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Abstract

We analyzed the planning problem for HIV screening, testing and care. This problem consists of
determining the optimal fraction of patients to be screened in every period as well as the optimumstaffing
level at each part of the health care system to maximize the total health benefits to the patients measured
by Quality-Adjusted Life-Years (QALY's) gained. We modeled this problem as a nonlinear mixed integer
programming program comprising of disease progression (the transition of the patients across health
states), system dynamics (the flow of patients in different health states across various parts of the health
care delivery system), budgetary and capacity constraints. We applied the model to the Greater Los
Angeles (GLA) station in the Veterans Health Administration (VHA)system. We found that a Center for
Disease Control recommended routine screening policy in which all patients visiting the system are
screened for HIV irrespective of risk factors may not be feasible due to budgetary constraints.
Consequently, we used the model to develop and evaluate managerially relevant policies within existent
capacity and budgetary constraints to improve upon the current risk based screening policy of screening
only high risk patients. Our computational analysis showed that the GLA station can achieve substantial
increase (20% t0300%) in the QALY's gained by using these policies over risk based screening. The GLA
station has already adapted two of these policies that could yield better patient health outcomes over the
next few years. In addition, our model insights have influenced the decision making process at this

station.

1. Introduction

Veterans Health Administration (VHA), one of the components of the Veterans Administration, is the
largest integrated healthcare provider in the United States of America (USA). The VHA is funded by the
federal government and serves the medical and social support needs of over 8 million active duty and
honorably discharged veterans over their entire lifetime. The VHA provides these services through 128
stations. For the purpose of this paper, we shall focus on the Greater Los Angeles (GLA) station, as the

unit of analysis because of our close working relationship with its key decision makers.
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The VHA is the largest provider of HIV care in the USA. As of 2011, the VHA reported over 25,271
HIV infected patients, an increase of 3.7% from 2007. The VHA is also a leader in quality of care
provided to HIV infected patients with high adherence to the Department of Health and Human Services
clinical guidelines across all regions.An important aspect of HIV care is early diagnosis and treatment
which is known to lower cost and improvepatient outcomes (Palella et al. 2003). In addition, this reduces
the incidence of secondary complications which are very costly to treat if HIV itself is not treated in a
timely manner (Schackmanet al. 2006). Prior studies at the VHA (Nayak et al. 2012) show that a major
factorimpeding the early diagnosis and treatment of HIV is the policy ofrisk-basedscreening. Under this
policy, patients are tested for HIV only if they display certain risk factors such as injection drug use, or if
they present symptoms of opportunistic infections. Owens et al. (2007) found that only 36% of at risk
patients had ever been tested for HIV. The main operational barriers cited for insufficient coverage of
screening and late diagnosis of HIV infection were constraints on provider time and insufficient capacity
of trained counselors (Goetz et al. 2008a).

An alternative policyrecommended by the Centers for Disease Control (CDC)is to implement routine
HIV screening, in which a patient visiting the health care facility would be offered an HIV test
irrespective of risk factors or symptoms. Several recent studies in the public health literature have found
that such routine HIV screening is “cost-effective”'compared to risk based testing even in settings with
very low prevalence of HIV (Paltiel et al. 2005). In 2009, the VHA proposed to implement the routine
screening policy across its stations’. Consequently, the management at the GLA station wanted to
understand if such a policy would be feasible given their capacity and budgetary constraints, and if
necessary,was willing to consider alternate policies to improve upon their current risk based screening
policy.In response, we developed an optimization model to achieve these goalsat the GLA station.
Consistent with the mission of the VHA of providing high quality care over the lifetime of veterans, the
objective of this model is to maximize the total QALY's of all the patients at this station. To achieve this
objective, this model determines the optimal fraction of patients to be screened (i.e., offered the test) and
also determines the optimum staffing levels at different parts or locations of the station. This model
explicitly captures patient flow and the associated disease progression through system dynamics

constraints. In addition, it also incorporates budget and capacity constraints.

'A policy or interventionis said to be “cost effective” if the Quality Adjusted Life Years (QALYSs) gained
due to that intervention costs less than $109,000 to $297,000 per QALY gained.
(http://www.cdc.gov/hiv/prevention/ongoing/costeffectiveness/). The term QALY's is commonly used in
the health economics and health policy literature to assess the value of a medical intervention in terms of

the number of years at a particular quality level added due to the intervention(Dolan et al. 2005).
*http://www.va.gov/vhapublications/ViewPublication.asp?pub_ID=2056
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We first used this model to evaluate the current risk based screening policy and the proposed routine
screening policy at the GLA station. We found that the cost-effective routine screening policy was not
feasible in the current budgetary environment at this station. Therefore, we developed four other policies
within the framework of our model that improved upon the current risk based screening policy. An
extensive computational analysis provided a benchmark value for each policy and provided guidance in
terms of the fraction of patients to be screened in every period as well as the number of health care
workers that need to be staffed at each part of the system in order to implement a policy. Thus, unlike
conventional cost effective analysis, our approach provided a feasible plan that can be implemented.

Optimization based models have been used to evaluate prevention and treatment policies for HIV at
differentdecision makinglevels(Kahn et al. 1998; Rauner et al. 2001). Population level studies evaluate
the cost effectiveness of policy interventions (Zaric et al. 2000; Long et al. 2010), while studies at an
individual patient level optimize clinical decision making to maximize patient welfare (Shechter et al.
2008; Roberts et al. 2010). Health care systems facethe problem of integrating cost effective policies with
clinical decisions subject to organizational and budgetary constraints. Blount et al. (1997), Zaric and
Brandeau (2001) andBrandeau et al. (2003) evaluate general formulations of this problem with budget
constraints to decide optimal intervention for prevention of infectious diseases. Their approximations lead
to formulations that can be solved by linear programming and convex optimization techniques. More
recently, Kucuzyaciki et al. (2011) and Deo et al. (2013) combine clinical models of disease progression
for chronic diseases with operational models of the health system. However, none of these papers
consider different partsof the health care system with capacity constraints and do not jointly optimize
screening and staffing decisions, which are the key features of the decision problem faced by the VHA.

Our paper makes the following contributions. First, it models a very relevant but complex problem at
the interface of operations management and public health. It then develops methods for the efficient
computation of bounds and managerially relevant solutions for this problem. Second, to the best of our
knowledge, this is the first planning model which determines the fraction of patients that need to be
screened along with the staffing requirements at screening, testing and care, while including disease
progression and flow of patients in different health states across various parts of a constrained health care
system. Third, we explicitly consider capacity and budget constraints and illustrate their impact on
screening and staff allocation decisions. Fourth, we apply the model to data collected from the GLA
station to analyze various policies. Our computational analysis shows that GLA station can achieve
substantial increase (20% to 300%) in the QALY's gained by using these policies and our model provides
guidance for its effective implementation.Fifth, the insights from our model have influenced planning
decisions at this station. In addition, two policies have been used at the GLA station and our analysis

provides the basis to extend and enhance these policies.



The remainder of the paper is organized as follows. In Section 2, we describe the health care system,
patient health states, disease progression and system dynamics.These form the basis of our optimization
model, which is formulated in Section 3. We also discuss structural properties, construct an upper bound
and develop four policies that serve as lower bounds for this model. In Section 4, we describe various
primary and secondary sources of data used in the model. Section 5 analyzes several policies for HIV
screening, testing and care that can be evaluated within the framework of our model. Section 6 describes

the application and qualitative impact of this work.

2. Problem Description

The GLA station is one of the largest and the most complex stations in the VHA consisting of 3
ambulatory care centers, a tertiary care facility and 10 community based clinics. The GLA serves veterans
residing in Los Angeles, Kern, Santa Barbara, Ventura and San Louis Obispo counties. The GLA station
management recommendedthat we conduct a station level analysis because it was difficult to estimate the
budget for individual facilities within the station. Further, the management felt that such an analysis could
lead to effective staff reallocationbecause there was considerable flexibility in adjusting the staffing levels
across facilities within a station.From a managerial perspective, these aspects were considered more
important than any potential downside due to loss of granularity in terms of patient flow and staffing.

As discussed before, the primary benefit of routine screening is early diagnosis of HIV positive
patients and their connection to care before they become symptomatic. This benefit arises from the fact
that the health care cost of asymptomatic HIV patients (including HIV treatment and other
hospitalization) is much lower and their quality of life is much better than that of symptomatic HIV
patients (Kaplan et al. 2009). In order to capture this effect, we constructed a compartmental model of
patients with each compartment corresponding to a combination of the health state of the patientsand part
of the health care system to which they belong. Below, we describe the health care system, patient health

states, disease progression, and system dynamics.

2.1 Health Care System

Based on our discussions with the stationmanagement, we divided the health care system at the station
into three distinct parts: 1)primary care (facilities such as outpatient clinics and hospitals where patients
are screened or are offered an HIV test and blood samples are collected if they agree to be tested), 2)
laboratory(a central location where samples collected during screening are tested), and 3) infectious
disease specialty care (where HIV positive patients are referred for monitoring or treatment). Primary and

specialty care could be staffed by up to three worker types: physicians, nurses and counselors, while the



laboratory is only staffed by the laboratory technician.Staffing levels are fixed during the budget horizon
of one yearto provide certaintyand foster a stable work environment for all their staff.

To provide a precise definition of the health care system, let 7 € [T] = {1, 2,..., T}denote the budget
periods each corresponding to a yearand let t € M; = {1+ 12(t — 1),..., 12t} index the set of discrete
time periods corresponding to a month within the budget period. Further, let
k € W = {phys,nurse, couns, lab} index the set of worker types and [ € L = {P, L,S} index the set of
parts or locations where P denotes primary care facility, L denotes laboratory and S denotes infectious
diseases specialty care. Each location [ is staffed by ny; health care workers of type k, each of whom
earns a wage wyin each period and spends a total of yy ; time units on average with the patient. Since the
health care workers have other tasks associated with other diseases and conditions, we assume that the
total time available with the resource of typekin location Ilfor the HIV routine screening program is

limited and denoted byAy ;.

2.2 Patient Health States

Following earlier work in the modeling of disease progression in HIV patients (Freedberg et al. 1998;
Mauskopf et al.2005),we use different ranges of CD4 cell count’, and the presence or absence of
Opportunistic Infections (OI) to define a set of health states of HIV infected patients. In addition, we
include uninfected and dead as two additional health states.Table 1 below provides the definition of the
resulting 14 health states based on CD4 count range and their associated states of Ol. These states are
indexed by iandjin the model.

[Insert Table 1 here]

In addition, the VHA identifies incoming patients as either high-risk or low-risk depending on their
observable characteristics such as previous Hepatitis B or C infection, injection drug use or homelessness.
These risk categories are indexed by r € R = {1,2}, wherer = 1, signifies patients of higher risk of
infection of HIV and r = 2, signifies those with a lower risk of infection. At the GLA station, 25% of the
patients were classified as high risk while the remaining 75% were classified as low risk (Goetz et al.

