregate, or whole-

building, energy signal. In this paper, we explain how appliance level data affords numerous 

benefits, and why using the algorithms in conjunction with smart meters is the most cost-effective 

and scalable solution for getting this data. We review disaggregation algorithms and their 

requirements, and evaluate the extent to which smart meters can meet those requirements. 

Research, technology, and policy recommendations are also outlined. 
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 “If you cannot measure it, you cannot improve it.” - Derived from Lord Kelvin 

 

1. Introduction 
 

We face several looming energy problems at this junction in history, yet taken together they 

may offer a unique opportunity for resolution. The first problem relates to the fact that significant 

low-cost energy reductions can be made in the residential and commercial sectors, but these 

savings have not been achievable to date. In the United States, the residential and commercial 

sectors account for much of the demand: buildings in these sectors contribute roughly equally to 

40% of U.S. energy consumed and greenhouse gases emitted (Energy Information 

Administration, 2008; U.S. Environmental Protection Agency, 2008; Vandenbergh, Barkenbus, & 

Gilligan, 2008). It is estimated that about 20% of this, or 8% of all U.S. energy use and emissions, 

could be avoided with efficiency improvements to these buildings (McKinsey & Company, 2007; 

Creyts et al., 2007; Gardner and Stern 2008; Laitner, Ehrhardt-Martinez, and McKinney 2009).
1
  

Further, this estimate is derived from changes that can be achieved with little or even negative 

cost
2
, making savings here particularly attractive (Creyts, 2007). Importantly, experts believe that 

a major reason why reductions have not yet been achieved in these sectors involves behavioral 

barriers (IPCC, 2007; American Physical Society, 2008).  
The second problem we face is that billions of dollars are being spent to install smart meters 

yet the energy saving and financial benefits of this infrastructure – without careful consideration 

of the human element – will not reach its full potential. Business cases justify ratepayer 

expenditures with reduced labor costs (e.g., meter readers), as well as the avoided generation 

capacity and lower consumer energy bills that are expected from shifting and reducing energy use 

(e.g., California Public Utilities Commission, 2006; Faruqui et al., 2011).
3
 It is estimated that the 

energy shifting and conserving benefits from consumer activities will respectively be about 10% 

(Hledik, 2009) and between 1-8% (EPRI, 2009; Hledik, 2009; Pratt et al., 2010). Estimates to 

break even on smart grid costs and to attain net positive benefits depend upon consumers 

achieving these benefits
4
, and it is further hoped that consumer benefits are achieved beyond 

those estimated (Faruqui et al., 2011; NARUC, 2011). However, some public utility commissions 

and public interest groups have questioned the benefit (e.g., initial decisions regarding smart 

meter expenditures in Maryland and Florida; National Association of State Utility Consumer 

Advocates, 2010). Clearly the ultimate cost or benefit rests to a large degree on facilitating 

consumer behavior with the meters. Furthermore, the window for realizing the potential of smart 

meters is closing, if greater hardware capabilities are required.
5
 

                                                 
1
 For comparison, 10% of the total U.S. energy consumption is roughly equivalent to the total yearly energy 

consumption in Brazil or the UK, or the quantity of fossil fuels that would be saved and greenhouse gas 

emissions reduced in the U.S. by a 25-fold increase in wind plus solar power, or a doubling of nuclear 

power (Energy Information Administration, 2009; Sweeney, 2007). 
2
 Assuming a cost of $50 per ton of CO2e. 

3
 Business cases are mostly based on those factors (in California, estimates of avoided capacity and reduced 

energy bills are mostly from demand response). Additional benefits may include: CO2 reductions and other 

environmental benefits (from reducing energy use, and also load shifting in states where the base load is 

cleaner than the peaking plants); improved operational efficiency; automatic outage notification, avoidance, 

and faster recovery; faster transactions and customer service; remote connection and disconnection service; 

prepayment capability; meter tampering alert; acceleration of electric vehicle adoption; and others (Faruqui 

et al., 2011; EPRI, 2009; Hledik, 2009; Pratt et al., 2010).  
4
 This group estimated that costs per million households are likely to be $198-272M, while operational 

savings are likely $77-208M, and consumer-driven savings are likely $100-150M. The reader is directed to 

Faruqui et al. (2011) for specific scenarios from which these figures are derived.  
5
 As of June 2011, approximately 20 million smart meters had been deployed in the U.S. It is estimated the 

number will rise to approximately 65 million meters by 2015, or about 50 percent of all U.S. households, 
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How can we address both of these problems simultaneously? Can we leverage smart 

infrastructure to maximize energy savings and peak shifting in the residential and commercial 

sectors? We believe that the answer is yes – contingent upon the infrastructure’s ability to support 

disaggregation. Energy disaggregation
6
 refers to a set of statistical approaches for extracting end-

use and/or “appliance level”
7
 data from an aggregate, or whole-building, energy signal. This 

information affords numerous consumer, R&D, utility, and policy benefits, as detailed below. 

Leveraging data from smart meters to perform disaggregation is crucial because other approaches 

are more costly and labor intensive, and do not provide opportunities for scale.  

This paper provides a detailed justification for these ideas. It discusses the benefits of 

appliance level data, reviews disaggregation algorithms and their requirements, and evaluates 

whether the technical specifications of smart meters are adequate to support the algorithm 

requirements.
8
 We close with a set of specific recommendations for realizing the potential of 

disaggregation. 

 
2. Benefits of Appliance-Specific Information  

 

There are numerous benefits of appliance-specific over whole-home data, summarized in 

Table 1. These fall into three categories: (1) benefits to the consumer through direct feedback as 

well as automated personalized recommendations and more, (2) research and development 

benefits, and (3) utility and policy benefits. The discussion is weighted towards the residential 

sector due to a bias in existing research, although many of the findings and recommendations 

should transfer to the commercial sector. Several of these benefits are also discussed in Pratt et al. 

(2010).  

 

Benefits  Domain Explanation 

C
o
n
su

m
er

 

Residential Energy Use Greater energy reductions from this type of feedback 
(a) Automated personalized recommendations (through 

auto-commissioning, fault detection, elucidating 

behavioral patterns, analysis of when and what type of 

new appliance to purchase based on current use, etc.), (b)  

personalized recommendations allow for personalized 

information to reduce barriers to energy efficient actions 

(e.g., mapped recommendations on where to purchase 

recommended items); enabling of additional/enhanced 

behavioral techniques (feedback, competition, 

visualizations, markets, incentives, etc.) 
Commercial Energy Use  Similar application to residential; large untapped savings 

here 

                                                                                                                                                 
and that by the end of this decade smart meters may be deployed to almost all U.S. households (Faruqui et 

al., 2011; Institute for Electric Efficiency, 2010). The window for change is even narrower when one 

considers the contractual and manufacturing timelines that precede installations.  
6
 Also referred to as disambiguation, non-invasive load monitoring (NILM), or cognitive metering.  

7
 Referred to simply as “appliance level” from here forward. Note this includes anything that draws 

electricity, such as appliances, electronics, air conditioning and heating, pumps and motors, and water 

heating loads. This paper focuses on electricity, but similar disaggregation approaches are under 

development for gas, water, and transportation.  
8
 The work presented here grew out of a workshop held at Stanford University in May of 2010. The 

workshop included a diverse set of stakeholders including disaggregation algorithm developers (both start-

ups and large companies), solid state meter companies, smart meter networking companies, home area 

network companies, academic researchers, investors, utilities, and government representatives. 
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R
es

ea
rc

h
 a

n
d

 

D
ev

el
o

p
m

en
t Appliance Innovation Better data to (a) redesign appliances for energy 

efficiency, (b) improved standards, and (c) back up 

appliance energy efficiency marketing 
Building Research and 

Design 
Improved building simulation models to increase design 

and operational efficiency (commissioning and auto-

commissioning) 

U
ti

li
ty

 a
n

d
 P

o
li

cy
 

Segmentation for Energy 

Efficiency Marketing 
Strategic, specific, energy efficiency marketing 

Program Evaluation (a) Improved objectivity, sensitivity, and causal inference 

in program evaluation; secondary benefits of (b) 

improved program design from improved evaluation 

learnings, and (c) diversification of program types, 

because these can be quantified, and utilities in many 

states are incentivized when program savings can be 

quantified 
Building and Contractor 

Ratings and Incentives 
Affords performance based metrics, ratings, and 

incentives of buildings which could impact real estate 

value, and evaluation of contractor performance 

Economic Modeling and 

Policy Recommendations 
(a) Improved load forecasting; (b) Improved economic 

models to better inform policies and funding allocations 
Table 1. A summary of the benefits of appliance specific energy information. 

 

2.1. Benefits to the Consumer 

 

Approximately fifty studies have investigated the effects of providing consumers with 

feedback on their electricity consumption, as illustrated in Figure 1 (for reviews, see Darby 2006; 

Fischer 2008; Neenan & Robinson, 2009; Faruqui, Sergici, & Sharif, 2009; Siddqui, 2008; 

Ehrhardt-Martinez, Donnelly, & Laitner, 2010). Several of these suggest that the greatest savings 

result from appliance-specific feedback (Neenan & Robinson, 2009; Ehrhardt-Martinez, 

Donnelly, & Laitner, 2010), and findings from a recent well-designed simulation study are also 

consistent (Herter & Wayland, 2009), although the limited number and size of these studies 

invites additional work. There are several reasons why appliance specific feedback should 

facilitate greater reductions than aggregate feedback
9
, and why it offers even greater savings in 

the future if augmented with additional approaches such as those described below. 

 

 

 

                                                 
9
 Feedback and goal-setting are more effective when they are specific and proximate instead of aggregated 

and distal (for a successful real-world example consider Weight Watchers Points budgeting program; for an 

academic review see Locke, Saari, Shaw, & Latham, 1981). Specific feedback improves error management 

by allowing one to see where actions misalign with goals, and adjust accordingly (Frese and Zapf, 1994). It 

also provides confirmation about the effectiveness of one’s actions, which is reinforcing and increases 

similar future behavior (Bandura, 1982; Bandura & Schunk, 1981). Aggregate feedback is limited, given it 

places the burden of disaggregation on the person (i.e., people typically get useful information from 

aggregate data by recollecting their activities and mentally decomposing a data graph), and individuals are 

likely to have difficulty discerning appliance patterns nearly as well as algorithms. It is worth noting that 

goal-setting has repeatedly enhanced the effectiveness of feedback in a variety of fields, including energy 

conservation (Bravata et al., 2007; McCalley & Midden, 2002; Becker, 1978), although it is not yet 

common in energy feedback programs.  

http://www.brattle.com/Experts/ExpertDetail.asp?ExpertID=164
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Figure 1. Residential savings due to energy consumption feedback. The five left-most bars are 

derived from 36 residential electricity studies between 1995-2010 (taken from Ehrhardt-Martinez, 

Donnelly, & Laitner, 2010). Many studies were comprised of small samples; the authors estimate 

that more representative samples and participation rates may result in population savings closer to 

about half of those indicated. The right-most bar has been added to illustrate that disaggregation 

and its associated services (diagnostics, recommendations, channeling to programs, new 

behavioral techniques, targeted marketing, etc.) could be pivotal in achieving greater electricity 

savings; they could also be used to achieve energy savings in gas use. Achievable energy savings 

in residential buildings are estimated to be around 20%, taking population penetration into 

account (Gardner and Stern 2008; Laitner, Ehrhardt-Martinez, and McKinney 2009).
10,11

 

 

The most important reason why appliance information facilitates greater energy reductions 

is that it enables automated personalized recommendations – it identifies which specific HVAC 

systems, appliances, or electronics out of the dozens present could most effectively reduce energy 

use for a given household or business
12,13

 - and then enables the automated provision of additional 

                                                 
10

 See Footnote 1. Also, some case studies and online user communities report achievable savings for 

individuals above 20% (e.g., 50% in Meier, 2010; 75% in Bailey, 2011; and up to 90% in the 90 Percent 

Reduction online group http://groups.yahoo.com/group/90PercentReduction/). 
11

 A frequent question about feedback concerns its persistence. Several reviews suggest that savings decline 

somewhat after the initial few months, and then often remain constant, according to studies that lasted up to 

three years and used long term feedback (Neenan & Robinson, 2009; Ehrhardt-Martinez, Donnelly, & 

Laitner, 2010). 
12

 Some believe this information is intuitive and is limited to obvious appliances like the refrigerator and air 

conditioner. There are several flaws with this. First, recommendations are likely to vary considerably 

between households, given that energy consumption varies by 200-300% in identical housing units, and 

appliance saturation and use patterns vary significantly across individuals and cultural heritage (Energy 
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information to overcome barriers and foster action. For example, once actions with the biggest 

bang for the buck are identified, households or organizations can be matched with appropriate 

programs, rebates, and contractor options. Recommendations can take into consideration cost, 

projected energy savings over time, life-cycle energy impact, rebate offers, and local services, 

and even channel folks into such programs by geographically mapping options and scheduling 

services. Diagnostics can be performed, for example, to achieve auto-commissioning – 

recommended adjustments to the building operation to improve performance and efficiency - and 

fault detection - notification if an appliance should be fixed because it is consuming more energy 

than it should due to a malfunction (Hart, 1992). Notification could be provided if an appliance 

should be replaced because the lifecycle energy use of a new appliance would be less than the 

current energy hog. When automated diagnostics are difficult, appliance data could enable remote 

or virtual diagnostics by experts. Determining how much energy is consumed by different 

appliances is a first step, and automated recommendation and action systems next steps, to 

realizing savings.
14

 

Once such a system is in place, behavioral approaches – i.e., community, media, and 

incentive programs – will be much more effective in reducing energy use. For example, 

engagement channels such as existing real-world community programs and online social 

networks can be tapped into at low cost to foster widespread use of the recommendation system 

(Fuller et al., 2010; Sullivan, 2011; Rogers, 1995; Gladwell, 2000). The recommendation system 

helps people determine what actions they should take, overcome barriers, and connect to action 

channels (e.g., specific retrofit or appliance replacement programs, contractors, places to purchase 

the recommended energy efficient items, etc.). Media and incentive programs can continue to 

engage people once they use the recommendation system, so that they will continue to take 

energy saving actions. Furthermore, behavioral programs can employ a variety of approaches that 

all become more effective when quantifying and targeting specific actions, for example: 

incentives, energy markets, competitions, visualizations, and games and social networking.  

 

                                                                                                                                                 
Information Administration, 2009; Sudarshan, 2010; for reviews see Lutzenhiser, 1993; Lutzenhiser & 

Bender, 2008). Second, reducing energy use on these large appliances may be difficult (not malleable) 

because they are typically only replaced when they break or during a remodel. Third, limiting 

recommendations to large appliances or retrofits would miss out on large savings. For example, anecdotal 

reports from plug monitoring companies, disaggregation developers, and researchers overseeing feedback 

studies suggest that the largest savings often come from surprising places, such as an extra Tivo, a pool 

pump, a pottery wheel, or an electric towel or floor warmer, inadvertently left on (personal communication 

with listed entities; for published work, see Parker et al., 2006; Parker, Hoak, & Cummings, 2008).  
13

 There are numerous actions through which energy savings are achievable, in addition to (1) reducing 

waste (e.g., above, or a second refrigerator), including (2) the purchase, installation, and proper use of 

energy efficient technology, (3) the changing of settings and use of control devices (e.g., changing fridge 

and hot water heater temperature and pool pump cycling rates, and the use of timers and plug monitors), (4) 

maintenance actions (e.g., cleaning filters), and (5) habits (e.g., turning off the lights and hang drying 

clothes), and (6) using existing materials creatively e.g. hanging a sheet outside a window to better reduce 

solar radiation. 
14

 Note energy savings from disaggregation can come from identifying opportunities in both machine 

efficiency (repair and replacement) and operational efficiency (settings, use patterns, etc.). 
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Figure 2. Illustration of an energy behavior change system leveraging appliance level 

information. 

 

Appliance information is also likely to create demand for control systems, smart appliances, 

and demand response programs, once people understand where they waste energy. The majority 

of consumers are unlikely to invest in such devices until they are convinced of the benefit to them 

personally. Further, the plug controllers and timers needed to perform these functions would be 

cost prohibitive and too effortful to put on more than a handful of end-uses in the majority of 

residences, and appliance information would provide guidance on whether and where these would 

be useful. If consumer demand is present, extensions of these products are likely to emerge. For 

example, learning algorithms could be developed to detect regularities in consumers’ appliance 

use and preferences to improve efficiency through automated scheduling.  

Here we wove together the benefits of appliance specific data into a proposed system 

capable of realizing the energy saving potential of sensors in the residential sector. Importantly, a 

similar system could be of significant value in commercial. As a preliminary indication of the size 

of potential savings, pilot studies with plug monitors in commercial buildings have identified 

institutional rules and automation that saved a total of between 15-40% of electricity consumed 

across the dozens of devices monitored (Mercier & Moorefield, 2011; Houk, 2010). 

Disaggregation could be made more tractable in the commercial sector if each segment or even 

franchise were analyzed separately – for example, all coffee shops or all Starbucks – due to 

greater homogeneity of devices within that sector. Further, the top-down organizational structure, 
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large aggregate savings achievable within a chain or franchise, and greater interest in the bottom 

line, may make this sector particularly appealing. 

 

2.2. Research and Development Benefits  

 

Innovations in energy efficiency would be accelerated with end use specific information. Start-up 

companies and corporate engineers, academics, and garage dilettantes could all make use of data 

collected on the actual energy consumption of different appliances and electronics to strategically 

focus their efforts. Currently, such data is surprisingly sparse and dated. The energy savings due 

to different appliance modifications could be more easily evaluated, and the best would inform 

companies about effective revisions to be made to their manufactured goods. As an example, 

redesign and strategic automated rules developed using such an approach have the potential to 

produce 15-50% energy savings on computer and office equipment (Kazandjieva et al., 2010) and 

servers (Tolia et al., 2008) during idling periods. Companies could also use the information to 

calculate cost savings from energy efficient appliances to guide investments and marketing 

strategies (e.g., whether to advertise savings from an appliance upgrade).  

End use specific information could improve building efficiency, by clarifying why predicted 

(i.e., modeled) and actual (i.e., measured) building energy use are discrepant. This discrepancy is 

large in conventional buildings, but, perhaps more importantly, in “green” buildings, where there 

are likely to be the best opportunities for building efficiency learnings. Several studies have 

documented that LEED and other green buildings are only about as efficient as conventional 

buildings (Scofield, 2002, 2009; Nilsson & Elmroth, 2005; Kunz, Maile, & Bazjanac, 2009; 

Maile, 2010). Much of the discrepancy may be due to a failure in understanding how buildings 

are being used. Besides differences due to culture, individual routines, occupancy, and appliance 

saturation (Lutzenhiser, 1993; Lutzenhiser & Bender, 2008), occupants may use buildings or 

appliances “incorrectly” for health or comfort reasons (e.g., leaving windows open while heat is 

on to get fresh air). There is a growing emphasis on measurement and verification to improve 

energy modeling, and then using these models to improve efficiency (USGBC, 2005; Morrison, 

Azerbegi, & Walker, 2008; Turner & Frankel, 2008). End use specific information is important 

for three aspects of the building modeling process: (1) to validate the simulation by connecting 

the parts to the system, (2) to identify opportunities for energy savings, and (3) to help inform 

interventions in current buildings, and improve designs in new ones, to realize savings. 

 

2.3. Utility and Policy Benefits  

 

Energy sensor data, particularly appliance specific data, has the potential to improve energy 

efficiency marketing – by improving market segmentation, diversifying programs, and 

transforming program development and evaluation. Market segmentation refers to the process of 

defining and subdividing a large homogenous market into clearly identifiable segments having 

similar needs, wants, or demand characteristics. Historical behavior is a strong way of performing 

market segmentation and targeted messaging – think of book recommendations by Amazon – but 

most utility marketing is based upon demographic or psychographic characteristics instead. 

Strategic use of historical energy consumption patterns would allow program designers to target 

individual consumers as well as whole communities with more specific recommendations and 

offers. For example, knowing which consumers or consumer groups (residents, residential 

communities, businesses, or business sectors) are using energy through air conditioning, pool 

pumps, or old refrigerators, would allow program designers to target the most appropriate 

audiences with specific rebates and usage tips. In a similar way, audit and retrofit organizations, 

and appliance repair companies, could more effectively identify those in need of their services. 

Such targeted consumer messaging could significantly improve relevance and effectiveness, and 

reduce the number of people a program must “touch” to achieve a given amount of uptake, 

http://www.businessdictionary.com/definition/process.html
http://www.businessdictionary.com/definition/market.html
http://www.businessdictionary.com/definition/segment.html
http://www.businessdictionary.com/definition/need.html
http://www.businessdictionary.com/definition/want.html
http://www.businessdictionary.com/definition/demand.html
http://www.businessdictionary.com/definition/characteristic.html
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thereby improving the efficiency of marketing dollars, and ultimately achieving greater energy 

reductions.   

More granular data, particularly appliance data, can also transform program development 

and evaluation, and diversify the types of programs supported. The data offers a game-changing 

opportunity because it draws strong links between programs and their energy saving effects that 

were previously not feasible. This is because energy savings resulting from a given behavior are 

likely to be swamped in an aggregate energy signal, particularly because consumers are likely to 

change only a small number of behaviors at any given time. Further, there is strong proof of a 

program’s effectiveness if consumers save energy on the specific behaviors targeted by a 

program, but not other behaviors. These opportunities significantly improve the objectivity and 

rigor of program evaluation. Armed with this information, program evaluators can be more 

successful in their job. Program developers can evaluate, revise, and improve programs more 

effectively. Programs can be diversified because additional program types can be objectively 

evaluated, including community and media programs, and when utilities can feasibly evaluate 

new types of programs, they
15

 have an incentive to diversify their programs and techniques. 

Improved programs and diversification of programs increase opportunities for energy reductions. 

More granular data, including appliance data, could also improve energy models. Enhanced 

granularity of business and residential energy consumption patterns may increase our ability to 

predict energy demand annually and seasonally – load forecasting – which is critical for utility 

company energy purchasing and generation, load switching, contract evaluation, and 

infrastructure development. More granular data can also improve our understanding of energy 

consumption patterns, and this can be used to improve the representation of behavior in energy 

models. Such better representation can make the models more useful when interventions other 

than pure economic incentives are being considered. This may help policy makers better evaluate 

utility energy efficiency programs, and allow for better allocation of funds. Most existing models 

of energy demand are constructed upon a very sparse representation of human behavior and 

decision making, in part because rich data has not been available to date.   

Together, these benefits could provide economic gains, enhance energy security, and help 

address climate change. Consumers and utilities should be better able to reduce and shift demand. 

The uptake of energy efficient appliances and electronics may increase because consumers know 

where energy efficiency improvements need to be made in their homes, or which appliances 

should be repaired or replaced. The data could lead to performance based metrics, ratings, and 

incentives in buildings, which could impact their real estate value, and also enable evaluation of 

contractor performance. Appliance specific data could also spur innovation. Marketing, 

evaluation, and modeling improvements from more granular data would benefit utilities and other 

companies selling energy related products and services, program designers and evaluators, and 

public utility commissions.  

 
3. How Should We Acquire Appliance-Specific Energy Data? The Business Case for 

Disaggregation and Smart Meters 

 

3.1 Options for Acquiring Appliance-Specific Data 
 

This section provides an overview of different technologies capable of providing appliance 

specific data, and their respective pros and cons, particularly those relevant to cost-effectiveness 

and diffusion potential (see Table 2).  

A commonly touted way of obtaining appliance-specific data is to put plug devices on 

individual appliances, as part of a Home Area Network (HAN). However, this approach has 

                                                 
15

 Particularly those in states which provide incentives to utilities for verified savings from energy 

efficiency programs. 



Disaggregation  11 

 

drawbacks. Cost is high for plug monitoring systems, ranging from $25-50 per appliance monitor 

(this could perhaps get to $10 at volume) plus a hub or gateway device. Set-up and maintenance 

are prone to hassle (plugging appliances in and labeling them, redoing this when moving 

appliances to a new outlet, unless appliance signature identification is used; many prospects for 

system and node failure). Furthermore, plug level monitoring systems are likely to miss critical 

energy saving opportunities. Consumers would be unlikely to monitor large appliances due to the 

difficulty in moving these, as well as the fact that monitors for higher voltage appliances are 

currently unavailable. Cost and hassle prohibit installation on all plugs, and with a limited number 

of monitors consumers would be unlikely to monitor “surprise” devices – as mentioned above, 

much of the energy savings reported by individuals come from devices that they did not 

anticipate (e.g., potters wheels, x-box, hot tub) (Parker et al., 2006; Parker, Hoak, & Cummings, 

2008; personal communication with energy researchers, plug monitoring companies, and 

disaggregation developers). Plug monitors also require duplicate hardware and additional energy 

to operate if a more elegant solution with smart meters can be achieved.  