2013).

2.3 Disease Progression
In single patient models, the transition between health states is typically modeled as a discrete time
Markov chain in which the probability of transitioning from state i to state j is conditionally independent

of the history of earlier transitions. However, this approach is analytically intractable for a multi-

3CD4'T helper cells are white blood cells essential to the human immune system and are usually
expressed as number of cells per milliliter. Patients infected with HIV show reduced number of CD4 cells
and a lower number of CD4 indicates a greater progression of the infection.
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periodaggregate or population-level model like ours, which also considers multiple parts of the health
care system while optimizing screening and staff allocation decisions. Hence, we approximate the disease
progression model by using deterministic transition rates in which we assume that a fixed fraction of the
number of patients move from one health state to the other in each period®.This deterministic

approximation of transition rates is reasonable here since the unit of our analysis is the GLA station and

the population of patients in each state is relatively large. We useHrl’,futo denote the fraction of patients in
health state ithat move to health state j in one month. This fraction depends on the patient risk category r,
and the treatment status w € § = {treat,untreat}, where treat refers to undergoing antiretroviral
treatment anduntreat represents not undergoing treatment respectively.

Four processes govern the transition across health states: 1) HIV infection, 2) HIV infection
progression (treated and untreated), 3) Opportunistic infection(OI), and 4) OI recovery.We used clinical
data to estimate the transition rates associated with each of these processes separately. For certain
transitions that require more than one process simultancously, we assumed that the rate of one process
does not depend on the other. Details on the calculations of the transition rates are provided in the

Electronic Companion.

2.4 System Dynamics
In this section, we describe the system dynamics obtainedby combining disease progression with patient
flows to represent how patients move across different health states as well as various parts of the health
care system over time. In particular, we track the number of patients in each risk category r, each health
state i at each location [ in each time periodt.Figure 1 shows the flow of patients through various parts of
the health care system.

[Insert Fig 1 here]
Primary Care—Screening
The process starts with patients who are unaware of their HIV status, whom we call unscreened patients.
Let Ur",tdenote the total number of unscreened patients in risk category r, health state i and at time period
t.All patients with an opportunistic infection(i € J, = {7,8,...,13}) are immediately offered the HIV
testand their acceptance rate is 100%. A fraction a of the remaining asymptomatic patients who do not
have Ol (i €J, ={0,1,...,6 }) visit a primary care facility in period tfor other conditions.Let
S, crepresent the fraction of patients of risk category r in period t that are screened or offered the HIV
test. Afraction B of these patients accept the test. The number of unscreenedpatientsin the next time

period, Uri,tﬂis given by:

* A similar approach is used in mathematical epidemiology to model the spread of infectious diseases in the
population (Anderson et. al. 2002).



_ j i 0,i
rt+1 - z Hr untreat aBST,t)Ur,t + Nr,t+1 + R ter untreat

JEIw

vr,i,t (1)

The first term (Z jea, O )it (1 afS, t) t)of this equation is derived by summing three types of

untreat
patient flows shown in Figure 1: a) the asymptomatic patients who do not visit the clinic, b) those who
visit and do not get screened, ¢) those who visit, get selected for a test and refuse to be tested. This sum is

appropriately weighted by the rates of transition from state j to state i as determined by the disease
progression model. The second term, Nri,tﬂ is the number of new patients in health state i and risk
category 7 who enter in period(t + 1) as shown in Figure 1. The third term (R;; untreat) is the number
of uninfected patients who receive a negative HIV test at the beginning of period t and join the pool of
unscreened population in the next period.

Laboratory - Testing

The blood samples collected from patients who accept the offered testare then sent to the lab where the
actual test is conducted and the results are communicated back to the patient. Here, we allow for a lag
between the collection of the sample and return of the results due to congestion at the lab. Let
Wri,leepresent the number of patients in health state i, risk categoryrwho are waiting to receive their

results at the beginning of the periodt + 1in the laboratory. This is given by:

i — Jjpii Jj pii Jj pii
Wr,t+1 - z W 0 runtreat + z aBSrt U 0 runtreat + z U Hr untreat
JE€I JEIw J€I,

j gt
z R Hr untreat

Jj€EI

vr,i,t (2)

Wri,tﬂ consists of four terms. The first term (X;¢y W] Hjuntreat) represents the number of patients
waiting at the beginning of period t who have undergone disease progression, where J =3, U J,,. The

second term, (3 jea,, ABSre Uy 4 9] intrear) TEPTEsents the number of asymptomatic patients who accept the

test offer at the beginning of period t. The third term, (Xjes, Urj’tHjI T ntreat)> TeDrEsents the number of
symptomatic patients who directly proceed to testing. The fourth term (X, RJ Hjuntreat) represents
the patients who receive their results and who either exit the system as their tests are negative (i.e., j = 0)
or who are now transferred to care (i.e.,j # 0). As before, multiplication by Hr untreatm each term

represents disease progression in one period.

Specialty Care — Monitoring and Treatment



Patients who receive positive test results are connected to infectious diseases specialty care for monitoring
and treatment. Again, we allow for a lag between the receipt of results and being connected to care. Let
r",t denote the number of patients of risk category r and health state iwho are initiated in care. Of
these, depending on the stage of their disease progression, IMr",t are initiated under monitoring while IDr",t
are immediately initiated on treatment. Let Eri,tﬂ denote the number of patients at the beginning of the
period t + 1 who are waiting to be enrolled in care. This is given by:

i = z ROV 4 z El gl

r,t’runtreat .t Yruntreat
Jjei/{o} jer /{o}

§ Jj piit § J pii
- IMr,ter,untreat - IDr,ter,treat
jei/{o} jei/{o}

The first term, (3 j€7/(0} R{Iterfime at) 18 the number of patients who received positive HIV test results

vr,i,t 3)

at the beginning of period #. The second term, (Xes/(0} Erj’t o)

- untreat)s 18 the number of patients who

were waiting to be enrolled into care at the beginning of period t. The third and fourth term
Xjessioy IMZItHrj”intreat, Yierjoy ! Drj,terj,'tireat) are the number of people who were enrolled at period t
into monitoring and treatment respectively. Patients who are enrolled into treatment now undergo disease
progression under the parameter Hrj”tireat instead of Hr]"’intre at-

The decision to initiate patients under monitoring or under treatment depends on the health state of

the patient and current clinical guidelines described in Section 4.2. We use a binary indicator parameter

z' to capture the clinical decision whether all patients at health state i are initiated under treatment (

4 =1) or monitoring ( z f= 0). Then, the number of patients who are initiated into treatment and

monitoring at time period ¢ are given by the following equations:
IDL, =1t 7 vrit (4
Mi, =18, (1-2Y) vrit  (5)
Next, considerM£,t+1, the number of patients of risk category r under monitoring in state i at the

beginning of period t + 1. This is given by:

i _ j pii _ i jplit
rt+l — z Mr,t Hr,untreat z Mr,tz Hr,treat

JjET/{0} JEI/{0} vr,i,t  (6)

j i
+ z IM; . 6 unireat
Jjei/{o}



The first term in Equation (6) represents the number of patients in health state { who remain under
monitoring at the beginning of period ¢, the second term represents who enter treatment from monitoring
and the third term represents the newly diagnosed patients who enter care under monitoring.

Finally, let Dr",leepresent the number of patients under treatment in state i at the beginning of period
t. This is given by:

(= z Dl oi 4 z M,z 6)i .+ z D), o)t vrit ()

r,t “rtreat rtreat r,t Yr,treat
Jje1/{0} Jj€1/{0} Jj€1/{0}
The first term in equation (7) represents the number of patients under treatment in period t in a particular

health state, the second term denotes the number of patients who enter treatment from the pool of
monitored patients and the third term is the number of newly diagnosed patients who enter treatment.

In formulating the system dynamics (1) through (7), we have made the following simplifying
assumptions. First, once patients enter the system and are tested, they can exit the system only if they are
uninfected or if they die. Second, all primary care locations fully comply with the screening policy. Third,
the treatment protocol is well defined and is followed by all physicians at the infectious diseases
specialty. These assumptions were validated by prior internal studies at the GLA station.Given the health
care system, patient health states, disease progression and system dynamics the overall objective of the
GLA station is to maximize the aggregated Quality Adjusted Life Years (QALYs) across all patients in
the system. This can be done by appropriately choosing the screening fraction and consequently the
number of patients to be screened, tested and cared in every period and by determining the staffing level
at each part of the health care system to execute this choice. While doing this the station faces
organizational constraints relating to capacity and budget availability. We next develop an optimization

model for this decision problem.

3. Model

In this section, we start by describing the objective function and the organizational constraints related to
budget and capacity. These together with the previously described system dynamics form a discrete time
planning model. We characterize key properties of this model, and use them to develop an upper bound
which can be employed to evaluate the quality of any given solution. Finally, we develop managerially
relevant heuristics or policies to solve this model. Table 2 summarizes all notations that are used in the
model including those that have already been introduced in the previous section.

[Insert Table 2 here]

3.1 Objective Function



In accordance with the existing literature on economic evaluation of health interventions and programs
(Dolan et al.2005) and discussions with senior administrators at the station, we choose the objective
function of maximizing the total Quality-Adjusted Life Years (QALYs)gained for the entire patient
population over the problem horizon. Note that using this measure ensures that aggregate survival as well
as quality of life of patients is considered. Although QALY is not an operational metric that is used
regularly for planning and scheduling decisions within the VHA, the management agreed that this is a
reasonable objective as it is consistent with the mission of the VHA.

Calculating QALY s involves first associating each health state i with a Quality of Life (QOL) utility
¢ " and then multiplying the QOL utility of each health state with the corresponding number of patients in

that state. These are calculated by using equations (1) through (7) developed in Section 2.4. The QOL
utility is a measure of health related utility of patients and ranges between 0 and 1 where 0 corresponds to
death and 1 corresponds to perfect health. Finally,the total QALY's are calculated over the entire period of
analysis. Using this approach, the objective function can be represented by:

qi(Uri,t + Wri,t + E};,t + M};,t + Dri,t)
iE€T,TERLEM,TE[T]

3.2 Organizational Constraints
We consider two main sources of organizational constraints in our model. The first is concerned with total
annual HIV related budget at the level of a station, while the second defines service level constraints in

various parts of the health care system within the station.