Smart appliances have uncertain impact. These appliances would most likely be limited to 

white goods, thus missing out on other energy saving opportunities. Also, energy savings would 

take some time to realize, given that white goods tend to require 12 years for a full market turn-

over. Further, representatives from two of the largest white good manufacturers told us that their 

companies planned on introducing smart functionality into high end appliances at a mark-up of 

approximately $100. Only if consumer demand were apparent would they introduce smart 

features into other lines. Furthermore, the smart features typically emphasize responding to utility 

demand response events and time of use pricing signals (or consumer convenience); these 

features would have limited impact if the complementary policies are not in place, creating a 

chicken and egg problem. These issues raise uncertainty as to the likely impact of smart 

appliances. 

What are the hardware options for enabling disaggregation? Whole-home monitoring 

devices are commercially available, such as The Energy Detective, BlueLine, and WattVision, 

which sell for $150-300 and can forward data of limited resolution (one minute, perhaps up to 

one second) to disaggregation cloud services (e.g., PlotWatt and Bidgely). Based on extensive 

experience installing such devices in pilot and study homes, these devices are difficult to get 

functioning properly and are not compatible with some housing stock (e.g., many apartments). 

Belkin may be developing an easier to install and higher data frequency device that would 

perform disaggregation locally, but would likely cost more than these other devices. In addition, 

these hardware solutions may have some technical and feasibility issues that are not possible to 

ameliorate
16

, and consume resources to manufacture and energy to operate in addition to that 

which will be consumed anyhow by smart meters.  

In contrast, smart meters offer the lowest cost and lowest installation effort sensor for 

consumers, and thus show the best potential for high market penetration. This is because there is 

no apparent cost to the consumer, and installation is performed by utilities. Furthermore, smart 

meters may be the main option for acquiring gas data.  

It is worth noting that one advantage of plug devices over disaggregation is the fact that 

those devices typically offer control. Thus, we anticipate that the optimal solution will be a 

combined one of disaggregation leveraging smart meter hardware, augmented with a few 

strategically placed plug control devices or smart appliances in a subset of homes. Disaggregated 

appliance information can guide strategic application of control devices, and the two can leverage 

policies such as time of use pricing and demand response events to encourage efficient timed 

automation and remote control.  

                                                 
16

 E.g., problems with circuit breaker hardware compatibility or  location (e.g., outside), connecting to a 

power supply (or requiring battery replacement several times a year), landlord approval, etc. 
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The above analysis suggests an important role for disaggregation algorithms, and for smart 

meters in providing data to these algorithms. Next we assess the feasibility of that solution. 

Section 4 surveys different types of disaggregation algorithms and their performance, as well as 

their data requirements. Section 5 assesses whether smart meters can meet these requirements. 

 

 Sensing Technology Cost to Consumer Installation Effort Adoption Rate 

H
a

rd
w

a
re

 

S
o

lu
ti

o
n

s 

Plug Devices (e.g., 

Kill-A-Watt, 

EnergyHub, 

ThinkEco, Enmetric)  

$25-$50/plug plus 

hub cost; hundreds 

to thousands per 

home 
 

Most plugs – Med 
240V plugs - Hard  
 

Low (in existence 

for past 7-8 years) 
 

Smart Appliances $100+ additional 

compared to non-

Smart appliances 

Med 10-15 years after 

introduction for 

mass adoption  

S
o
ft

w
a
re

 S
o
lu

ti
o
n

s 

House Level Current 

Sensor (e.g., TED, 

Blueline)  
 
Monitor of Circuit 

Breakers (Powerhouse 

Dynamics, Square D) 

$150-300+/house  
 

 

 

 

Hard Low  
(high effort + cost)  
 

Smart Meter None None Very high & fast 
(installed by 

utilities)  
Table 2. Options for obtaining appliance-specific data. Smart meters are the lowest cost and 

lowest installation effort sensor for consumers, and thus show the best potential for high market 

penetration. Furthermore, they may be the main option for acquiring gas data for disaggregation. 

 

3.2 Business Case for Disaggregation 

 

This section characterizes the cost versus benefit of disaggregation technology (assuming 

that smart meters are already deployed by the utility and that disaggregation was not considered 

in the business case
17

). We focus on the consumer benefits from residential energy use savings, 

although other benefits are described in Section 2. As shown in the table below, the cost per kWh 

saved can range from $0.015 (now) to $0.005 (near future). The benefit per kWh is avoided 

generation and distribution cost that ranges from $0.06 to $0.10. Hence, the benefit outweighs the 

cost by at least a factor of four, and higher in future – making software based disaggregation 

highly viable for commercialization. For comparison, the average levelized cost of saved energy 

for electricity efficiency programs is $0.025 per kWh saved, with a range of $0.016-0.033 and a 

median value of $0.027 (Friedrich et al., 2009).
18

 These figures are based on technology programs 

(rather than behavioral programs like Opower) which assume persistence for extended periods; a 

disaggregation program could target technology replacements such as these, as well as other one 

time actions (e.g., settings, control, repair) or repeated actions. Because of the program evaluation 

benefits described above, evaluation of savings could potentially be performed on an ongoing 

basis, and the monitoring fee adjusted accordingly. Furthermore, whereas programs targeted at 

                                                 
17

 Although note that some smart meter business cases rest upon consumer energy saving benefits that have 

yet to be achieved, as discussed in Section 1, so that disaggregation could help realize these benefits. 
18

 The average cost of natural gas programs is $0.34 per therm and the median is $0.32 (Friedrich et al., 

2009). 
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CFL bulbs or appliances are limited in their potential due to the fact that they can only achieve 

the savings associated with one end use, disaggregation can target a wide variety of end uses, 

potentially resulting in much greater total savings.  

 

Time -> Now (2012-13) Future (2014+) 

Disaggregation Done Where? -> 
External 

Gateway/Cloud 
External 

Gateway/Cloud 

Smart Meter, 

or Broadband 

Router/Cloud 
Average monthly household kWh used

a 1,064 1,064 1,064 
Average reduction with energy 

monitor
b 10% 10% 10% 

Years of life for hardware 10 10 10 
Lifetime kWh saved from home energy 

monitor 12,768 12,768 12,768 
Up front cost of home energy monitor 

hardware $70
c $50

c $10
d 

Monthly monitoring fee
e $1.00 $0.50 $0.50 

Lifetime cost of home energy monitor 

(up front cost + monthly fee)
 f $190 $110 $70 

Cost/kWh $0.015 $0.009 $0.005 
a
Source: Energy Information Administration, 2008 

b
Source: Figure 1 in section 2.1. For a more conservative estimate, a 5% reduction will 

double the cost/kWh which is still attractive. Upcoming pilots can inform actual effectiveness 

and persistence. 
c
Cost for micro-gateway (ZigBee to Ethernet or Wifi bridge with no display) from two 

vendors in quantities of 10,000. This cost is unnecessary if smart meters or broadband routers 

are enhanced instead, as in the final column of the table, and discussed in Section 6.2 and 

Footnote 30. 
d
Cost of smart meter enhancements based on Section 6.3. 

e
Acceptable monthly price per home by disaggregation technology providers when sold in 

high volumes to a utility. 
f
The energy consumed by the device itself is small, on the order of 1.2W, or 105 kWh over its 

lifetime if run continously. 

Table 3. Business case for using disaggregation software with smart meter hardware to obtain 

appliance specific data. 

 

Regarding the size of the market, as of June 2011 approximately 20 million meters had been 

deployed in the U.S. with more planned
19

; furthermore, software based disaggregation can also be 

run with millions of already deployed AMR (Automatic Meter Reading) meters containing Itron 

technology. This is particularly useful for municipal utilities that are not planning on migrating to 

smart meters in the near future, and which additionally benefit from the fact that data for billing 

could be acquired through the same hardware used to enable the disaggregation, thereby reducing 

costs associated with drive by meter reading. AMR meters produce a reading every minute, and 

micro-gateways (e.g., from the hardware vendor Digi) can receive this data. The data is then sent 

to the cloud for disaggregation by algorithms utilizing one minute frequencies, as described in 

Section 4.1. The cost of these gateways (see Table 3) could come down substantially when read 

in batch mode (i.e., one gateway reading up to 10 meters in multi-family dwellings, condos, and 

apartment complexes).  

                                                 
19

 See Footnote 5 for more detail. 
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4. Disaggregation Algorithms and Their Requirements 

 

This section surveys different types of disaggregation algorithms and their performance, as 

well as their data requirements. The survey of algorithm types draws from about 40 academic 

peer-reviewed empirical studies as well as interviews with smart meter professionals and 

algorithm developers
20

. For example, some of the companies currently working in this space 

include High Energy Audits, PlotWatt, Bidgely, Desert Research Institute (DRI), Navetas, 

General Electric, Intel, and Belkin
21

. An extensive review of the work and a description of the 

interview questions are included in the appendices. Zeifman and Roth (2011) also recently 

surveyed this literature; their focus is on comparing algorithmic approaches. Although electricity 

is the focus of the rest of this paper, the use of disaggregation for other energy-related 

applications is also promising (i.e., gas, water, and transportation)
22

 (Yamagami, Nakamura, 

Meier, 1996; Cohn et al., 2010; Patel et al., 2007; Larson et al., 2010; Froehlich et al., 2009a,b). 

 

4.1. Patterns: Classification of disaggregation algorithms and data requirements 

 

Disaggregation refers to the extraction of appliance level data from an aggregate, or whole-

building, energy signal, using statistical approaches. All of the algorithms use the library 

comparison technique in which an appliance signature database or library is developed by 

performing physical measurements on appliances. Then new unidentified appliance signals are 

compared to those signatures in the library to determine the best match.  

                                                 
20

 These included interviews with six developers, four smart meter companies, and one policy expert April-

May, 2010. See Appendix C for the core interview script. Non-scripted interviews were also performed 

with additional professionals when needed for clarification. 
21

 Others may include Verdigris Technologies, Detectent, EcoDog, GridSpy, Check-It Monitoring 

Solutions, and EMME.   
22

 Note that the number of appliances or end uses to be disaggregated for gas, water, and transportation is 

fewer than with electricity, which makes disaggregation easier. However, the frequency of gas and water 

data may be lower.  
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Figure 3. Disaggregation refers to the extraction of appliance level energy use data from an 

aggregate, or whole-building, energy signal. A set of statistical approaches that extract patterns 

characteristic of a given appliance are applied to accomplish this. (Figure from Hart, 1992) 

 
The statistical approaches utilize electricity data characteristics including type of power, 

power level resolution, and frequency. We will next discuss requirements of the algorithms for 

each of these characteristics. Regarding power, both real and reactive power are useful. The 

availability of reactive power in addition to real power helps the algorithms running on data 

sampled at lower frequency in differentiating between loads that have similar real power levels, 

because they often have different reactive power levels (e.g., a pool pump and a heater).  

Power level resolution preferences vary depending on frequency, based on our interviews 

with disaggregation algorithm developers. Ideally, developers working at the higher frequency 

ranges (>1 Hz) and attempting to disaggregate a wider range of appliances want data with power 

changes of around 0.1W. This is important in that it allows the algorithms to potentially detect 

small devices in the homes, especially "small" electronic devices (e.g., DVD players, lower 

output CFL lights, wireless routers, some printers) which can add up if they are on for a 

significant portion of the time.  Such high resolution requirements become slightly less important 

at lower frequencies, as the data here is typically not high fidelity enough to identify small loads 

to begin with.  It should be noted that many algorithms will work well with less granular data 

(e.g., 10W), in that they will still identify the main loads in a house, but simply will have more 

difficulty identifying smaller loads. 

Perhaps the most important pattern to emerge relates to frequency; it is the fact that different 

ranges of temporal frequency afford different data features, which in turn enable the identification 

of different numbers and types of appliances (see Table 4). It can be seen that hourly data 

typically identifies around three end-use categories (i.e., loads that correlate with outdoor 

temperature, loads that are continuous, and loads that are time-dependent such as pool pumps and 

outdoor lighting), one minute to one second data allows for identification of ~8 appliance types, 

data in the multiple kHz range identification of 20-40 appliance types, and data in the MHz range 
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identification of potentially close to 100 distinct appliances (e.g., light 1, light 2, etc.). Improved 

data frequency increases both the number of appliances recognized, and the accuracy with which 

they are detected, by providing more detailed appliance signatures. It is possible that the 

frequency-appliance relationship might have shown diminishing returns – e.g., that 10 second 

data might have identified close to the maximum number of appliances – but that does not appear 

to be the case (although it might be the case for other measures of accuracy, see footnote 19).  
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Data 

Frequency 

Analyzed  

1 hr – 15 min 1 min – 1 s (1 Hz) 1-60 Hz 60 Hz-2 kHz 10-40 kHz >1 MHz 

Data 

Appearance 

  

  

 
 

Data 

Features 

Used by 

Algorithms 

Visually observable 

patterns; duration and 

time of appliance use 

Steady state steps/ 

transitions of power  
Steady state 

steps/ 

transitions of 

power 

Current and 

voltage, 

providing 

low order 

harmonics 

Current and voltage, 

providing medium 

order harmonics to 

identify type of 

electrical circuitry in 

appliance  

Current and voltage, 

providing very high 

order  harmonics to 

identify both transients 

& the background noise 

of  appliances  
Appliances 

Identified 
Differentiates ~3 

general categories: 

loads that correlate 

with outdoor 

temperature, loads 

that are continuous, 

and loads that are 

time-dependent  

Top <10 appliance 

types: Refrigerator, 

ACs, Heaters, Pool 

Pump, Washers, 

Dryers etc.  

10-20 

appliance 

types 

Not known, 

see text for 

more details 

20-40 appliance 

types: Toasters, 

Computers, etc. 

along with larger 

loads identified at 

lower frequencies 

40-100 specific 

appliances: e.g., 

differentiates between 2 

lights; requires separate 

power consumption  
data stream  

Table 4. Summary of patterns across existing electricity disaggregation work, derived from approximately 40 studies in Appendix A. Frequencies 

are grouped into six bins according to developers’ preferences, based on hardware and data considerations. Regarding visual appearance, figures in 

the middle columns appear similar to those on either side. The MHz figure shows a graphical representation of harmonics when the device comes 

on and off. Regarding data features, power is comprised of current and voltage and when analyzing data at frequencies higher than 60 Hz 

practitioners commonly use features derived from the harmonics of these waveforms. Data features at lower frequencies are also available at 

higher frequencies.  Importantly, at different frequencies, different numbers and types of appliances are recognizable. Sampling frequencies above 
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60 Hz afford the ability to identify types of appliances even if they are always-on (~15% of home energy), whereas lower frequencies would have 

difficulty with this (Zico Kolter, personal communication). Also, algorithms utilizing data of lower frequency require longer durations to get the 

same number of data points, so that an algorithm using hourly data may require a week to months of data, and one using MHz data can produce 

results essentially in real time. (1MHz data image from Gupta, Reynolds, & Patel, 2010) 
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Two other findings are worth highlighting. First, higher frequencies (e.g., 60 Hz+) afford the 

ability to identify types of appliances even if they are always-on (~15% of home energy), whereas 

lower frequencies would have difficulty with this (Zico Kolter, personal communication). This is 

because many devices (even those that are always on) have distinct waveform or harmonic 

signatures, and sampling frequencies higher than 60 Hz look at the actual AC current and voltage 

waveforms (signatures can be observed even in a single aggregate current waveform).  In 

contrast, looking at real power alone (below 60 Hz), loses this information. Second, appliance 

identification takes longer with lower frequency data, because more time must transpire to collect 

the same number of data points. Thus, hourly data may require a week to several months of data 

to tell how much energy was consumed by different end-uses, whereas MHz sampling can 

provide this information instantaneously, and the frequencies in between are likely to take from 

minutes to a few days. This issue may be more or less relevant depending on the use case – e.g., a 

homeowner with a year’s worth of historical data who receives periodic updates, versus a player 

of a real-time energy video game.  

 

4.2. Open development questions 

 

Table 4 also raises questions for future work related to algorithm performance and 

requirements. First, why has little work been performed in the frequency sampling range from 1 

Hz to 10 kHz? This may occur for two reasons. To date, the data to develop the algorithms has 

been collected by academic researchers using laboratory grade sensor hardware, and the cost to 

sample at 1 Hz versus 10 kHz is similar, so that there has been no reason to limit the sampling 

rate below 10 kHz. Also, the harmonics available just above 60 Hz may provide less distinctive 

signatures of appliances as compared to the signatures obtained at higher frequency (10 kHz and 

up). Regardless, 1 Hz+ data may differentiate appliances turned on in quick succession, whereas a 

rate of 10s (HAN frequency) is not likely to, so that even this modest improvement could be 

significant. The 1 Hz – 2 kHz range is of particular interest, given the potential benefit in 

appliance recognition, and the fact that smart meter hardware may currently be capable of getting 

this but not 10 kHz data.  

Second, there is a large range in the number of appliances recognized in the 10-40 kHz range, 

and this seems more related to experimental set-ups (e.g., the laboratory selected a set of 

convenient appliances) rather than the specific frequencies. Clarifying the upper bound on the 

number of appliances that could be identified in this range would be informative. Note there may 

be little additional benefit between 15-40 kHz because the noise in that range in real buildings, 

compared to laboratory set-ups, is likely to obscure any gains in signal detection. 

Third, two studies stand out in performing far beyond their class, and suggest a need for 

innovative thinking in algorithm development. One of these studies (Kolter & Jaakkola, 2012) 

was able to identify a number of appliance types from hourly data by utilizing behavioral 

patterns, such as time of day and duration of use. This suggests that additional types of 

information could significantly constrain the appliance recognition problem, and opens the door 

to evaluating the usefulness of property, weather, demographic, and other types of data. Although 

the accuracy levels of correctly identifying appliances in this study were likely insufficient for 

commercial use, applying these ideas with higher frequency data (e.g., 1s-1min) seems 

promising. 

The second approach that performed beyond its class utilized a competition strategy among 

multiple algorithms within the system (Berges et al., 2009, 2010). It matched each new 

unidentified appliance signature to a library value (i.e., a known appliance signature in a database 

of such signatures) using several different algorithms, and the one that produced the best match 

“won”. Thus, different appliances might be recognized by different algorithms. Using this 
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approach, Berges et al. (2010) improved accuracy around 10% beyond other algorithms that used 

a similar frequency.   

Thus, 1s-1min data may be sufficient, particularly if appliance recognition is augmented with 

improved algorithms. However, there may be significant added benefit in the next three higher 

frequency ranges, warranting additional research. Additional recommendations to facilitate 

algorithm development include the need for a common reference dataset and definitions of 

accuracy
23

, testing of the algorithms on commercial meters, and addressing key behavioral 

research questions
24

. 

 
5. Smart Meter Hardware Capabilities  

 

 Figure 4 shows a generalized block diagram of a smart meter and its key components. 

Below we also describe the function of each component, as well as its key data 

                                                 
23

 Results reported by different algorithm developers are difficult to compare in greater detail because of 

their differing data sets and definitions of accuracy. We believe that algorithm development and application 

would benefit from the creation of a richer, more standardized data set that could be made available 

publicly (or on an on-request basis). Each algorithm development team has outfitted only a few homes so 

far, and they include different appliances in their datasets. A standardized dataset would improve the 

robustness of algorithms across diverse conditions, and facilitate the comparison of different algorithms. 

Ideally such a data set would capture variability over appliances as well as operating conditions, including a 

diversity of geographic regions, housing stock, and demographic groups. To be useful for analysis and 

testing, the dataset should contain both whole-home and ground-truth (i.e., “answer key” data obtained 

though plug-level monitors) readings at a relatively high sampling rate (e.g., 15 kHz+). It would be then 

possible to down sample the high-frequency signal to train and test learning algorithms on data at different 

frequencies and observe their performance. Collecting such a dataset may require a government funded 

academic effort, given that developers with the most useful data are reticent to pool it (personal 

communication). In order to advertise and attract interest from academic and industry researchers, this 

reference dataset could be the object of a conference or of a competition, in which teams would develop 

and present innovative algorithms.  

Furthermore, common metrics for evaluation should be used. Definitions for accuracy and their 

formulas should be agreed upon because their diversity currently makes comparing algorithms very 

difficult. The following definitions have been used: the fraction of correctly recognized events, the fraction 

of total energy explained, the difference in estimated and true power draw of a given appliance, 

classification accuracy, fraction of explained energy of each appliance, appliance-wise fraction of load 

duration, and fraction of “on” intervals missed (Zeifman & Roth, 2011). Also, the use of the receiver 

operating characteristic (ROC) curve is likely to be beneficial in showing the tradeoff between sensitivity 

(probability of Type II error or false negatives) and specificity (probability of Type I error or false 

positives). Furthermore, other performance characteristics such as delay (e.g., real time appliance 

identification vs. identification after a week’s worth of data) should be articulated for comparison. 
24

 It would be beneficial to identify popular use cases and their information requirements, as this has 

relevance to data handling and consumer display requirements. For example, it would be beneficial to 

determine which appliances are most important to target with disaggregation. Also, real time processing 

may be unnecessary if users do not benefit from immediate feedback, and long term storage requirements 

may be reduced if hourly appliance level information is sufficient (note that the higher frequency data is 

still required initially to run the algorithms and extract the appliance level data). Perhaps even “snapshots” 

of energy use patterns are sufficient, so that the algorithms need only to be run, say, on a week of data 

every few months. To what extent, and in what format, will users answer questions to augment 

recommendations may also be informative.  

 Also, in order to develop recommendations of how to reduce energy use based on disaggregated data, 

it is useful to determine the savings that are achievable from possible recommendations. Disaggregation 

systems can track energy reduced following a recommendation, and thus readily quantify the impact of 

many behavioral recommendations that are currently difficult to get (e.g., impact of moving a fridge away 

from the wall, cleaning its coils, etc.).  
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processing/transmission constraints. We then explain what would be required to extend 

capabilities of each component if required. In some cases this would only require firmware 

upgrade (which is the same as software update); these can be performed remotely and can be 

appended to routine updates to minimize cost. In other cases extending capabilities might require 

upgrading the meter hardware. Note there is some ambiguity on constraints, due to variability 

across meters as well as the fact that exact meter specifications are proprietary and therefore not 

available to the authors. 

 

 
 

Figure 4. Generalized block diagram of a smart meter. The RAM and Flash memories, although 

shown off of the processor chip, may be on the processor chip in some cases. 

 

Every manufacturer’s products will vary slightly, although the block diagram in Figure 4 is 

intended to be generic enough to capture the common components and architecture. Smart meters 

typically have two major components: Metrology and Communications/Network Interface. This 

distinction is functional – in most cases, they are on separate cards, and to date are typically 

provided by different vendors, although in some cases they may be integrated on the same card. 

In most cases, the network interface card is designed to be embedded inside the meter body along 

with the metrology card so that one product is supplied to the utility in the form of a smart meter.  
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5.1. Metrology Card 

 

The Metrology card (also referred to simply as the meter) of the smart meter samples the 

main power line on the load side, measures the instantaneous voltage and current at a certain 

sampling frequency and uses various calculations to generate the average real power, reactive 

power, power factor, power quality and several other parameters. It is comprised of:  

 

A. Analog to Digital (A/D) Converter - The A/D converter takes the analog electricity signals 

for voltage and current which are sampled at predetermined frequencies, converts them to 

digital values. The power level resolution values that are typically read out of the meter by 

the communication card are reported on the order of 10W to meet the billing requirements. 

However, data may be capable of being computed to higher resolution internal to the meter, 

ranging from ~0.5W to ~0.0015W (depending on the resolution of the A/D converter used in 

the meter
25

) and therefore, without any hardware changes, the meter should be able to supply 

better power level resolution to support energy disaggregation.   

Regarding frequency, the meters available in the market offer a range of sampling 

frequencies. According to the Cisco representative, at the low-medium end of meters, the 

sampling is around (or below) the fundamental frequency – i.e., 60 Hz. However, at the high 

end of meters, this can be in the 1-2 kHz range. For example, Itron meters have a sampling 

rate of 600 Hz which is equivalent to capturing the 5
th
 harmonic, whereas the Landis+Gyr 

Focus AX meter samples at 1724 Hz which is equivalent to capturing the 14
th
 harmonic.

26
  

B. Processor(s) – Out of several processors on the metrology card, the signal processor runs 

algorithms on the data received from the A/D converter. In particular, it takes the sampled 

voltage and current values and calculates average power. Regarding type of power, most 

meters calculate real and reactive power (although they may not send reactive power to the 

communications card, this could be done with a firmware upgrade). Regarding frequency, 

interviewees indicated that data leaving the signal processor is likely to be 1-10 Hz, but is 

likely capable of several kHz. Also, data may currently be smoothed (e.g., averaged over a 

time window) rather than simply down-sampled, complicating the ability to draw inferences 

from the data. These issues can be addressed with firmware upgrades to the Flash memory 

(provided there is enough memory available) 

C. Memories (RAM and Flash): Read-Only Access Memory (RAM) is typically used by the 

processor for intermediate storage during various operations and is not used for storing any 

results of the signal processing. RAM is a volatile memory and loses its contents if the power 

to the meter goes down. Data processing constraints from RAM would occur only in the most 

extreme disaggregation scenarios, and under these scenarios would be upgraded with the 

Flash memory by sending data to be temporarily stored there. Flash on the other hand is the 

non-volatile memory (NVM) and holds its contents even if the power to the meter goes down. 