Budget Constraint

The budget at the GLA station consists of three components: the screening cost, health care costs
associated with a patient in a particular system state and the cost of wages. This is represented by the
following set of inequalities:

i i irgi
CS'aBs, Ui, + z CS'UL,
i€9,y,TER, LEM; i€, /{13},rER,tEM;

+ z C)l(X,E’t + z nk’ka < B(T)

i€7, /{13)7 ERLEM XEX LELkEW tEM, vT ©)

The first two terms in Equation (8) correspond to the screening costs. This is got by multiplying the cost

of screening per patient in health state i (CS*) with jen, AP Uri,t, representing the asymptomatic patients
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who accepted the offered HIV test and with}; j€9,/(13) Ur",t denoting the number of symptomatic HIV
patients who were transferred straight to testing. Both these terms are aggregated across all risk categories
and time periods up to one year. The third term represents the cost of providing healthcare services to
patients in different system states. This cost is composed of several components which depend on the
system state of the patient. For example, if a patient is in treatment, the cost components would be
pharmacy, testing, inpatient, outpatient and overhead costs. Further, the magnitude of this component will
also depend on the health state of the patients. For instance, more critically ill patients with lower CD4
count would typically incur higher pharmacy costs. We combine all such cost components into one
parameter, Ci representing the cost of having one patient in health state iat system state X. Here, XeX =
{U,W,E,M, D}= {Unscreened, Waiting for results, Waiting to be Enrolled, Monitoring, Treatment}. The
fourth term in the equation above is the labor cost which is the salary by resource type k multiplied by the

staffing level of that resource type at a particular location [.

Service Level Constraints

In addition to the budget constraint, the management of the GLA station would also like to ensure timely
service of patients and avoid long delays. We model this requirement using a constraint P{W, < 7;} =
a; VI € L where W;is the random waiting time at location [. This can be interpreted as the probability
that the waiting time is less than a specified quantityz;, must be greater than a certain threshold «; . Here,
the tuple (7;, ;) were specified at each location based on the organizational goals at the VHA. We use an
M/M/1 queuing model to approximate P{W, < 1,} = 1— e (A% > o, VI € L (Kleinrock, 1975).
Here, A; denotes the arrival rate at location [, while y; denotes the service rate at location [. Using the

natural logarithm operator this can be reformulated as:
1
A Su+ T—ln(l —a) (9a)
!

Since the second term on the right hand side of constraint (9a) is negative, this constraint is tighter than
the traditional capacity feasibility condition A; < y;, which does not impose any requirements on waiting

times. Note that reducingquantityt;or increasingthresholde;, reduces the effective capacity j1; = y; +
Tiln (1 — a;)and further tightens this constraint. To operationalize (9a), we need to compute (A;, y;) V1.
l

The capacity of resourcek at location [ is given by ny Ak, /yk, patients. Therefore, we approximate the
service rate at location las the minimum or bottleneck capacity across all the resource or worker types
available at that location given byu; = ming{ny Ax; /Yx,}.Below we use the system dynamics

developed in Section 2.4 to calculate A;and derive the service level constraints for each location.
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Primary Care: (1 = P). Observe from Figure 1 that the number of patients to be screened in period t

is given  byXier, rer aBSr,tUr"’t + Xies,/(13)reR Uri,t. Therefore, Ap = Yies, rer aBSr,tUr"’t +
Yied, /(13}reR UL, and pp = ming{ny pArp /YVip}. Substituting these in inequality (9a), we get the

service level constraint for screening as:

aBSy; Uri,t + Z ri,t
i€l reR i€7,/{13},reR
vt 9)

1
< ming{nypArp /Vip}+ T—ln A1—ap)
P

Laboratory:(l = L). Figure 1 shows that the number of patients who receive their results

18)ieq J{13},reR Rﬁ',t, which is also the input rate, under the assumption of stability Therefore, 4; =
Yier j(13}reRr RL, and p; = ming{n,  Ax. /Yi.}. Substituting these in inequality (9a), we get the

service level constraint for laboratory as:

. 1
RL, < min{ny Ay /Yien} + T—ln (1-ay)
i€l /{13}reR L vt (10)
Specialty Care: (I = S). In each period there are two kinds of patients who visit the infectious
diseases specialty, patients under monitoring and patients under treatmentgiven byMri,t and Dr",t
respectively. Patients of health state i who are under monitoring and treatment visit the healthcare system

during a given period with frequency ¢i,and ¢} respectively.Therefore, Ag = Yies /{13},regg(Mri,t<p,"\,, +

Dr",tqof)) and pug = ming{ny sArs /Y s}. Substituting these in inequality (9a), we get the service level
constraint at the infectious diseases specialty as:

o o ) 1
My c@y + Dy epp) < miny, {nk,SAk,S /J’k,g} +—-In(1-as)
, s
ie7 /{13}rer vt (11)

3.3 Planning Problem
Using the above described objective function, system dynamics and organizational constraints, the
planning problem faced by the GLA station can be formulated as the following nonlinear mixed integer

program, which we describe as the QALY Maximizing Planning Problem (QMPP).
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(QMPP) Maximize ZiEJ,rER,tEMT,TE[T] ql(U;t + ert + Eﬁ,t + M:;,t + D;t)

Subject to: (1) through (11) and

0<S,,<1 vr,t  (12)
ri,t' Wri,t'Ri,t'Eri,t' Mri,t' Dri,t' IDri,t'Iri,t'IMri,t ER, vr,i,t  (13)
nk’l € N+ Vk,l (14)

Here, as developed in Section 2.4,constraints (1) through (7) describe the system dynamics.As described
in Section 3.2, constraints (8) represent the budgetary constraints, while constraints (9) through (11)
represent the service level constraints. Constraints (12) represent the range for the screening variable
while constraints (13) and (14) represent the domains for the other variables.

Observe that the QMPP contains a knapsack problem defined by constraints (8). Thus, we need to
solve instances of a NP-complete problem and it may not be always possible to solve real sized problems
to optimality. We verified this in our computational experiments in Section 5. Consequently, to solve this
problem, we elected to develop effective heuristics that are both computationally tractable and
managerially intuitive. We also develop relaxations to the problem to obtain an upper bound on the
objective function, which is used to evaluate the performance of the heuristics. If we replace
apS,: Ur",twith Vr",t in constraints (1), (2), (8) and (9) of the QMPP and add the definitional constraint
Vi, = aBS, Ut ., Vr,i,t, then the QMPP can be transformed into the following integer bilinear program
QMPPB. This will be useful in developing a tight upper bound for the QMPP.

(QMPPB) Maximize Ziej,reR,teMT,re[T] qi(Uri,t + Wri,t + Eri,t + Mri,t + Dri,t)

Subject to: (3) through (7), (10) through (14) and

vri,t (1)
i - i i i i 0 po0,i
Ur,t+1 - z Hr,untreat (Ur,t - Vr,t) + Nr,t+1 + Rr,ter,untreat
J€Iw
vrit  (2°)
i _ J pii jpii j pii
WT,t+1 - z M/r,ter,untreat + z Vr,ter,untreat + z Ur,ter,untreat
J€EI JEy JEI
_ j pii
z Rr,ter,untreat
Jj€EI

13



. . . . . . 2
CSVi+ Y CSUWi+ > cixi, VT ®)
I€Ty,TER LEM, i€, /{13],TER LEM;
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+ z Ny Wi < B(7)
LELKEW, tEM,

. . ] 1 vr,i, t 9
et Z U < mlnk{nk,PAk,P /yk,P} + T_ln (1 —ap) ©)
i€dy reR i€3,/(13)reR P
Vi, = aBS, Uk, vr,i,t  (15)
L ER, vr,i,t  (16)

Observe that in the integer bilinear program QMPPB, all the non-linearity in the problem is now captured
by bilinear constraints (15).

Proposition 1: The objective function of the QMPPB can be written as:

i i
Ko + z Tyt Dy ¢
i€J,TER,LEM,TE[T]

. 'i 'i .
WhereKy and 7l ; = £(6] s eaer O untrears @' t)are constants.

All proofs are provided in the Electronic Companion. Proposition 1implies that the QALY's in the system
cannot be maximized by increasing the screening rate alone as advocated by both the risk based and
routine screening policies unless that increase can be translated to patients treated. This is consistent with
observations in population level studies (Long et al. 2010). However, the number of patients treated is
often constrained by the budgetary and capacity constraints. Thus, the focus should be on determining

how many patients can be optimally treated and this in turn should be used to determine the screening

rates. This is accomplished by the QMPPB. Let Qri‘tbe a lower bound and ﬁ;‘tbe an upper bound on Uri,t.
The computations of these bounds are described in the Appendix. The following proposition helps in

reducing the complexity of the search space for heuristics to solve the QMPPB.

Proposition 2: The screening rate is bounded by the following two inequalities:
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Where,K,, p* and g, are :

_ WiV i [ Wkk _ [ Wik _
K= ) Z( Aw)@,t <A—k,prp>l(1 ap) <Akss>l(1 as)

KEW,teM \ i€],

iEJrER teM, i€J reR,t M
%%
pl:C’sJ’Z(Akyrk) b
ew k,ptpP
w,
= Y1 (52t 4 s,
€Ty kew kP
Further, for a stationary screening policy for which S,., = S, Vt, S, < —— Bk
' terc Ont

Note from Proposition 2 that for a given screening rate, the total number of patients that can be treated is
bounded by: 1)The residual budget left over for treatment after the screening, staffing and the patient state
costs. 2) The number of screened asymptomatic patients who test positive and symptomatic patients being
treated. Further, the total number of patients who actually are treated will be determined by whichever of
these two conditions become tight. Given, that typically budgets are scarce and there is a large population
of patients, it is likely that the budget constraint would be tighter. This implies that while setting
screening rates, one has to understand budgets and its implications on treatment. This is consistent with

the public health literature (Martin et al. 2010).

3.4 Relaxations and Upper Bounds
To develop an upper bound on the QMPPB, we replace bilinear constraints (15) by convex over and

under estimators of the bilinear terms using the approach proposed by McCormick (1976).
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Letﬁlr,t andgr",t represent the upper and lower bound on the variable Ur",trespectively. Then it follows

from (15) that:

Vie= a,BSr,tgit vr,it (15a)
Vi< apS. Uy, vr, it (15b)
Note that af Ui, < apUi, < aPUcand 0<S,, <1vr,i,t. Then, afS,.Uy.+aBUi, —

—i —i . . . . .
aBUre = (Spe = 1)aBUp; +aBUf, < (Sy.—1)apUi, +aBUi, =S, .aBU}, =V, Thus,

Vi > apS, Uy, +apUi, —aplUy, vr, it (15¢)

Similarly, a,BSr,thi,t + aﬁUri,t ‘a'ﬁgri,t = (Sr,t - 1)aﬁgrim + aﬁUri,t = (Sr,t - 1)‘1’,3Uri,t +

a',BUri,t = r,ta,BUri,t =Vri,t.Thus,

te < aBS. Ul +aBU;, —aB Uk, vr, it (15d)

Observe thatconstraints (15a) through (15d) provide a linear relaxation to bilinear constraints (15). This
substitution reduces this problem to a linear mixed integer program which can now be solved to
optimality using commercial solver such as the GUROBI solver (Gurobi Inc., 2010). We call this
formulation as the RQMPPB and note that the optimal solution to the RQMPPB provides an upper bound
to the QMPPB and by Proposition 2, to the QMPP.

The quality of this upper bound strongly depends on the bounds of Uri,t. A recent improvement to the
McCormick relaxation is introduced by Wicaksono and Karimi (2008). We adapt this technique to do an
ab initio partitioning on Ur",t, apply a set of under and over estimators to each partition and introduce a
logical constraint to limit the partitioned variable to one active partition. To achieve this, let Ur",t be
separated into mequally spaced partitions as U}, = al,(1) <...<al,(m) <al,(m+1) = ﬁit The
choice of parameterm is based on comparing the reduction in the value of the bound with the increased

time it takes to compute the bound when m is incremented by one starting with m = 1and is described in

the Electronic Companion. Define binary variable &i,(m) so that E.m)=1 if
UL, € [aL,(m),al (m + 1)] and &~ ,(m) = 0 otherwise. This leads to the following constraints:

UL, =al,(m)& . (m) + Qit[l — & ,(m)] vr,itm (15e)
. . . —i .
U;,t < a;«,t(m + 1)f1it(m) + Ur,t[l - f;t(m)] vVritm (151)
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nM1=1 f;,t(m) = 1 vrl l't (ISg)
&.(m)e{01} Vr,it,m (15h)

Next, we introduce constraints of the type (15a) through (15d) for each partition by replacing ﬁi,t with
al,(m+1) and U}, with al,(m). Depending on & ,(m), the appropriate set of constraints would be

activated, thus providing tight relaxation to the bilinear terms. This leads to the following constraints:

> afS,al (m) — K[1 — & (m)] vr,itm (152%)
i< afSal m+ D) +K[1-E.m)] vritm (15b%)
i > aBS,al (m+1) + aBUL,

—afal (m+1) —K[1-&,.m)] Vritm (15¢”)

i< afSyal (m) +afUl, —af al (m)+K[1-E&.(m)] Vritm
(15d°)

A

The value of parameter K is set sufficiently large to deactivate these constraints if Ur",t does not belong to
that particular partition. To provide a tighter upper bound on the QMPPB, we solve the RQMPPB by
replacing (15a) through (15d) with (15a”) through (15d”) and (15e) through (15h). The performance of

this bound is evaluated in Section 5.

3.5 Heuristics and Lower Bounds

In this section, we discuss several possible heuristic solution methods to the QMPPB that correspond to
potential implementation policies at the GLA station. They can broadly be classified as fixed staffing
heuristics and variable staffing heuristics.

Fixed Staffing Heuristics

Here, we do not optimize over the staffing variables n,; Vk,l and these are set to existing levels
corresponding to the risk based screening policy. In this case, QMPPB reduces to a continuous bilinear
program. We then develop two heuristics depending on how the screening rate varies over time. In the
first heuristic, we add constraints S,., =S, Vr,t to ensure that the recommended screening policy is
stationary. Although apparently restrictive, it is easy to implement and was appealing to the GLA station
management. To solve the resulting problem we iteratively narrow down on the optimal stationary fixed
screening using the search algorithm described in the Electronic Companion. Note that this algorithm is
quite simple to implement as evaluation of the QMPPB given the screening rates is now a linear program
and can be solved very effectively using several commercially available solvers such as the GUROBI
solver. Further, Proposition 2 enables us to reduce the solution space of this algorithm. We refer to this

heuristic as the Fixed Staffing Stationary Screening (FSSS) heuristic.
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In the second heuristic, we allow the screening rate to vary over time so that the resulting screening
policy is non-stationary. The resulting problem reduces to a continuous bilinear program which is solved
by using the generalized reduced gradient algorithm (Abadie and Carpenter, 1969). This algorithm has
been shown to be very effective for large sparse dynamic nonlinear optimization problems (Drud, 1985).
We refer to this heuristic as the Fixed Staffing Non-stationary Screening (FSNS) heuristic. Clearly this
heuristic is less restrictive than the FSSS and hence can be expected to perform better. We verify this in
Section 5.

Variable Staffing Heuristics

Next, we describe two heuristics, where we allow the staffing levels to change andagain consider either
stationary or non-stationary screening rates. We refer to these as the Variable Staffing Stationary
Screening (VSSS) and the Variable Staffing Non-stationary Screening (VSNS) heuristic respectively. The
solution procedure for the VSSS heuristic is very similar to that of the FSSS heuristic, with the key
difference being that the evaluation of the QMPPB for a given screening rate in the search algorithm
would now require solving a mixed integer program. While this potentially can be more complicated, we
found that the GUROBI solved this problem very effectively. The solution to the VSNS heuristic is
complicated as it involves solving a nonlinear mixed integer program. We employ the combined penalty
and outer approximation method (Vishvanathan and Grosman, 1990) to solve this problem. Given that we
can optimize both staffing levels and the screening rates in the variable staffing heuristics, we expect both
of them to outperform the corresponding fixed staffing heuristics. However, the magnitude of the gap
between these heuristics is not apparent. Similarly,whether the VSSS outperforms the FSNS or vice versa
is not obvious a priori. We investigate these issues in the computational experiments in Section 5.

Finally, observe that the QMPPB is not jointly convex in the decision variables. Thus, this sequential
approach in the FSSS and the VSSS provides a feasible but not necessarily an optimal solution. Similarly,
given the complexity of the QMPPB, the algorithms used to execute the FSNS and VSNS provide

feasible but not optimal solutions.

4. Data Collection and Model Validation

The data required for our model can be divided into two broad categories. The first category includes
operational data concerning costs, budgets, incoming patient characteristics, time required for various
activities, time available and service level parameters. These data are specific to the GLA station and
were collected from a variety of sources including direct observation, administrative databases, clinical
studies and discussions with the GLA stationmanagement. The second category includes clinical data on
visit frequency under HIV care, the quality of life estimates for HIV patients in different health statesand

on treatment decisions. Weused published estimates for these parameters from the existing clinical
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literature and are more broadly applicable. Below we describe each of these categories in greater detail.

We then use the data to validate our model both in the context of the literature and the GLA station.

4.1 Operational Data

Costs

Primary drivers for variable cost in our model are cost of HIV screening cost (CS?), system state cost (C)
per patient and wages (wy).The screening cost CS! consists of the material cost of screening. The
screening cost per patient was estimated to be $80 after discussions with the management. The system
state cost per patient C} is composed of several components. Therefore, its estimation is more involved
and discussed in the Electronic Companion. As the staffing levels are endogenous to the model, the other
relevant cost component are the wagespaid to the health care workers of different types (wy). At the GLA
station, these costs are fixed and do not vary based on the patient load. These are shown in Table 2A in
the Electronic Companion.

Budget

The VHA allocates the budget to the GLA station annually and this budget does not carry over to the next
year. To provide a more stable and a long range plan, the management at the GLA station suggested that
we conduct our analysis for a period of 2 years, where the budget for year 7 is given by B(7), te{1,2}.
Note that, our model can be easily extended for 7 > 2 without any changes to the methodology by the
appropriate choice of T, where 7 € [T] = {1,2,...,T}. This is described in the Electronic Companion.
However, extending the model beyond two years was not realistic in our application context as there was
significant uncertainty in the costs of screening and treatment, the population of veterans that would be
served at this station, and the incidence and prevalence rates. To incorporate the uncertainty in these
parameters, the model can be solved every year with a two year horizon usingupdated parameters.

Due to various complexities in estimation, the annual GLA station budget was not broken down to the
level for HIV related activities which is the focus of our analysis. Therefore, we imputed a budgetary
range [Q (7), E(T)]using the risk based screening policy currently followed at VHA (i.e.,S1: = 1 &S, =
0 Vt). The lower bound of this range corresponds to the smallest annual budget at which the risk based
screening policy is feasible. The upper bound corresponds to the smallest value of the annual budget at
which no further gains in QALYS can be accrued from the risk based screening policy. This approach to
calculate [Q (7), E(‘[)] is formalized in the budget imputation algorithm provided in the Electronic
Companion. We conduct our analysis on all the proposed policies in Section 3.5 within this budgetary
range.

Incoming Patient Characteristics
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LetN, denote the number of new patients entering the station in time period t and p} be the fraction of
these patients in risk category r and health state i. The number of new patients in each risk category and
health state in each period who enter the station is thus given ber",t = N,p.. To estimate N, we
calculated the mean of historical data of total incoming patients over the past 12 months. The variation
around the mean was negligible and we did not detect any temporal trends (such as increasing or

decreasing over time) for the number of new patients.The parameter pi is the proportion of patients in

each risk and CD4 category. We calculate p = (1 — prev,.), where prevalence rate (prev,) is estimated
by Paltiel et al. (2005) and shown in Table 3A in the Electronic Companion.The proportion of patients
who are infected (prev,) are further divided into different CD4 counts in a fraction estimated for the
VHA by Gandhi et al. (2007), thus determining p., Vi # 0. Wereport this in Table 4A in the Electronic

Companion. Themanagementprovided us with U; , the total number of patients currently enrolled at the
GLA station. Thus, the number of unscreened patients in each risk category and each health state would
be given byUr"J =pL U .

The fraction of patients who visit a health care facility for non-HIV related reasons awas estimated
by dividing the total number of unique patients who visited the inpatient or the outpatient facilities for
non-HIV related reasons by the total number of patients registered in the station. Using this approach, we
estimated @ = 0.5. The proportion of patients who accept screening 8 was assumed to be 50% based on
prior studies (Goetz et al. 2008b).

Time Required, Time Available and Service Level Parameters

To estimateyy ;, the time required per patient of health care worker of type k at location [, we used an
observational time and motion study conducted in the emergency department in the west Los Angeles
Veterans hospital within the GLA station (Gidwani et al. 2009). This data shown in Table 5A in the
Electronic Companionwas validated against other published estimates (Silva et al. 2007). Further, in our
discussion, the GLA station management noted that these times would be very similar for other care
settings in the station such as the primary care clinics, inpatient and outpatient departments.

The total time available at each resource at each location per month, A, ; for activities associated with
the routine HIV screening program was based on the discussion with the GLA station management. It
took into account the fact that health care workers need to devote time to other clinical and administrative
activities as well. These estimates are shown in Table 6A in the Electronic Companion.