Since the meter is a cash register for utilities and utilities do not want to lose the information 

on amount of power consumed by the consumer, most calculations to be sent to utility are 

stored in Flash memory. When using on-chip memory, the typical size of Flash memory is 

                                                 
25

 Using 200A max current and 120V power supply (standard for most residential meters in the United 

States), an 8-bit A/D converter yields about 93W (=200/(2^8) ) in power resolution, a 16-bit A/D converter 

yields ~0.36W in power resolution, a 20-bit A/D converter yields ~0.023 W and a 24 bit A/D converter 

yields ~0.0015W. In practice, the actual power resolution may be slightly lower due to the fact that most 

A/Ds have several bits of additional noise, plus a possible mismatch in voltage scales of the A/D and the 

current transformer. 
26

 Recall the fact that, from Nyquist theorem, we need samples at 120N Hz rate to reconstruct the N-th 

harmonic. That is, the internal sampling in the 1-2 kHz range can easily provide accurate information up to 

the 16
th

 harmonic.  
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between 8Kbytes and 256Kbytes, and when using off-chip memory, the Flash size is chosen 

by the meter designer but is typically higher than the on-chip memory. The relevant 

constraints – the size of Flash memory and the rate of read and write from memory – is 

usually adequate to support the storage of >1 kHz sampled data. 

 

5.2. Network Interface Card 

 

The second part of the smart meter is the Network Interface Card (NIC). The NIC is the 

interface to the outside world. It communicates with the metrology part to extract the stored 

information and communicates with the external world on two interfaces, the Wide Area Network 

or WAN, and the Home Area Network or HAN. The parts specifications include: 

 

D. Serial Interface: The interface between the metrology section and the network interface card 

is typically a high speed serial link which is capable of handling data transfer rates of a few 

kHz. 

E. Processor(s): The high end NICs are capable of reading, storing, and reporting data up to 1 

kHz, according to a representative of Silver Spring Networks, and potentially higher, 

depending on the model chosen by a utility. A majority, but not all, communication cards 

contain processors, which may be sufficiently powerful  and have enough memory to perform 

disaggregation if desirable.  

F. Wide Area Network (WAN) Modem/Transceiver (used interchangeably here with 

Advanced Metering Infrastructure or AMI): The WAN is used by the utilities to extract 

information out of the smart meter and to send it to the utility central office for further 

processing. This interface essentially supports automatic meter reading (AMR) for billing and 

monitoring purposes. The utilities also aim to use this interface for demand side management 

(DSM), as it would allow them to send signals to the meter and then through the Home Area 

Network (HAN) to reduce electricity consumption on targeted appliances in the home during 

high peak periods. WAN can use different kinds of physical interfaces, including power-line 

communication (e.g., Echelon meters); wireless mesh (e.g., SilverSpring Networks cards); 

and cellular technology – 3G or 4G (e.g., SmartSynch communication cards). The WAN 

interface typically provides fifteen minute or hourly data. These physical WAN interfaces 

may have limited capacity to convey information at higher frequencies to the utility central 

office due to data capacity on the utility servers, the fact that utilities have no obligation or 

interest in processing higher resolution data, and to a lesser extent bandwidth constraints in 

the communication networks.  

G. Home Area Network (HAN) Modem/Transceiver: HAN refers to a home’s local 

network, rather than the utility’s network. It allows the meter to communicate with the 

home's appliances and/or internet gateway once activated to do so by the utility. HAN can 

also refer to the network that enables communication of these devices with one another 

absent the meter, although that is not the focus of this paper.  The meter communicates with 

the in-home devices using the ZigBee PRO standard in most previous and currently planned 

deployments in United States.
 27

 ZigBee PRO is intended to send data up to every 6-7.5 

seconds (though some meters based on their design may not send updated data for periods as 

long as a minute); thus, HAN offers higher frequency data than WAN. We elaborate on HAN 

frequency below. 

                                                 
27

 While this paper references ZigBee PRO as the prevalent HAN communication standard between Smart 

Meters and in-home devices, several other technologies are under development and standards 

consideration. We believe most of the recommendations made in this paper will stay relevant if current 

ZigBee firmware stack is replaced by one of the forthcoming technologies.   
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6. Smart Meter Solutions Enabling Disaggregation  

 
6.1. Gap Between Algorithm Data Requirements vs. Smart Meter Hardware Capabilities 

 

Now we look into whether there is a gap between the data requirements of disaggregation 

algorithms and the current data providing capabilities of smart meters. We look at the three key 

features of the data described earlier: (a) Type of power; (b) Power level resolution; and (c) 

Frequency of the data. We specify hardware imposed data constraints and compare these to the 

algorithm requirements. 

 

6.1.1. Type of Power  

 

Reactive power, in addition to real, is useful in disaggregation, as it helps differentiate loads 

sampled at lower frequencies. Typical meters in the market provide real power, and are generally 

capable of providing reactive power, in that reactive power is generally available internally to the 

meter and can be brought out with a firmware upgrade.  

 

6.1.2. Power Level Resolution  

 

 Developers working at the higher frequency ranges (>1 s) and attempting to disaggregate a 

wider range of appliances want power level at 0.1W or better resolution. The power level 

resolution depends on the resolution of the A/D converter and the maximum current supply 

capability of the meter. Most residential meters in United States provide up to 200A (some go up 

to 320A) which requires an A/D converter of 20-bit resolution or higher to meet the 0.1W data 

resolution requirement (also see Footnote 25). Developers working at lower frequencies were 

satisfied with power reported at 10W or equivalent magnitude. Current meters are typically 

constrained to 10W to meet the billing requirements, although the meter should be capable of 

supplying 0.1W power level resolution if required. 

 

6.1.3. Frequency of the Data 

 

Frequency is the most uncertain in terms of algorithmic requirements and hardware 

capabilities. Table 5 below shows four different frequency ranges at which the data can be 

obtained from a smart meter for disaggregation algorithm processing. Regarding the first range, 

hourly or 15 minutes data delayed by approximately 36 hours may be the only data that is 

available for the foreseeable future through the Utility WAN. The next two ranges (1 min - 1 s; 

and 1 s - 2 kHz) use the HAN to get the data. The 1s - 2 kHz range is where harmonics would 

begin to become available. Regarding the third range, 1-2 kHz is very close to the internal 

sampling frequency of the meters and would most certainly need a firmware upgrade to the meter 

to add more functionality. The fourth frequency range requires changes in meter hardware to 

support sampling at 10 kHz+, which is not currently supported by the A/D converter.  

 

  1 hr –  
15 min 

1 min –  
1 s

a 
1 Hz (1 s) –  

2 kHz 
10-15 kHz  
or higher 

A A/D Converter    - Needs 

firmware 

upgrade 

 - Needs 

hardware upgrade 

B Metrology Processor    Hardware 
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dependent 
C Memories    May support (if 

not, needs 

hardware upgrade) 
D Serial Interface   May support (if 

not, needs 

firmware 

upgrade) 

 - Needs 

hardware upgrade 

E Communications/Network 

Interface Processor 
   Hardware 

dependent 
F WAN Communication   - Needs 

firmware 

upgrade 

  

G HAN Communication    - May be 

possible with 

compression 

(which needs 

firmware 

upgrade) 

 - may be 

possible with high 

compression; 

otherwise 

disaggregation 

would need to be 

done on the meter 

(which needs 

firmware upgrade) 
a
These times are approximate. Currently, as described elsewhere in the text, the highest frequency 

available through the HAN would 6-7.5s. 
Table 5. Which data frequency range(s) would be feasible to extract from smart meters, given 

their constraints, for use in disaggregation algorithms? This table assesses, for each frequency 

range, whether smart meters could currently supply the data, and, if not, what upgrades would be 

required to do so. The table was populated with meters from the most popular vendors.  Note that 

either WAN or HAN communication is sufficient; in other words, the WAN constraint is not 

relevant in the higher frequency ranges as long as HAN communication is viable. 

 

As the frequency requirement increases, we see additional bottlenecks in getting the data out 

of meter, progressively, due to the WAN, the HAN (ZigBee interface), current meter firmware, 

the meter hardware (A/D converter) sampling rate, and the network interface card. Regarding the 

WAN or HAN interfaces, which may impose the biggest bottlenecks, several cases and proposed 

work-arounds are described below: 

1. Sending High Frequency Data (1 s - 2 kHz) over the HAN. Currently HAN only 

supports sending one energy value every 6-15 s. The high frequency data can be sent 

over the HAN by using a combination of following techniques:  

a. Compress the data. Several compression techniques are under research that are 

very promising; for example, a compression ratio of 10,000:1 has been tested 

(Zico Kolter, in preparation). If successful, this suggests that ~10 kHz data could 

be sent over the HAN, if used in conjunction with the next technique below.   

b. Send packets of higher frequency data. ZigBee provides a connection once 

every 6-7.5 s and can send up to 80bytes at a time (without the headers). Thus, 

we could send up to 20 readings every 6-7.5 s – effectively one reading every 

0.3-0.375 s – assuming 32-bit values.  

c. Replace ZigBee with WiFi or low power WiFi, on next generation meters. 

This could lessen constraints, given that the typical bandwidth of ZigBee 

technology is 250kbps and typical bandwidth of WiFi or low power Wifi is over 

1Mbps.   
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2. Sending 1 min – 1 s data over the WAN. Currently smart meters only record and send 

either 1 hour or at best 15 minute integrated data over the WAN. Given connections are 

made 1-4 times per day, storing raw data in the meter and sending it through the WAN 

increases memory and bandwidth requirements. However, sending only event changes 

can reduce that burden to the point where it could be sent using the existing WAN.
28

 

Communication cards with processors should be capable of doing local processing to 

detect event changes, with a firmware upgrade.
 
Sending 1 kHz sampled data over WAN 

would likely not be possible with basic compression.
29

 

 

6.2. Where to Perform Algorithm Processing? 

 

The previous two sections focused on whether smart meter hardware is capable of supplying 

adequate data for disaggregation. This section explores where the data can be stored and 

algorithms run. The options include:  

 

1&2.  In a HAN device or In the Cloud:  The first option is to send the data from the meter 

through the HAN to a consumer display (e.g., in-home display, desktop, laptop, or 

smartphone), either directly or through the cloud. Either the HAN device or the 

computers in the cloud would perform disaggregation.
30

 

3.       On the smart meter: The second option is for data to be stored and processed inside the 

meter on the network interface card. This is the most scalable option as it does not require 

any other hardware to be deployed either by the utility or the consumer. The 

disaggregated results can be sent directly to both the utility and HAN devices - the data 

size of the disaggregated results is small enough to be sent over both of these interfaces. 

Since raw sampled data is not sent outside the meter, this option can handle 1 kHz+ 

sampling algorithms, and is only dependent on the meter memory and processing 

constraints.
31

 

4.       At the Utility back office: The third option is for the data to be sent to the utility back 

office via the AMI network and perform the disaggregation on the utility servers, or 

servers hosted by third parties with data access approved by utilities. We consider this 

option because it could minimize data duplication at all points in the data chain, so that it 

                                                 
28

 For example, a typical household has 2,000 to 4,000 transitions every day (measured from real life data 

of 10 homes in California by the authors, for transitions greater than 30 watts at 1 second sampling rate); 

each transition can be stored for 4bytes each. This translates into sending ~12Kbytes = ~100kbits per day. 
29

 For example, each 1kHz sampling transition can be stored for about 4bytes*1000 = 4KB of memory. 

Hence, 2-4,000 transitions would consume about 8M-16MB of memory. This may be beyond the meter 

memory and network bandwidth capability.  
30

 This option could take several different hardware configurations. That is, the meter could send 

information through the HAN to a consumer display via: (a) A HAN device capable of receiving ZigBee 

data from the Smart Meter and communicating with a broadband router (i.e., a WiFi or Ethernet gateway). 