Lastly, the management at the GLA station provided the service level requirements at each location. It
was expected that at least95% of all patients should be processed at each location within a period of one

month. Thus, 7; = 1, a; = 0.95.
4.2 Clinical Data
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Visit Frequency under HIV Care
The outpatient visit frequency for VHA was not directly available. We used published estimates by
Schackman et al.(2006) for the frequency of outpatient visit under monitoring (¢%,) and under treatment

(eL). This is reported in Table 7A in the Electronic Companion.

Quality of Life (QOL)Utilities
The QOL utilitiesweredrawn from Freedberg et al. (1998) and Mauskopf et al. (2005). These are
summarized in Table 3 and more details are provided in the Electronic Companion.Here, it was assumed
that the health related quality of life utilities (q') are directly associated with the underlying health state
represented by the CD4 count category and Ol infection status rather than on the treatment status, per se.
This is reasonable because the effect of treatment is eventually reflected in patients being in better health
states and hence enjoying a higher QOL utility.
[Insert Table 3 here]

Treatment Decision
The treatment policy at the GLA station was to initiatepatients having CD4 cell count below 350
cells/mm’and patients with opportunistic infection irrespective of their CD4 count ontreatment and retain
the reston monitoring. From Table 1, this implies that z = 0 for i = {0, 1, 2}and z' = 1, otherwise.
4.3 Model Validation
In this section, we conduct analyses to validate the model in the context of the literature and the GLA
station. To ensure an unbiased comparison with the literature (Paltiel et al. 2005; Bishai et al. 2007), we
removed all the organizational constraints in the model so that it reduces to a pure disease progression and
treatment model as considered by these papers. Bishai et al. (2007) calculate total QALY's gained from
treatment over no treatment for HIV positive patients. We used their treatment regimen in our model and
found that the total QALY's gained was comparable to their work. Paltiel et al. (2005) calculates the $
spent per QALY gained from going from no treatment to treatment under various screening policies and
found that this varied between $63,000 and $113,000 spent per QALY gained. We also used our model to
calculate the $ spent per QALY gained for the different policies in Paltiel et al. (2005) and found it to be
similar, ranging from $61,000 to $111,000 spent per QALY gained. This validates that our disease
progression and treatment model is consistent with the literature.

In the context of the GLA station, we considered the entire model and the current risk based screening
policy. We found that the model estimates on the number of people at each disease state, location and

time period were within 2% of the actual numbers at the GLA station. We also used the resulting arrival
rate A; and service rate y; at location | € {P, L, S}to estimate W; =1/ (}11 _7\«1), the average wait times at

each location for a given time period under the M/M/1 queuing model assumption used in deriving the
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service level constraints (Kleinrock, 1975). We found these estimates were within 5% of the actual
average wait times for the corresponding locations and time period at the GLA station. This supported the
rationale for using the M/M/1 queuing model in developing the service level constraints. These analyses
also validate that our model effectively captures the operating environment at the GLA station and is a

necessary step to provide confidence in the policy analysis described next.

5. Policy Analysis

In this section, we evaluate several policies for screening, testing and care within the framework of our
model. We start with analyzing the risk based screening policy which had been the standard of care at the
VHA when we started our collaboration. We then evaluate the impact of the routine screening policy
under consideration and also assess the performance of the heuristics described in Section 3.5.

Recollect from Section 4.1 that the annual budget expenditure required for HIV screening, treatment
and monitoring was not directly available. Therefore, we used the budget imputation algorithm provided
in the Electronic Companion to first to impute the budget range [Q (1), E(T)]for the risk based screening
policy in which S;,=1&S,,=0Vt. Here, we found that B(r) = $10million and B(r) =
$20 million for T = 1 and 2. This implies that at least $10 million is needed annually to implement the
risk based screening program and any budget allocation over $20 million will not improve the efficacy of
this program further. We also used this algorithm to find that an annual budget of $35 million was
required to implement the routine screening policy in which S, = 1 Vr, ¢t The management at the GLA
station found this input instructive but also felt that this level of funding would not be available in the
foreseeable future. Instead, they were interested in improving upon the risk based policy but within the
current budgetary range of $10 to $20 million. To perform this analysis and simplify the exposition, we
conducted all our subsequent analysis at three budget levels: low, medium and high corresponding to $14,
$16 and $19 million respectively. These values are chosen in discussion with the station management. We
tried to solve the QMPP for these budget values using leading commercial solversfor nonlinear mixed
integer programs such as BARON and DICOPT using the NEOS server (Dolan 2002). However, in all
cases, these solvers could not even generate feasible solutions after over forty hours of computation and
the runs were aborted. This provides validation for developing boundsand heuristics to address this
problem.

5.1 Performance of Heuristic Policies
We solved the FSSS, FSNS, VSSS and VSNS using the approaches described in Section 3.5 and then
calculated the QALY's gained from these four heuristic policies. We used the technique described in

Section 3.4 to compute the upper bounds for each of these budgetary levels. The computations for the risk
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based screening policy, the routine screening policy, FSSS, VSSS and upper bounds were executed with
GUROBI, a general purpose LP/MIP solver using the NEOS server. The computations for the FSNS and
the VSNS were implemented with DICOPT using the NEOS server. All heuristics were solved in a few
seconds while each computation of the upper bound took at most three hours. Note that in computing the
upper bounds for the fixed staffing heuristics FSSS and FSNS, we fixed the staffing levels at the current
levels at the GLA station. This ensured that these heuristics were being fairly compared to an upper bound
to the fixed staffing problem. We measured the performance of the heuristics using % gap defined as the
difference between QALY's gained from the upper bound and those gained from the heuristic policy
expressed as a percentage of the QALY'S gained from the upper bound. In all cases, QALY's gained were
calculated with the base case of no screening. Table 4 summarizes the gaps for the four heuristics across
the three budgetary levels.
[Insert Table 4 here]

The % gaps described in Table 4 indicate that all the heuristics perform very well. In particular, the
average gap across these heuristics is 1.95% and ranges from 0.08% to 5.15%. In general, for the fixed
staffing heuristics the gaps increase as the budget level increases. This is because the upper bounds
increase at a greater rate than the heuristic solution. The rate of growth of the heuristic solution is limited
as the benefits from choosing the optimal screening rates at higher budget levels saturates due to fixed
staffing in which more patients cannot be treated due to capacity and service level constraints.
Conversely, for the variable staffing heuristics, the gaps decline as the heuristic solution increases at a
greater rate than the upper bound. This is because variable staffing allows more effective allocation of
staff at the higher budget levels to treatment, allows more screened patients who are diagnosed with HIV
to be treated optimally and this improves the overall performance of the heuristics.

We also conducted sensitivity analysis to understand how parameters such as time available for HIV
screening programs, service level parameters and the costs of wages, screening and treatment affect these
gaps for the heuristics. To perform this analysis, we first set the budget level to $16 million and changed
each of these parameters one at a time from their base level by -30% to 30% in increments of 10%. We
then calculated the gap for each heuristic and the appropriate change in the gap from the baseline reported
in Table 4. Across all heuristics and range of values of these parameters, we found the average change in
gaps was 3.3% and this varied from 0.8% to 7.2%. This shows that these heuristics and the upper bounds
are robust across a wide range of parameter values.

5.2 Improvements fromRisk Based Screening
We computed the QALY's accrued at these budget levels for the current risk based screening policy. We
used this to calculate the % improvement of the heuristics from the risk based screening policy expressed

as a percent of the risk based screening policy solution. The results, summarized in Table 4,lead to the
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following observations. First, irrespective of the budget level, improvements from risk based screening
increasedas we go from the FSSS to the FSNS to the VSSS and finally to the VSNS heuristic. In
particular, the most improvement is obtained from the VSNS because this policy synchronizes the
screening decision with the staffing decision. This is important since it is ineffective to screen as many
patients as possible and not have sufficient funding to treat them as necessary. Rather, it is critical to
screen as many patients that can be optimally treated as the benefits arise only from treatment and not
screening. This was shown in Proposition 1. This implies that one should first calculate how many people
can be optimally treated and then use this to appropriately calculate the optimal screening rates. This
approach is executed by the solution method of the VSNS. Second, note that the FSNS improves upon the
FSSS by at most 3.47% and this is only 0.14% in the most realistic low budget scenario. This suggests
that if staffing cannot be changed due to organizational reasons, then it is better to keep a stationary
screening policy in the short term, since this is easier to implement. However, if the long term goal is to
accrue maximum benefit using the VSNS, the FSNS would be a good approach to allow the staff to get
acclimatized to using non stationary screening rates prior to implementing the more radical changes
associated with variable staffing. Third, the gains from varying staffing are more significant than those
obtained by varying screening across any budget level. To see this, observe from Table 4 that the gains
from going from fixed to variable staffing (i.e., FSSS to the VSSS or FSNS to the VSNS) are larger than
the gains from stationary to non-stationary screening(i.e., FSSS to the FSNS or VSSS to the VSNS).
Fourth, the benefit from variable screening is greater if staffing is allowed to change (i.e., the gains from
VSNS-VSSS > FSNS-FSSS). Finally, the greatest improvements from current practice occur in low
budgets or resource constrained environments. This is because the optimization executing these policies
ensures that screening and staffing rates are chosen in such a manner that these scarce resources are used
in the best possible manner.

Finally, we again conducted sensitivity analysis to study how the % improvement of the heuristics
from the risk based screening policy change with model parameters such as time available for HIV
screening programs, service level parameters and the costs of wages, screening and treatment. To do so,
we first set the budget level to $16 million, and changed each of these parameters one at a time from their
base level by -30% to 30% in increments of 10%. In practice, such changes may be needed due to
organizational requirements. As expected, the QALY's gains from all the heuristics declined as available
time for HIV programs (A,;) and the service level parameter related wait time at location / (7;)
decreased. Similarly, the QALYs gained from the heuristics declined as the service level parameter
related to the probability of meeting a wait time at location / (;), cost of wages, screening and treatment
increased. However, in all these cases, the relative gain from the benchmark risk based screening policy

are increasing as the optimization inherent in the heuristics allowed them to better cope with diminished
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resources or higher service level requirements or increased costs. In addition, the previously described
order of improvement from FSSS to FSNS to VSSS to VSNS was still preserved. This shows that the
comparative performance of the heuristics across a wide range of parameters is quite consistent and they
are better in coping with changes in these parameters values than the risk based screening policy.
5.3 Screening Rates and Staffing Allocation
We studied how the screening rates and staffing allocation vary for each of these policies at different
budget levels. We start by discussing the screening rates across the policies. Here, we found at low budget
levels, the screening rates of the variable staffing heuristics were higher than those of the fixed staffing
heuristics. This is because fixing the staffing levels to those of the risk based screening policy resulted in
a large portion of the budget being committed,thereby leaving little flexibility to increase screening rates.
On the other hand, at higher levels of budget, the screening rates of the fixed staffing heuristics are now
higher than the variable staffing heuristics. This is because once the staffing levels are fixed, the only way
to utilize the additional budget and improve the solution is to increase screening rates. In contrast, the
variable staffing heuristics balances the screening rates and staffing levels with the available budget in
both these budget scenarios, and thus yields a better solution. We also analyzed how screening rates vary
over time in the non-stationary screening rate policies (i.e., FSNS and VSNS). Observe from Figure 2 that
in both the FSNS and VSNS policies, screening rates ramp up, saturate at a stable level and ramp down
across a budget horizon. The ramp up occurs as there is a large pool of unscreened patients at the start of
the horizon. Screening these patients at high rates would require large number of staff at screening and
thus less staff would be available at treatment. This would lead to an undesirable outcome of screening
patients without treating them. To prevent this from happening, both these policies ramp up screening
rates to spread the workload over time with fewer staff at screening so that the remaining staff can be
effectively utilized in treatment. This ramp up continues until the system reaches the desired balance
between screening and staffing and at which point, the screening rate stabilizes. This screening rate is
maintained until the time horizon for the current budget cycle draws to a close. At this point, the
screening rates ramp down and more resources are focused on the treatment of screened patientsto make
sure that screened patients not treated in this horizon do not congest treatment in the next horizon. This is
important as residual budgets from the current cycle do not carry over to the next cycle.

[Insert Figure 2 here]

Next, consider the staffing allocation between primary care (i.e., where screening is conducted) and
specialty care (i.e., where treatment is conducted) across policies. This is summarized in Figure 3 and
from this figure it can be seen thatmore staff was allocated to primary care compared to specialty care in
the fixed staffing heuristics, whose staffing levels are set to the current risk based screening policy. This

follows as in the risk based screening policy, all high risk patients are screened without explicitly
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determining the staffing requirement for treatment. This leads to lower QALYs in the system as many
people are screened but may not be effectively treated. Conversely, the variable staffing policies allocated
more staff to specialty care than primary care. This ensured that the number of patients treated and the
resulting system wide QALY's are maximized since as shown in Proposition 1, these are accrued from
treatment and not from screening. Finally, we observed that the staffing level in variable staffing
heuristics was actually lower than those in the fixed staffing heuristics. This was a direct consequence of
optimizing the allocation between primary and specialty care in the variable staffing heuristics based on
the number of patients that can be treated. This, in turn, reduced the staffing level needed at screening to a
greater extent than the increase in staff needed at treatment.
[Insert Figure 3 here]
To summarize, the policy analysis conducted in this section has led to many organizational

implications at the GLA station. These are discussed next.

6. Application and Discussion

Several ideas developed in this paper have influenced decision making at the GLA station. The FSSS and
the FSNS have been used to compute screening rates (Anaya et al. 2012). The rates ranged from 15% to
30% for the risk categories. These rates were considered to be reasonable and achievable. Further they are
consistent with researchon HIV screening rates in other health care settings (Martin et al. 2010). The rates
from the FSSS and the FSNS were used to compute how many patients could be estimated to be present
at the primary care, laboratory and the infectious disease specialty over time. This information was then
used in constraint (8) to estimate the appropriate costs at different partsof the GLA Station. This provided
valuable input for planning in future budgetary cycles. In addition our methods show how these costs
changed from the risk based screening policy to the FSSS and the FSNS. This in part was useful in
gaining the necessary funding in these budget cycles to implement these policies.

The implementation of the FSSS and FSNS has led to early detection and early transfer to care for an
increased number of patients. This in turn, has resulted in better patient outcomes as they are identified at
a stage of discase where the more serious manifestations of the illness are less common and when the
response to therapy is better (Goetz and Rimland 2011). The challenges in implementing these policies
include educating the patients about the procedure and benefits of early testing, overcoming the
reluctance of the providers to screen and prescribe these tests to patients they considered low risk or older
and in stable monogamous relationships, training the staff at primary care to execute screening correctly,
ensuring tests are conducted and information passed to care in a timely manner, and ensuring that patients
are connected to care in an effective manner. Once patients are connected to care, it is important that there

are sufficient updates of their health state information to ensure effective planning of staff for incoming
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patients in future periods. To ameliorate the impact of these challenges, the GLA station started
implementation at its largest facility and used this learning to roll out to the whole station and other
stations at the VHA (Goetz et al. 2011).

In addition, this work has had severalmanagerial implications. It has shown the management that even
though a policy such as routine based screening may be cost effective from a societal point of view, its
implementation may not be feasible in an organization due to budgetary constraints. In particular, we
show that at least a $15 million or75% increase of annual budgetary outlays would be required to
implement this policy from the risk based screening policy. This was not possible at the GLA station due
to the existing budgetary environment. Therefore, this motivated the GLA station to improve upon the
risk based screening policy and we propose the FSSS, FSNS, VSSS and the VSNS policies. Our analysis
of these policies (summarized in Table 4)showed that optimizing the screening rate with existing staffing
levels could increase the QALY gained from risk based screening by 20% to 40% or to 295 and 1094
QALYs gained at the low and high budget levels respectively. Further, in the low budget scenario,
optimization of screening and staffing levels could increase QALYs gained from 245 for risk based
screening’ to 995 or by over 300%. The approaches we propose improves on risk based screeningas it
focuses on treatment, determines how many patients can be treated effectively and then decides the
appropriate screening rate. This is crucial as treatment determines the QALY's accrued in the system. This
is in contrast to risk based screening where all high risk patients are screened without consideration of the
staffing implications for treatment. In particular, the staffing implications of our variable staffing policies
at the GLA station are more staff should be allocated to specialty care, lesser to the primary care and this
allocation in fact lowered total staff requirements. While such staffing policies are harder to implement
from an organizational perspective, we show this could result in significantly more gains and this
provides the management with the justification to consider these policies. Furthermore, we find that
greatest benefit under variable staffing can be got by non-stationary screening. Here, it is beneficial to
initially ramp up the screening rate to even the workload over time at treatment, allow this rate to stabilize
and finally ramp down towards the end of the budget cycle so that the remaining budget can be effectively
used for treatment of patients. Finally, it is encouraging to note that the greatest gains can be achieved by
these policies from risk based screeningat the most realistic low budget scenario. In addition, the gains are
increasingin order of FSSS to FSNS to VSSS to VSNS and this is independent of any budget
scenario.Therefore our analysis provides direct justification for the GLA station to next consider the
variable staffing policies (i.e., the VSSS and the VSNS) as the logical extension of the FSSS and the
FSNS that have been adapted due to our work.Further,our method provides close to optimal staffing

allocation and screening rates to successfully execute such variable staffing policies.

>This is consistent with the gains by risk based screening in other studies (Paltiel et al. 2005).
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This work has the following limitations. First, our model does not account for the societal benefits of
early screening by reducing transmission and ultimately prevalence rates. However, it is not possible to
analytically estimate this reduction as it depends on individual behavior (i.e., whether one would take
adequate precautions after being diagnosed) and if the people affected by this individual are a part of the
VHA system.Therefore, we systematically reduced prevalence rates to calculate the impact on budgets
and QALYs gained. The results summarized in the Electronic Companion shows that even small
reduction in prevalence rates could significantly lower budget requirements or increase QALY's gained.
Second, we have assumed only two risk categories in determining screening rates and do not further
stratify based on race and ethnicity as there are no clinical studies which can be then used to estimate
transition rates between several health states. However, such divisions may increase the efficacy of our
methods by early identification and treatment of certain patient groups. Third, several model parameters
such as visit frequency, QOL utilities, incidence and prevalence rates were estimated using clinical
literature based on the general HIV population as they were not available specifically to the GLA station.
This implies to improve the performance of our methods, these parameters need to be updated as results
from more current clinical studies become available or studies specific to the GLA station are conducted.
Finally, our analysis is conducted at the station level as requested by the GLA management for budgetary
and staff allocation reasons. To keep this aggregate analysis tractable, we assumed a compartmental
model with deterministic transitions between health states. However, this approach leads to a loss of
granularity in terms of patient flows. Specifically, we do not consider the differences in cost and treatment
effectiveness of individual patients in a particular health state. Further, we do not incorporate
prioritization decisions that may be made within a health state due to presence of other health conditions
of the patients such as heart disease, diabetes or cancer. To consider these aspects in a shorter time
horizon, one needs to consider a more detailed scheduling model with stochastic transition between
disease states and this is beyond the scope of our study.

In conclusion, we developeda model to address the screening and staffing decisions for
HIVscreening, testing and care at the GLA station of the VHA. We applied this model to evaluate the risk
based screening policythat was being used and also showed that the cost effective routine screening
policy recommended by the CDC is not feasible in this organizational context due to budgetary
constraints. Therefore, we developed alternate policies within the framework of our model that are
feasible and determined the relative improvement from using these policies from the risk based screening
policy. Two of these policies, the FSSS and FSNS are currently being used at the GLA station. We also
developed managerial insights to better understand these policies and provided justification to the station
administration to further extend and enhance their use by considering the variable staffing policies VSSS

and the VSNS. This paper opens up several opportunities for future work. First, further work could be
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done to improve the heuristic policies and the upper bound to reduce the sub optimality gap. Second, this
framework can also be used to evaluate HIV screening, testing and care in other healthcare systems that
hasperiodic patient follow up and in which residual budgets do not carry over to future periods (Petersen
et al. 2007). In these settings, our existing modeling framework may have to be changed to include
alternateobjective functions, system dynamics and organizational constraints. This could require
development of different solution methods and bounds. Finally, a similar modeling framework can be
used to assess the feasibility of other cost effective interventions (such as intuberculosis and cardiac care)
and if needed, develop alternate policies that improve current practice and are feasible from an

organizational perspective.

Appendix
Estimation of Boundson UL,

We describe the calculation of the lower bound U} ;and the upper bound vi,ton Ul .. These parameters
are used in Proposition 2 to reduce the search space of the search algorithms and also important
parameters in the method described in Section 3.4 used to develop upper bounds on the QMPPB. From
Equation (1), we get

. . j i 0,
UTl,t+1 - z H]untreat (1 aBST,t)Ur],t + er,t+1 + Rr ter letreat

Jj€Iw

J i
T t+1 z Hr untreat - aBST,t)Ur,t + Nr,t+1

J€lw

J i ;
Uf 41 2 z Br wntreat (L= aP)Uy . |+ Nipyq,since S, <1
J€lw
If we can find, anUy; < Uy, then,

; .
T t+1 z untreat (1 aﬁ)gr‘t + NTE,t+1
JE€Iw
Therefore, we get the recursive formula:

z untreat 1- aﬁ)glm +Nri,t+1

J€Iw

Also, Uri,1 = U, pL (both known numbers, explained in Incoming Patient characteristics, Section 4.1).