(b) A broadband router alone, if it is ZigBee enabled. (c) A broadband router alone, if the communications 

protocol on the meter were WiFi or low power WiFi. Given the availability of WiFi receivers inside most 

homes already, this option reduces the total cost of ownership and set-up effort, and the increased 

bandwidth of WiFi also enables transmission of higher frequency data. (d) A <$100 USB dongle that is 

capable of receiving ZigBee; however, this would need to be plugged into a continuously running laptop or 

desktop that would perform the data storage and disaggregation. (e-g) Any of these configurations could 

also send data to the cloud for disaggregation (instead of performing disaggregation on the HAN 

device/router/home computer), as an intermediate step before sending information to the consumer 

displays. 
31 Indeed, some models of Smart Meters may currently have the capability to perform disaggregation in the 

communications card, according to one company’s representatives, with a firmware upgrade.  
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has the possibility of being the most cost and energy efficient solution if well-

implemented. However, we consider this option highly unlikely due to the burden and 

low perceived benefit to utilities.  

 
 

Figure 5. Hardware options for running the algorithms. 

 

 

 
Disaggregation Requirements for the meter/network 

Data 

Frequency 

Supported Dependencies 

Reference 

to Figure 

5. Where? Comments 

Meter 

Memory 

Meter 

Processing 

Power 

WAN/ HAN 

Bandwidth 

1 & 2 HAN 

gateway 

device 

or cloud 

Currently need 

to send data to 

HAN gateway 

device via 

ZigBee 

Low Low Low to 

Moderate, 

depending 

on 

frequency 

and 

compression 

capabilities 

1 Hz, 1 

kHz+
a
 with 

compression 

Utility activation 

of HAN; A 

ZigBee enabled 

HAN gateway 

device for 

deployed meters, 

or low power Wi-

Fi on future 

meters 

3 Meter Send 

disaggregated 

results back to 

Utility or to 

HAN gateway 

device 

Low High/ 

Moderate 

Low 1 Hz, 1 

kHz+ with 

compression 

Firmware 

updates
b
 for 

deployed meters, 

improved 

hardware for 

future meters  

4 Utility 

back 

office 

Need to send 

data back to 

Utility back 

office via 

Moderate

/High 

Low Moderate 1 hr, 1Hz 

with 

compression 

Firmware update 
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WAN 
a 
Denotes the two higher frequency ranges from Table 5 (1 Hz – 2 kHz and 10-15 kHz).

 

b 
Firmware is a part of device software that gets updated periodically for new features or bug fixes. 

Table 6. Hardware options for running the algorithms and their memory, processing, and 

bandwidth requirements.  

 

 

We believe that in the long term, for meters deployed in the future, that Option 3 may be the 

most efficient and scalable approach, because no hardware is required in the home and bandwidth 

requirements are minimized. However, in the short term the best option is likely to compress data 

on the meter, and then use Options 1 or 2 above for performing the disaggregation. This is 

because for the next couple of years the early algorithms may require frequent updating, which 

firmware updates are not well-suited for. By compressing the data on the meter and then sending 

it elsewhere for disaggregation, the processing performed inside the meter does not need to 

change frequently, but the memory requirements and bandwidth for sending the data outside the 

meter is reduced. This would entail a firmware upgrade.  

In these scenarios, in order to support the actual running of the algorithms, a firmware 

upgrade is typically sufficient without requiring any hardware changes to the deployed smart 

meters. It is instructive to note that options 1 and 2 require additional hardware simply because 

current smart meters predominantly communicate through ZigBee, which cannot communicate 

directly with the existing internet or other devices commonly found in the home – in other words, 

such a device is needed for any HAN use. The availability of other HAN protocols that can 

communicate with the internet, such as WiFi or low-power WiFi, would ameliorate this problem 

and would open communication between the meter and a variety of internet enabled devices.  

Note that this does not introduce security problems, but would rather benefit from existing 

solutions, given the system is already in widespread use and transmits sensitive personal data 

such as financial and medical information. This option also allows smart meters to be connected 

to the anticipated “internet of things” for additional consumer applications. 

Another way of addressing the sampling, storage, and processing issues discussed here would 

be to build meters in the future with a serial port and a power supply. Then a large variety of third 

party devices could be plugged in, directly sampling the power waveform data at the desired 

frequency; and further storing, processing, and communicating through any networks – for 

example, the HAN, internet, or cell network. This would enable applications other than 

disaggregation as well. Some utilities in Europe have chosen meters that have open serial ports 

for third party hardware that can be installed by the consumers, although this may be difficult to 

implement in the United States.
32

 

 

6.3. Cost to Support Disaggregation 

 

The smart meter changes suggested in the above sections can be classified into two categories 

– firmware upgrades and hardware modifications. This section describes the cost of making these 

changes in the smart meters and network infrastructure (either WAN or HAN).  

                                                 
32

 In the United States a redesign is required for the meter case since meters are mostly installed 

outdoors and any device connecting to the meter needs to be ruggedized just like the meters are. 

Meter tampering methods would also need to be tightened when deploying such options that 

allow a user to attach their own device to the meter. Further, a firmware update would likely be 

required in order to quantify the energy consumption of the third party device in the household’s 

energy bill, rather than being absorbed by utilities as energy consumption of the meter itself as it 

currently is. Such changes would likely need to be facilitated by policy makers, as incentives are 

not strongly aligned currently with utilities or meter manufacturers. 
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Firmware is a part of device software that gets updated periodically for new features or bug 

fixes. This would be required when the hardware can perform a function but currently is not. It 

would include sampling or storing data at higher frequencies, compressing or preprocessing data, 

sending packets of higher frequency data every 6-7.5 s, expanding the maximum ZigBee packet 

size, or performing disaggregation on the meter. The typical cost of a firmware upgrade includes: 

(a) testing the new firmware in the meter or communication card manufacturer’s or utility’s 

laboratory, (b) downloading the new firmware over the air into the meter, and (c) supporting the 

new firmware. When done in conjunction with regular firmware upgrades (typical periodic 

upgrades done every quarter), the cost for firmware upgrades related to enabling disaggregation 

can be minimal.  

The hardware modifications required vary depending on the sampling frequency used for 

disaggregation. There are no hardware modifications required to support lower sampling 

frequency data, but higher frequencies (1 kHz+) may require one of the following:  

a) Increase A/D converter sampling rate, and any corresponding processor or memory 

changes. A rough estimate of the hardware modifications cost for this change may be 

about $2-$4 at cost and about $10 at the selling price of the smart meter, according to one 

of the author’s professional experience in smart meter hardware development. Compared 

to $200+ that it takes to purchase and install a smart meter, $10 is a modest cost addition 

to enable a large uptick in energy efficiency.  

b) Use WiFi or Low Power WiFi instead of ZigBee
33

 (applicable to where ZigBee might be 

used as a HAN interface) to support higher data transfer rate from the meter to inside the 

house, and to ensure more widespread use of the HAN because less installation effort is 

required by consumers. It is possible that the cost and power consumption for a WiFi chip 

may be incrementally higher compared to a ZigBee chip, but the incremental cost and 

power is unlikely to approach that of an extra ZigBee to WiFi gateway required to 

support HAN functionality. ZigBee enabled routers could address the installation barrier 

in consumers; however, the broadband router manufacturers will only include ZigBee in 

mainstream routers if the demand reaches a certain volume which is likely to take several 

years, and market turnover will take several additional years. The cost and energy 

consumption comparison of WiFi or Low Power WiFi in the meter versus ZigBee 

receiver in a router has yet to be determined. 

 

 

7. Recommendations and Conclusions 

 

The work reviewed above suggests that there are compelling reasons to pursue 

disaggregation, and that it may be possible to leverage existing or future smart meters so that 

appliance specific information can provide benefits at scale. The following are several specific 

research and policy recommendations for moving forward.  

The following research and development activities are suggested, as well as fiscal support for 

these:  

 

                                                 
33

 The hardware change required would be to replace IEEE 802.15.4 based radio (used by ZigBee) with 

IEEE 802.11 (WiFi or low power WiFi) for HAN communication interface in the Smart Meters. If the 

power consumption of the WiFi chipset is a concern, there are many techniques for reducing wireless 

energy consumption, such as duty cycling, which is when  a device keeps its radio mostly off except when 

it needs to transmit (Phil Levis, personal communication). Alternatively, there are efforts to develop lower 

power WiFi chips, for example, by companies such as Gainspan, Marvell, and Atheros (a division of 

Qualcomm). 
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1. Improve disaggregation algorithms, in order to improve robustness, accuracy, and 

number of appliances identified by the algorithms, while reducing frequency, processing, 

and training requirements. The frequency range of 1 second to 15 kHz is of particular 

importance, given that insufficient algorithmic work has been performed to date in this 

range, and this range could be achievable in meters. Develop high-yield data 

compression algorithms to enable the use of 1 second to 2 kHz data on current meters, 

and up to 15 kHz data on future meters.  

2. Develop a common data set that captures variability over appliances as well as 

operating conditions. This should increase the rate of development and enable 

comparison of algorithms, which have been problems to date due to the dearth and 

variability of data. High resolution data should be recorded when feasible, because it 

allows for down-sampling and thus for development across a range of frequencies, as 

well as an assessment of the performance trade-off at different frequencies and 

resolutions. Such a data set is being created at Stanford, along with a protocol to allow 

others in geographically diverse regions to contribute. In conjunction with the common 

dataset, it would be beneficial to: (a) Establish performance metrics, such as common 

definitions of accuracy to enable the comparison of algorithms. (b) Organize a 

competition, as has been done previously with algorithm development (e.g., the 

InfoVis/IEEE Visualization Challenge, http://visweek.org), as this would utilize the 

dataset and foster algorithm development at universities and beyond.  

3. Facilitate testing of compression and disaggregation algorithms on actual smart 

meters, to evaluate capabilities. Collaboration between universities and industry may 

prove useful here, for example, in setting up testing facilities.  

4. Perform key behavioral research: Identify popular use cases and their information 

requirements, as this has relevance to data handling and consumer display requirements. 

For example, it would be beneficial to determine which appliances are most important to 

target with disaggregation, how often or quickly feedback is required, and whether 

periodic snapshots of energy use are sufficient in lieu of complete records.  

 

The following steps should be taken to improve data on existing meters. Regarding firmware 

upgrades, these are similar to software updates, and can be performed remotely and can be 

appended to routine updates so as to minimize cost. 

 

1. Upgrade firmware to make reactive power available in addition to real power. This 

allows algorithms to disaggregate more devices. 

2. Upgrade firmware to support data compression. Transmitting events/transitions 

instead of raw load profiles could significantly improve the frequency of data available to 

HAN devices, as band-with is currently the bottleneck. 

 

Regarding future smart meter hardware and firmware, we recommend the following. These 

would enable sufficient disaggregation on the meters, without requiring additional hardware that 

is likely to attain more limited market penetration thereby hindering data access and consumer 

benefits. New meters should: 

 

1. Be capable of 10-15 kHz frequency, which would only cost $5-10 more (details in 

Section 6.3), but would likely enable a jump in accuracy and the number of appliances 

recognized. Improving wattage granularity by enhancing A/D converter resolution 

(details in Section 6.1.2) would also improve recognition, particularly of smaller 

electronics, which is of increasing importance given plug loads are the fastest growing 

segment of electricity use (Ecos, 2006, 2011).  
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2. Be capable of supporting disaggregation inside smart meters. This would avoid AMI 

or HAN network constraints. Firmware loaded onto the meters could be updated for 

compression and disaggregation either before installation, or through remote firmware 

upgrades at a later date. Although the algorithms may not be refined enough to make 

disaggregation on the meters desirable for the next couple of years, ultimately this may 

be the most cost-effective and scalable solution.  

3. Add or replace 802.15.4 based radio (used by ZigBee) with 802.11 (WiFi or low 

power WiFi) so that meters can communicate directly with the broadband routers, 

rather than require additional hardware. The additional hardware required by 802.15.4 

interface costs consumers, and is likely to attain limited market penetration thereby 

hindering data access. The cost of this replacement in the meter would be negligible. 

 

Public utility commissions, utilities, and meter manufacturers should consider the 

recommendations above when contemplating policy rulings and technology specifications for 

current and future smart meters. Additional policy recommendations include:  

 

1. Disaggregation developers should contribute use case specifications and 

requirements to the standards process so that other forthcoming communications 

technologies are better suited for disaggregation.   

2. Institute policies to ensure that utilities enable the HAN communication interface 
(example ZigBee radios in the meters deployed in CA) soon, at a minimum beginning 

with pilots. Until such a date few of the benefits of investment into smart meters will be 

passed on to the consumer. Institute policies to ensure that utilities share de-identified 

data collected during HAN pilots with research institutes and perhaps companies that 

are not large enough to participate in the pilots, in order to facilitate algorithm 

development and other HAN applications.  