Then, Qri,1 = Ur",1 and we recursively build in the following manner. For =1,
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gri,Z = z Hr],':mtreat (1- a’ﬁ)g;‘l + Nri,Z

We repeat this step for allt. Next, to calculatev;,t, we run the QMPBB for S, =0 and use the

. —i .
Uy cobtained from its solution to setU,. , = Uy ;.
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Tables and Figures

Table 1 Health States

Health  State | CD4 Count Range | Health State | CD4 Count Range
Index (i. j) (cells/mm?’) without | Index (i.j) (cells/mm®)  with
Opportunistic Infections Opportunistic
Infection
0 Uninfected 7 500+
1 500+ 8 350-499
2 350-499 9 200-349
3 200-349 10 100-199
4 100-199 11 50-99
5 50-99 12 0-49
6 0-49 13 Death
Table 2: Notations
Indices
te[T]={1,2,...,T} Number of years

teM,={1+12(r—1),...,7} | Number of months

k € W = {phys, nurse, couns, lab} | Resource type

le£L={PL,S} Location within health care system. P denotes primary care
facility, L denotes laboratory and S denotes infectious diseases
subspecialty.
i,j €, =1{01,...,6} Health states corresponding to patients without Ol
i,jed, =1{7,8,...,13} Health states corresponding to patients with OI
i,jei,ui,=7={01,...,13} Health state of all patients
w € § = {treat, untreat} Treatment status
r €{1,2} Risk category
XeX={UW,E,M,D} System state, U: Unscreened , W: Waiting for results, E:

Waiting to be enrolled into monitoring or treatment, M:
Monitoring, D: Treatment

Parameters (related to patient flow)

pi Fraction of patients in risk category r of health state i in the new patient population
a Fraction of asymptomatic patients who visit health care facility
B Fraction of patients who accept screening
gr‘{u Fraction of patients in risk category r and under treatment status w moving from health
' state i to health state j in one month.
qt Quality of life score for patients in health state i
N; Number of new patients entering the system in period t
zt A binary parameter indicating whether patient of health state i is initiated under monitoring
(z' = 0) or treatment (z' = 1)
Parameters (related to resource utilization)
Ykl Time required per patient of health care worker of type k at location [
Ax Total time available for HIV screening program of health care worker of type k at location

l
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Wy Per period wages of health care worker of type k
CSt Cost of screening per patient
Ck Cost per patient in system state X
B(7) Total annual budget available for HIV related activities in year T

State variables

Ur"’t Number of unscreened patients of risk category r in health state i at the beginning of
period t
Wr"’t Number of patients of risk category r in health state i waiting for their results at the
beginning of period t
R1i”,t Number of patients of risk category r in health state i who receive their results in
period t
Er"’t Number of patients of risk category r in health state i waiting to be enrolled at the
beginning of period t
M;"t Number of patients of risk category r in health state i who are under monitoring at
the beginning of period t
D};,t Number of patients of risk category r in health state i who are under treatment at the
beginning of period t
I Dr",t Number of patients of risk category r in health state i who are initiated under
treatment in period t
I Mr"’t Number of patients of risk category r in health state i who are initiated under
monitoring in period t
Ir"’t Number of patients of risk category r who are initiated under care (monitoring and
treatment) in period ¢t
Decision Variables
St Fraction of asymptomatic patients of risk category r visiting a primary care facility
in period twho are screened or offered the HIV test
oy Number of health care workers of type k to be staffed at location [
Table 3: QOL Weights
Health State (i) QOL Weight (g")* Health State (i) QOL Weight (gq*)**
0 1 5 0.81
1 0.94 6 0.79
2 0.94 7-12 0.60
3 0.94 13 0
4 0.87

Sources : * Mauskopf et al. (2005), ** Freedberg et al. (1998).

Table 4: % Gap of Heuristics and % Improvement from Current Practice

Budget Level : Low | Budget Level : Medium | Budget Level : High
% % % % % %
Gap Improvement Gap Improvement Gap Improvement
FSSS 0 20.18 0.08 23.39 1.27 38.80
FSNS 0 20.21 0.2 24.13 1.33 40.15
VSSS 4.32 283.90 3.25 66.47 0.48 41.53
VSNS 7.05 305.30 5.15 69.69 3.9 42.94

Figure 1: Flow of patients through different parts of the health care system in the Greater

Los Angeles
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1. Proof of Propositions

Proof of Proposition 1: We first use induction on t to show the following equation (16) holds. Let K},

and V. ; be constants, then:
e W+ EL + ML+ Dl =K 4+ Y i VEsDESVLTE, (16)

s€f{1,2,..,t}

Observe that for t = 1, (16) is trivially true, since, Uri,1 is a constant and Wr",t, Eri,t, Mri,t,Dri,t are all zero.

Next, assume that (16) holds for t. We show that (16) then holds for t + 1. From (1), (2), (3), (6) and (7)

for t + 1 we get,

i i i i i
Ur,t+1 + Wr,t+1 + Er,t+1 + Mr,t+1 + Dr,t+1
= E J J J J J ) glt E J [gJt _glt
- Ur,t + M/r,t + Er,t + Mr,t + Dr,t) er,untreat + Dr,t [er,treat Hr,untreat]

JE€I JEI
i
+ Nr,t+1

— j hj ph ji j ji _plii i
- z Kr,t + z Vr,SDT,S er,untreat + z Dr,t [er,treat er,untreat] + Nr,t+1
Jj€EI hel,se{1,2,..t} Jj€EI

— i JinJ
=Kiesa t Z Vr,sDr s
j€I,s€{1,2,...,t+1}

37



i _ j pii Jji
Where’Kr,Hl - Zj €J K 0 runtreat + Nr t+1,V r t+1 [Hr treat ~ untreat] and
ji _ J ji
Vit = Zhej,jej,se{l,z,...,t} Vr,ser,untreat

This shows that if (16) holds for ¢ it also holds for t + 1. Therefore, by induction (16) is true. We next
substitute (16) in the objective function of the QMPPB to get:

i| i ji i e '
Zl’Ej,TER,tEMl—,TE[T] q Kr,t + ZjEj, Vr,SDT,S . Slmpllf}/lng’ we have‘
Ko + XYierrertem, TreDr,

_ igri i _ i Ji
Where, Ko = Yiesrer temy,ce[r] 4 Ki t- andmy ; = Yjesse,2,..t; q'Vrs- W

Proof of Proposition 2 Consider inequality (9) of the QMPP:
) . 1
aBS Uit ) Ul Sminfnipdie /v + —In (1 - ap)
jelmreRr i €7,/(13)reR P
This can be written as:
) 1
apSy Ure + z Uy e < yepAip /Yip + T—ln(l —ap) Vk
P

i€lorER i€ty {13} rER

Replacing Ur",t with its lower bound Qri,t, and rearranging terms, we get:

Yk.p

In(1 — < vk
Aep Tp n( ap) < Nk p

(yk,P/Ak,P ) Z aﬁsr,tgri,t + z Qri,t
jET,TER i€7,/{13},reR

Multiplying each term by wyand summing across k constraints:
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- | Wi
z (Wi yiep/Arp ) z aﬁsr,tglm + z U I (1 - ap)

. ) -t Agp Tp
keEw jEdmTER i€,/ {13}, reR

= z Wi, p (1E)

Similarly using inequality (11) of the QMPP, we get:

i i WkYks

> S wevs/aes) Y Diwh -2 In (1 - )

, Aks Ts
kew i €7/{0},reR ’

< z WiNg s (ZE)
kew
Consider inequality (8) of the QMPP:
CStaps, Ut + z CS'UL, + z CiXt,

i€y, T ER,LEM; i€70/{13}TER,tEM i€7 /{13}rER tEM,XEX

+ z Ny W < B(7)
LELKEW tEM,

Replacing U}, with its lower bound U} ;, and since the other terms are positive, we get:

. 5 . 5 . L
CS'aps, U + z CS'U:  + z U,
i€7,,,TERLEM, i€, /{13},reR teM; i€7 /{13}reERteEM;

+ z CLL)D,EI + z Ny Wk < B(T)
i€l /{13}rER tEM, LELKEW, teM,

Substituting (1E) and (2E) in the above inequality:
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CS'aps, U, + z CS'U  + z U,
i€7,, TERtEM; i€9,/{13},reER,teEM; i€] /{13},reRtEM;

+ z CLDE,
i€7 /{13},rERtEM;

p
i i Wi Yk,p
+ Z <(Wk yk,P/Ak,P) Z apSy Uy + z Urs TA .1 In (1
KEWTEM, ieloTeR i €7,/(13),reR kp *p
3 ( 3
i i Wklks
—@) (4 > SWs/Aes) ). Dhoh 22 In (1 - as) p < B@
KEW teM; i el reR s
This simplifies to
0rtSry < B(T) — K, — Z p'DL, VT (3E)
reReM, i€l J(13)reRteM,

This is the first inequality in the proposition with the associated definitions of K, p* and Oy t- Note that

the total number of patients treated in each risk category, has to be less than the total number of patients

screened and the total number of unscreened patients who get infected with OI. Thus:

) i _
D;,t < z aBSy Uy + Z Ure VT
i€T,tEM; JET tEM, jET, tEM;

The above inequality can be rearranged to get the second inequality in the proposition.

For stationary screening, setting S,., = S, Vt and since p"Dr",t = 0and 0, S, ¢ = 0, from (3E) we get
S < B(t)-K; -

r =
Ztej\/[.[ Ort
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2. Search Algorithm for Stationary Screening.

Start: AS, i< 0je 0, Sy« 0, Sp« 0, max— 0, N [I/AS], S, = min, {M} S =

temy Olot
i { B(1)-K; }
n’r Ztej\/[.[ Ohit
While i<N+1 and S;, < S,
Do,
Sio < S;pHIAS
j<o0
While j<N+1 and Sy; < Sp;
Do,
Shi < SnitIAS
Evaluate QMPPB(Sy;, Sio)
If QMPPB is infeasible
then,
end do
If max< QMPPB(Sy;, Sio),
then
max< QMFS(Sxi, Sio)
Soptp; < Spi
Soptlo « Slo
else
jejtl
end do
end do

return max, Sopty;, Sopt;,

3. Budget Imputation Algorithm

Start:
set Sip ¢ < 0,Shi ¢ < 1, AB « $0.5mn, count—0, B0, obj, B <0, maxQ« 0, B « 0, exit— 0

/*to calculate B */
while (exit=0)
do,
evaluate QMPPB(S,. ¢, B)
if QMPPB(S, ¢, B) is feasible
then,

B <QMPPB(S, ., B)

exite 1
else,

count«< count+1

B « B + AB * count
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end if
end do

/*to calculate B*/
exite 0 /*re-initialize exit flag*/

B «<B
while (exit=0)
do,
evaluate QMPPB(S, ¢, B)
if maxQ>QMPPB(S, ¢, B)
then,

B < QMPPB(S,;, B)

exit< 0
else,

count< count+1

B « B + AB * count
end if
end do

4. Procedure for choosing the number of partitions in the upper bound calculation

In determining the upper bound for the QMPP we need to choose parameter m, the number of partitions
on Uri,t. Note that as m increases, the value of the upper bound decreases (or becomes tighter) but its
computation time becomes larger. Our procedure chooses m by comparing this reduction of the bound
value with its increase in computation time. To initialize this procedure, we start with m = 1 and record
the value of the upper bound along with the time GUROBI takes to compute the bound. Next, we
increment m by 1 and calculate the % reduction of the value of the bound and the % increase in
computation time from the previous value of m. We then calculate the efficiency ratio defined as (%
reduction in bound value)/(% increase in computation time) and choose m corresponding to the highest
ratio. We applied this procedure to our data for m = 1to 7 as GUROBI was unable to solve upper

bounds for m > 7. We found the best choice was atm = 5.