3. Institute policies, such as rebates, to make HAN gateways (that enable consumers to 

get real time data from their smart meter) effectively free to consumers. This is 

similar to $50-$150 appliance rebates approved for purchasing an ENERGY STAR 

appliance on the basis that energy savings during the life of the appliance will be higher 

than the rebate provided.  

4. Institute policies to ensure that utilities select HAN devices during pilots that allow 

consumers to access or share their data with any third party. This fosters innovation 

since small businesses can now sell directly to consumers and invest time into developing 

superior solutions. 

5. Federal agencies and PUCs should demand improved transparency about meter 

specifications, and enable universities to test real meters to establish actual 

constraints. Currently, some of the relevant meter specifications are proprietary. Large 

public expenditures are going towards the smart grid, and there is great potential for 

innovation and consumer benefit, but this is likely to go unrealized without greater 

transparency.  

6. Utilities and regulatory agencies should expediently approve guidelines for addressing 

privacy issues, if they have not already. Delays prevent individuals from sharing data 

they own, and limit third parties from helping to realize consumer benefits. Policy is 

supportive (Chopra, 2011; Chopra, Kundra, & Weiser, 2011; NARUC, 2011; CPUC, 

2011), but implementation has not yet occurred.
34

 

                                                 
34

 We believe that privacy should not be a concerning issue for the majority of the public, if addressed 

appropriately. Individuals have largely become accustomed to the use of personal data, and there is 

significant precedent for addressing legal and other  issues, in numerous domains such as: property records 

(e.g., Zillow), internet cookies, Google maps, grocery store club cards purchases, health information (Blue 
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7. Consider slowing the deployment of future smart meters until consumer benefits have 

been demonstrated, and learnings can be incorporated into future roll outs.  

 

In summary, disaggregation may be the lynchpin to realizing large-scale, cost-effective 

energy savings in residential and commercial buildings. To date, these “$20 on the sidewalk” 

energy savings have been onerous to collect, but disaggregation offers an opportunity for 

significant automation. Smart meters, given their widespread roll-outs, and ability to circumvent 

cost and effort barriers, offer an opportunity for quick, sweeping market penetration of sensing 

hardware required for disaggregation. There are a number of research, meter, and policy steps 

needed to realize the application of disaggregation with smart meters, but all are tractable within a 

relatively short time frame. Further, this work could clear the way for similar energy 

disaggregation work on gas, water, and transport. We are optimistic this work will progress, along 

with its anticipated benefits.  

 

                                                                                                                                                 
Button initiative), and online finance (transactions, Mint.com). Successful traits of these applications likely 

include high security, improved convenience, opt-in set-up, and, in the case of online finance, recourse for 

identity theft. A robust empirical literature on risk perceptions could potentially help improve education 

and ameliorate concerns (e.g., Slovic, 1987). Additional work extends learnings regarding privacy from 

other domains to energy sensors such as smart meters and home area networks (Pai et al., 2008; Mulligan 

& Perzanowski, 2007; Lisovich & Wicker, 2008; Subrahmanyam, 2008).   
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Appendix A. Table of Disaggregation Work 

 

Algorithms are ordered according to publication date. Several publications are included in the same row if similar, with the study 

details corresponding to the bolded study. Study details are missing from the table if they were not provided in a publication or by a 

developer. The different classes of algorithms are described in more detail in Appendix B. 

Note that the reported accuracies should not be interpreted as being directly comparable. The accuracy metrics, as well as the 

appliances tested, data acquisition hardware, environment setting, and amount of data collected, vary substantially from study to study, 

as detailed below. Regarding accuracy, even when studies use a similar metric, the exact formula often differs. Thus the table should 

serve mainly as a general compilation of existing approaches, rather than a direct comparison.  
 

Study Method Data type(s) Appliances 

Data acquisition 

hardware / 

Environmental 

setting 

Data 

Frequency 

Amount of 

collected data / 

Identification 

time lag 

Accuracy 

metric   
Reported 

accuracy 

Hart (1987-1992) 
steps signatures 

database matching 

real and 

reactive 

power  

~10 (two-state, 

above 150W) 

custom hardware /  

1, 3, & 10 homes 
1 Hz 

several hours /  

non real-time 

percentage time 

on (i.e., 

percentage of 

energy 

explained) of 

appliance types 

86% 

Sultanem (1991), 

Powers et al. (1991), 

Prudenzi (2002) 

steps signatures 

database matching 

and classification 

using transient 

characteristics 

current, 

voltage, real 

and reactive 

power 

not reported 
custom hardware /  

laboratory 
1.5 kHz 

24 hours /  

non real-time 

individual 

appliance 

identification 

rate 

~95% for two-

state appliances 

Roos et al. (1994), 

Srinivasan et al. 

(2006) 

neural network 

classification based 

on step changes in 

power and current 

harmonics 

current, 

voltage, real, 

reactive, and 

distortion 

power 

not reported not reported not reported not reported not reported not reported 

file:///E:/Stanford/Dissagregation%20paper/oct_2011/literature_table_updated%20051611.xlsx%23RANGE!A30
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Leeb et al. (1995), 

Norfold and Leeb 

(1996), Lee et al. 

(2005), Wichakol et 

al. (2009)  

event identification 

based on spectral 

transients harmonics 

current 

4 (multi-state, 

variable load, 

variable speed 

drives) 

custom hardware / 

laboratory setting 
kHz-range 

real-time 

identification 

individual 

appliance 

identification 

rate 

not reported 

Drenker and Kader 

(1999) 

steps signatures 

database matching 

real and 

reactive 

power 

38 (two-state, 6 

categories) 

custom hardware /  

laboratory setting 
not reported non real-time 

appliance type 

identification 

rate, percentage 

of energy 

explained 

88%-100% 

(identification 

rate), 88%-96% 

(percentage of 

energy 

explained) 

(depending on 

appliance type)   

Marceau and 

Zmeureanu (2000),  

Farinaccio and 

Zmeureanu (1999) 

steps signatures 

database matching 
current 

several major 

appliance types 

(water heater, 

baseboard heater 

and refrigerator) 

commercial 

hardware /  

one home 

16 seconds 

~seven days each 

test and training 

/ non real-time 

percentage of 

energy explained 

for appliance 

types 

large variations 

(10%-95%) 

depending on 

appliance type 

Baranski and Voss 

(2004a), Baranski 

and Voss (2003), 

Baranski and Voss 

(2004b) 

finite state appliance 

space exploration 

through a genetic 

algorithm and 

clustering 

not reported not reported 
electricity meter / 

optical sensor 
not reported not reported not reported not reported 

Leeb et al (2006), 
Chan et al. (2000), 

Akbar and Kahn 

(2007), Shaw et al. 

(2008) 

event identification 

based on spectral 

transients  

voltage 

~5 (two- and 

multi-state, fixed 

and variable load) 

custom hardware /  

laboratory 
kHz range 

real-time 

identification 

individual 

appliance 

identification 

rate 

not reported 

Patel et al. (2007) 

machine learning 

classification based 

on on/off transient 

noise 

current, 

voltage 

~20 appliance 

types, ~40 

appliances per 

home 

(fixed/variable 

load, two- and 

multi-state)  

custom hardware /  

6 homes 

100 Hz-100 

kHz range 

and 50 kHz-

100 MHz 

range 

~150-350 events 

(train), ~80-100 

events (test) /  

real-time appliance 

identification 

individual 

appliance 

identification 

rate 

85%-95% 
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Lam et al. (2007), 

Lee et al. (2004) 

hierarchical 

classification based 

on current-voltage 

trajectory features 

current, 

voltage 

8 main appliance 

types (by physical 

characteristics) 

custom hardware not reported not reported not applicable not applicable 

Ford (2009) 

Bayesian-based 

membership model 

for appliances based 

on harmonic and 

transient signatures 

power, 

voltage 

4 appliances types 

(two- and multi-

state) 

custom hardware /  

laboratory setting 
~15 kHz 

several minutes per 

test /  

non real-time 

identification 

individual 

appliance 

identification 

rate 

>99% 

Berges et al. (2009) 

machine learning 

classification based 

on appliance 

signatures 

current, 

voltage 

8 appliances 

(two- and multi-

state) 

custom hardware 100 kHz 
~450 events (train), 

45 events (test) 

individual 

appliance 

identification 

rate 

79% 

Kolter et al. (2010) 

machine learning of 

appliance usage 

pattern using 

discriminative sparse 

coding  

energy 

consumption 

~10 appliance 

types (~1300 

appliances) 

commercial 

individual plug 

monitors /  

~138 homes 

(Netherlands) 

1 hour 

~200-700 days 

parsed weekly / 

non real-time 

identification 

percentage of 

energy explained 

for appliance 

types 

55% 

Berges et al. (2010) 

machine learning 

classification based 

on appliance 

signatures 

power, 

voltage 
17 appliances custom hardware 10 kHz 

5.5 days / non real-

time identification 

percentage of 

energy explained 
86% 

Gupta et al. (2010) 

clustering based on 

high-order transient 

harmonics 

components 

voltage 
94 appliances in 7 

homes 
custom hardware 1MHz 6 months 

appliance 

identification 

rate 

94% 
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Liang et al. (2010a), 

Liang et al. (2010b) 

multiple algorithms 

(integer 

programming, neural 

network, genetic 

appliance 

configuration space 

exploration) and 

decision models for 

picking best result 

current, 

voltage 

27 appliances (32 

states); 

simulations of 

home network 

configurations 

based on these 

appliances 

custom hardware 

low 

frequency 

(1Hz) and 

high 

frequency 

(kHz range) 

not reported 

multiple 

measures based 

on appliance 

identification 

rate 

75%-93% 

(simulated 

configurations) 

Inagaki et al. (2011) 

appliance 

configuration 

distribution using 

integer programming 

current, 

voltage 

42 appliances of 9 

types 
custom hardware 40 kHz not reported 

appliance state 

configuration 

identification 

rate 

80% 

Kolter & Jaakkola 

(2012)  

machine learning of 

temporal appliance 

models, using 

factorial hidden 

Markov models 

10 principle 

components 

of current 

waveform 

9 appliances 

Commercial and 

custom hardware / 

10 homes 

15kHz, 

compressed 

to ~1 

reading / 5 s 

2 weeks, non real-

time identification 

precision/recall 

of total energy 

explained 

 

83% precision, 

60% recall 
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Appendix B. Description of Published Algorithms   

 

Regarding their approach, all of the algorithms operate using what we will call the library 

comparison technique. Specifically, an appliance signature database or library is developed by 

performing physical measurements on appliances, and then new unidentified appliance signals are 

compared to those signatures in the library to determine the best match. Algorithm developers can 

create the libraries by performing their own physical measurements using plug-level monitors or 

acquiring such a data set from a plug monitoring company. This library comparison approach 

typically requires the algorithms be trained. Note that this training is performed by the algorithm 

developers. A second type of training involves asking consumers to correct guesses made by the 

system; to our knowledge this is only being utilized by a couple of commercial algorithm 

developers.  

The problem of inferring consumer electricity use from measurements of electric circuit 

parameters started to gain attention in the engineering community beginning in the 1980s with 

studies by G. Hart and F. Schweppe at the Massachusetts Institute of Technology and the Electric 

Power Research Institute. Early research focused on disaggregating simple resistive appliances 

that have a finite number of operating states, which are typical for the residential sector (e.g., 

Hart, 1992; Sultanem, 1991; Marceau and Zmeureanu, 2000; Leeb et al., 1995). Some effort (e.g., 

Roos et al., 1994; Lee et al., 2005) has also been invested in studying electric appliances in the 

industrial and commercial sector, which commonly have more complicated operating principles 

(e.g., variable power devices such as motors).  

Hart introduced the Nonintrusive Appliance Load Monitor (NALM) as a paradigm for a 

software system capable of analyzing single-point (e.g., home meter panel) electric data to obtain 

information on the energy use of individual appliances (Hart, 1992). The architecture is 

composed of a sensor that samples household-level power at 8kHz and feeds it to a device that 

extracts basic features and statistics on-site using 1Hz averaged power, which are then transmitted 

to a central unit that performs appliance classification off-line. Hart's approach is based on 

detecting rapid changes (edges) in steady-state, fine-grain real (DP) and reactive (DQ) normalized 

power signals, which are used as signatures characteristic to each appliance. The 2-D space (DP, 

DQ) is used to pair appliance state changes for performing classification, which is done by 

matching appliance signatures to a databases obtained by prior intrusive calibration of each 

appliance. In the basic form presented in Hart (1992), the NALM method is able to disaggregate 

some simple appliances (minimum load 150W) that have a finite number of states (e.g., 

ON/OFF), for which Hart reports accuracies of 85%
35

. 

A number of studies extended the simple linear appliance model adopted by Hart (1992) to 

use other directly sampled quantities such as jump in current DI (e.g., Sultanem, 1991) or voltage 

distortion (Roos et al., 1994) to augment (and hence increase the resolving power) of the (DO, 

DQ) space. All these approaches require appreciable amounts (several days) of edge data to be 

processed off-line. They generally disregard the time taken by appliances to reach steady-state 

operation, and cannot disambiguate loads whose signatures overlap in the several dimensional 

feature space used. For example, such an approach will have a hard time distinguishing between a 

water heater and a toaster that draw about the same power and have similar (resistive) operational 

principles.  

More advanced disaggregation techniques have been developed that rely on computing 

Fourier harmonics of steady-state current or power to further eliminate ambiguity in appliance 

signatures. Multiple studies attempt to extend the types of identifiable loads to lower-power, more 

complex devices found in modern homes and offices (e.g., computer, copier) or industrial 

buildings (e.g., variable speed fans) (Laughman et al., 2003; Lee, 2003; Shaw et al., 1998; Lee et 

                                                 
35

 As measure of accuracy, Hart uses the percentage of the total household energy that their approach was 

able to identify to the level of classes of appliances. 
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al., 2005). In Shaw et al. (1998), current waveforms were collected at a sampling rate of several 

kHz and used to compute in-phase and quadrature spectral envelopes (time-dependent, averaged 

Fourier coefficients) that characterize harmonic behavior. Events are identified by performing 

segmentation on the envelopes rather than on the raw signal through isolating several v-sections 

(significant variations) characteristic for each type of load. In Nakano et al. (2006), the authors 

use fundamental and (up to 13th) odd-order current harmonics, and corresponding current-voltage 

phase difference as features to train an off-the-shelf Support Vector Machine (SVM) classifier to 

recognize the state of each appliance in a previously-calibrated database. They test their approach 

on 60-second resolution data collected at four households over several days both in summer and 

winter, and report accuracies
36

 ranging from ~88% (for refrigerators) to ~98% (for TV sets). 

Another class of approaches exploits the information offered by the transient noise induced 

in an electrical circuit when an appliance changes operational state. Transient signal 

characteristics are highly dependent on the operational principle of the device and could provide 

more reliable, near real-time identification capability given that data is available that is sampled 

at high enough frequency (Laughman et al., 2003). Variations in the spectral envelopes (time-

varying average Fourier coefficients) of current (Leeb et al., 1995; Shaw et al., 1998) or voltage 

(Laughman et al., 2003) waveforms are used to define signatures that are matched against 

prototypes ("exemplars") obtained for each appliance in a previous calibration phase. The match 

is typically performed by finding appropriate shifting and scaling parameters that minimize a 

least-square error criterion between events and exemplars. In Patel et al. (2007), the authors 

perform household-level current sampling at 1 MHz and use transient duration and amplitude of a 

set of frequencies in the electric noise generated by abruptly turning on/off appliances to 

construct appliance signatures. They train an off-the-shelf SVM model in a preliminary 

calibration phase, which they use to achieve near real-time identification of ~40 appliances for 6 

test homes over 6 weeks (~3000 transient events). The reported accuracies
37

 range from 85%-

90% for individual, complex (varying power or inductive) loads such as hair drier or bathroom 

fan. Notable limitations of these approaches are that they require high-frequency sampling of 

electrical quantities and that electric network topology may influence the characteristics of the 

transients. I.e., for a different electric network (another household) that is significantly different 

from the test homes, a new calibration may be required. It is unlikely that any test homes would 

be able to emulate the characteristics of a large percentage of homes to the level of specificity that 

seems to be key to this type of algorithms. 

Building up on Patel’s work on disaggregation using high-frequency transient signatures of 

the house power network, Gupta et al. (2010) identify individual appliances from single-point 

measurements. Their system (ElectriSense) uses continuous MHz-range electromagnetic 

interference (EMI) waves that are characteristic to the electrical on/off switching circuits of each 

device type, while being consistent across home networks. They have run a 6-month experiment 

on seven homes, collecting over 2500 switching events for 94 individual appliances at a 1MHz 

sampling rate via custom-built hardware. A pre-processor extracts high-order harmonics from the 

raw measurements, which are processed through a K-Nearest-Neighbors algorithm to detect 

unusual events (change in appliance states). The reported accuracy (in terms of appliance 

identification rate) is 94%.  

Recent studies have explored incorporating user behavior and appliance usage information 

into the set of features used by a non-intrusive load monitoring system. In Ford (2009), the author 

proposes an Advanced Electricity Meter (AEM) that uses three sets of features (measured short-

term electric parameters, time-dependent appliance state changes, and time-of-day of usage) and a 

membership model that specifies the extent to which each representative features is present in 

                                                 
36

 Accuracy is there defined as the percentage of energy of several classes of appliances that was correctly 

identified. 
37

 Defined as percentage of correctly identified individual loads (“hit-or-miss”). 
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each appliance. The Bayesian-inspired classification framework is trained using data collected at 

~12kHz and performs near real-time appliance identification with reported accuracies of over 

95% for a small set of appliances (including kettles, fans, hair dryers).  

Other work that incorporates user behavior information has begun exploring advanced 

learning algorithms that operate on much coarser-sampled data (as can be currently provided by 

electric utilities) obtained from many real homes over extended periods of time and over a larger 

palette of consumer electronics. Kolter et al. (2010) use plug-level, hourly-sampled power 

readings over 12-24 months from approximately 600 residential homes in the Netherlands, 

totaling ~10,000 unique monitored devices and ~50 appliance types. They develop a structured 

prediction method for discriminatively training sparse coding algorithms that builds a dictionary 

of basis matrices corresponding to a small subset of appliance types that includes devices of 

similar functionality. Having access to the actual plug-level readings for all the appliances 

(ground truth), they are able to assess algorithm performance in a transparent manner. The metric 

they use for assessing disaggregation performance is proportional to the percentage of total 

household energy   that was correctly classified (in a few classes of appliances) yielding ~55% 

accuracy. Note that the accuracy estimate may be inflated because whole-home consumption was 

derived from the sum of data from the plug-level monitors, rather than a whole-home reading 

which might include additional appliances.  

A few authors approach the load disaggregation problem from the perspective of quickly 

exploring the space of possible finite-state appliance configurations that could have generated an 

aggregate signal, especially in the context of appliance control. For example, Baranski and Voss 

(2004b) generate finite-state-machine models of appliances using a genetic algorithm that 

combines events (steps in real power detected via a standard electricity meter) that occur a 

percentage of the time larger than a given threshold. They then run a clustering algorithm to 

assign readings obtained over one day to appliance types by their real power. Unfortunately no 

data characteristics or performance result is reported by the authors.  

A distinct approach has been taken in Inagaki et al. (2011), whereby the single point  

(i.e., looking at the current and voltage waveforms at a single point in time, rather than 

differences in the power signal) disaggregation problem is formulated as estimating the number 

of appliances from each type in a discrete set via integer programming. Here, the authors divide 

up current readings over single waveforms to individual appliances by finding the appliance 

configuration that minimizes a least-square current error term. They test their method on 42 

individual appliances of 9 types, sampling current and voltage data at 40 kHz using custom-made 

hardware, and achieve a 80% accuracy on appliance state identification rate.  

 The large majority of single-point disaggregation methods make use of some notion of 

appliance signatures. Lam et al. (2007) advocate building a database of such signatures, and 

propose a method of classification of load signatures based on a voltage-current (V-I) waveform 

trajectory. Based on geometric shape features extracted from the V-I trajectories, they employ 

hierarchical clustering (based on decision trees) to assign appliance into categories. Their 

approach effectively groups appliances of very different purposes (e.g., CD-player and 

refrigerator) by their V-I shape characteristics, given they have similar operating characteristics.  

Along with work on algorithmic improvement, recent studies have also explored 

consolidation of established techniques into commercial prototypes targeted at specific functions. 

In Berges et al. (2010), the authors build custom monitoring prototype using commodity 

hardware to collect data for one apartment, having in mind an application to personal energy 

auditing. They implement several existing NALM approaches, effectively experimenting with 

different appliance signatures proposed in the literature (real and reactive power, harmonics and 

transients) combined with off-the-shelf machine learning classification algorithms. In Berges et 

al. (2009) the same group proposes a 1-nearest neighbor algorithm on a Euclidian metric for 

appliance classification, which they use on real and reactive power change events, as well as 

harmonics detected from voltage and current data sampled at 100 kHz from 8 different 



Disaggregation  49 

 

 

appliances. They report an accuracy of 79% (appliance identification rate). Using the same 

algorithmic approach, Berges et al. (2010) report an accuracy of 85.2% (percentage of energy 

explained) for a set of 17 appliances, with data recorded over 5.5 days. In both cases, ground truth 

information is recorded through an initial training process in which users manually change the 

state of target appliances (on, off, or multistate) and record appropriate labels.  

Recent research has attempted to combine the advantages of, as well as consistently 

compare, different disaggregation methods. In Liang et al. (2010a), the authors propose an 

electric-load intelligence (E-LI) platform that integrates a number of previously-proposed 

algorithms and approaches. The platform consists of a database of known appliance features and 

modules for event detection, feature extraction, and appliance clustering, which operate both on 

low (up to 1 Hz) and high (more than 1Hz) resolution current and voltage data. The approach 

extracts features (as proposed in previous literature) from raw data at multiple scales (steady-state 

and transients) such as current waveform, real/reactive power, harmonics, instantaneous 

admittance waveform, instantaneous power waveform, eigenvalues (EIG), switching transient 

waveform (STW). The features are passed through a Committee Decision Mechanism (CDM), 

that obtains disaggregation results from multiple single-feature algorithms (integer programming, 

see Inagaki et al. (2011), genetic algorithms, see Baranski and Voss (2004b), pattern recognition 

using neural networks, see Sultanem (1991)) and picks the best result as picked by different 

mechanisms (most common occurrence, minimum residual, maximum likelihood estimation). To 

compare results from different algorithms, the authors introduce several consistent performance 

metrics based on appliance identification rate. They test their platform on a database of 27 

appliances (with 32 operational modes), with data sampled at 0.128 Hz by comparing algorithm 

performance for several combinations of algorithms and features, and obtain agreements of 85%-

95% in performance. In a subsequent study, Liang et al. (2010b), the same group further tests the 

performance of different algorithms through Monte-Carlo simulations of loads configurations. 

They test different algorithms they had previously incorporated into the E-LI (integer 

programming, genetic algorithm, neural network, least residues) and use three CDMs (named 

most common occurrence, least unified residue, and maximum-likelihood estimation) under many 

randomly-generated home appliance configurations using signatures from the aforementioned 

database of 27 appliances. The reported accuracies are up to 93% under metrics based on 

appliance identification rates. Furthermore, the authors perform a sensitivity analysis to quantify 

the performance of different algorithms and features combinations under varying number and 

types of loads that are on at the same time, and obtain worst performance for real-reactive power 

features under a least-residues algorithm, and best performance for the maximum likelihood 

estimation-based algorithm. 
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Appendix C. Interview Questions 
 

1. What are the potential applications that can be built on top of appliance-specific energy 

consumption information?  

a. What are the benefits associated with each? 

 

2. What are the state-of-art disaggregation techniques? 

a. What does the graph of sampling frequency vs. accuracy look like?  

i. What do you mean by accuracy? What appliances (make, type, etc.)? 

ii. How reliable are the algorithms to noise, changing appliances, etc.  

iii. Is this residential or commercial or industrial? 

b. What are corresponding software requirements?   

c. What are corresponding hardware requirements (CPU/memory/network)? 

d. What are corresponding cost numbers?  

i. In terms of implementation? 

ii. In terms of wide-scale deployment? 

 

3. What are the capabilities (sampling frequency, CPU, memory, network) of your (or 

known) solutions? What is planned for future? 

 

4. What are the gaps between the ideal and existing solutions (i.e., current solutions are not 

up to speed with techniques identified in #2)?  

a. From a technology perspective? Why? 

b. From a market perspective? Why?  

c. From a policy perspective? Why? 

 

5. What are the technology/policy recommendations? 

a. What is the right mix of central/local processing?  

b. What do the companies need going forward?  

i. What kind of standards would speed up innovation/time-to-market?  

ii. What kind of policy levers would help? 

 