5. Estimation of system state costs C

C}; is composed of the following:

1) In Patient costs (CI'): The average in-patient costs, (CI) per patient per month was collected
from VHA data. This cost is incurred on all the patients at each system state. Thus the in-patient cost is:

Cli(aUri,t + W+ Efe + M, + Dri,t) (1E)
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2) Monitoring costs (CM*): The monthly per-patient monitoring costs CM?, is incurred on patients
under monitoring Mr",t, as well as treatment Dri,t. This is the cost of one CD4 cell count and one HIV-1
RNA quantitation, per quarter. Anaya et al. (2012) provide the cost of CD4 cell count and RNA
quantitation. The monitoring is:

CM'(M; . + Di,) (2E)
3) Treatment costs (CT'): The treatment cost per patient CT' is the cost of pharmacy for patients
undergoing treatment under HAART. The treatment cost is :

CT'D}, (3E)
4) Outpatient overhead costs (Cohy): The per patient overhead costs, Cohy , was not directly
available. Only the per-patient outpatient cost CO, was available from VA. This cost however, was
inclusive of monitoring test costs and labor costs, which have already been accounted in the monitoring
costs described above and in wages. Thus, in order to calculate outpatient overhead costs, we need to
subtract the monitoring costs and the labor cost is:

Cohl = CO' — CM* — Ly

Here, L is the out-patient labor utilization cost per patient at system state X. Let Yx x denote the labor
time of staff of type k, required per patient visit at system state X. Further let w;, denote the wage per time

of staff type kand the @ the frequency of visits. These are them used to calculate the labor cost incurred

per patient per month as

3( = ‘Pziw z(}’k,ka)

kew

Since outpatient overhead cost is incurred on all patients in the system, the total outpatient overhead cost

for year T would be given by:

[(Cohl;aUk, + Cohly WK, + CohLEK, + CohlyMF, + CohbDF,)]  (4E)
i€7/{13},rER tEM;,

Summing equations (1E) through (3E) over all time periods, risk categories and health states and adding
equation (4E), we get:
|((cohfya + Ca) Ui, + (Cohly + CIYW;, + (Coh + CI)E},
i€7/{13},rER teM;
+ (Cohly + CM! + CI")M} . + (Cohl, + CI' + CM* + CT")Dr",t)]
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Collecting the terms in order to simplify the notation the total costs can be written as,

[cixt,]
i€7/{13},reR teM, XEX

where,
Ch = a(CI' + Cohi)
Ci, = Cohl, + CIt
CL = CohL + CI*
Cl, = Cohly, + CI' + CM!
C} = Cohl + CI' + CM! + CT!
For brevity, we report C} Vi, X in Table 1A. Detailed breakdown are available upon request from the

authors.

6. Computation of Transition Rates

As discussed in the paper, there are four processes which govern the transition from one health state to
another: 1) HIV infection, 2) HIV infection progression (treated and untreated), 3) Opportunistic infection
(OD), and 4) Ol recovery.

The first process is the HIV infection process which governs the transition from health state 0
(uninfected) to health state 1 (>500cells/mm’). The monthly rate of transition under the HIV Infection
process is denoted by Hf’fmtreat, where Hr()’fmtreat = incid, /12, where incid, is the annual incidence rate
of risk category r.We used the estimates provided by Paltiel et al. (2005) for the incidence rates(incid,)

This is shown in Table 3A in the Electronic Companion.

The HIV progression process governs progression from one infected state to a higher infected state. The
transition rate of this process varies depending on whether the patient is undergoing Highly Active Anti-
Retroviral Treatment (HAART) or not. This transition rate from infected stage i to infected stage j for

ij
runtreat

risk category r is given by Hri{treat and 6 for patients under HAART and not under treatment
respectively. Mauskopf et al. (2005), calculate pé’{ month» the six month transition probabilities from one
health state to another without treatment. These 6 month transition probabilities are used to calculate

monthly rate as Hri”{mtreat =1-(1- pé’{ month)l/ 6. These transition rates are tabulated in Table 8A.
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Mauskopf et al. (2005) also provide relative risk of transition (relrisk lT'iq) between states in different
treatment regimens (TRs), namely, First-line, Second-line, Salvage, and Optimized Background therapies,

(Table 9A). This relative risk is used to calculate the transition rates under each treatment regimen. The

transition rate under treatment regimen TR is given as Hri:;R =g (1 —relrisk TR). The overall

r,untreat
transition rate under treatment is given by average of the transition rates under different treatment

regimens or:

+ 64

i,j i,j
+6 +6 r,optimized)/4

gl _ ( gui

rtreat r.first—line r,second—line r,salvage
The third process is the Ol process that relates to patients infected with HIV who are susceptible to such
infections. The rate with which they can be infected with these infections depends on the nature of the

Hi'i+6

opportunistic infection and the current CD4 state of the patient. This transition rate is given by 6,700,

and Hri'lfltgreatwherei € Jyp. Paltiel et al. (2005) provide the monthly risk of being infected with OI by
CD4 stratum and shown in Table 10A. For each CD4 category, we sum across the different OI to
calculate the average risk of infection of Ol. To illustrate, if we want to calculate Hrzf), we note from
Table 1 that for i = 2and j = 8 correspond to a CD4 count between 350-499. We then go to this column

in Table 10A and sum the appropriate column to get 2.27 X 1073 = Hrz, o

Finally, the OI recovery process governs the recovery from such infection. The transition rates here are
given by Hri’tf'eiat, wherei € Jyy,. Kaplan et al. (2009) provide typical time required for recovery from each
OlI as listed in Table 11A. As shown in this table, the typical recovery times are converted to a weighted
average recovery time using the relative risk of incurring that Ol This weighted average monthly
recovery time is converted to the fraction or rate of patients recovering every month by 1 — =106 =

0.654. Thus the transition rate from any Ol infected state to OI uninfected state of the same CD4 bracket

Hri;f'eiat ,1 € Jypis 0.654. Finally, due to the nature of HIV, Hri,;?{ireat =0, €Jy.

For transitions that require two processes to occur simultaneously such as transition between health states
and transition to an Ol status, we assume independence. Thus, the rates of the two processes occurring

simultaneously are the product of the rates of the individual processes.

Finally, there are a total of four transition rate matrices corresponding to the two risk categories (i.e., high
and low) and two treatment categories (treated vs. untreated). These transition rates are provided in

Tables 12A through 15A.
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7. Estimation of Quality of Life Utilities

The Quality of Life (QOL) utilities are drawn from two sources, Mauskopf et al. (2005) and Freedberg et
al. (1998). Specifically, Mauskopf et al. provides 5 CD4 ranges, =500 cells/pL, 350-499 cells/uL, 200-
349 cells/pL, 100-199 cells/uL and 0-100 cells/pL and death. We further divide the range 0-100 cells/pL
into two, 50-99 cells/uL and 0-49 cells/uL because the treatment and system costs for these two CD4
ranges were different (Schackman et al., 2006). These health states are numbered 1 through 6 and death.
The QOL utilities for health states 1-4 was from Table 2 in Mauskopf et al (2005). The QOL utilities for
health states 5 and 6 were from Table 2 in Freedberg et al. By definition, the no infection state 0 has a
QOL utility 1 and the death state 13 has a QOL utility 0.

Based on discussions with the physicians at the GLA station, we also incorporated health states with
opportunistic infections by adding health states 7 through 12. As shown in Table 1, each of these states
correspond to the same CD4 counts as in states 1 through 6 respectively, but have opportunistic
infections. For example health state 7 (i.e., CD4 =500 cells/uL) corresponds to the CD4 count of health
state 1, health state 8 with health state 2, and so on. The QOL utility for health states 7-12 were calculated
from Table 2 in Freedberg et al. Here, we considered the health related quality adjustment scores for the
opportunistic infections by listed pathogen types (such as Pneumocystis Carini, through other AIDS
diagnoses). Ideally, one would have had to introduce additional sub health states for each opportunistic
infection within a CD4 count range. However, the physicians felt that it would be impractical to do since
patients typically had more than one opportunistic infection, it was often not easy to diagnose the
pathogens and decide which one was most dominant. Further, the range of the scores across these
opportunistic infections was relatively narrow (i.e., 0.56 to 0.65). Therefore, it was considered reasonable
to calculate the quality utility for health states 7 through 12 by averaging the quality scores across these

opportunistic infections.

8. Model Extension to Longer Time Horizons

The model can be easily extended to longer time horizons with the appropriate choice of 7, where T =
{1,2,..,T}. To illustrate, we consider a five year and a ten year horizon. For the five year horizon we set
T to 5, while in the 10 year horizon, we set T to 10. In both these cases, we use the upper bound
developed in Section 3.4 and the heuristics developed in Section 3.5 of the paper. The percentage gaps
and improvements from the risk based screening policy for the five year and ten year horizon are
described in Tables 16A and 17A respectively. Note that these are very comparable to the analysis of the

two year horizon as was reported in Table 4 of the paper.
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To demonstrate the robustness and stability of the two year decision given a longer planning horizon,
we used the solution of the two year problem in the five and ten year horizon across the different policies
and budget levels. The reduction in the objective from its original value for the five year problem ranged
from 2% to 5% averaging around 3%. Similarly, the reduction in the objective from its original value for
the ten year problem ranged from 3% to 7% averaging around 5%. These results show that the two year
solution is stable and robust. In fact, these reductions would be even lower if the model parameters are

updated every year with the latest estimates as it would bedone in practice.

9. Impact of Early Screening on Budgets and QALYSs gained.

Early screening could provide societal benefits by reducing transmission and ultimately prevalence rates.
This is because when HIV infected individuals know their status via early screening, they are less likely
to participate in unsafe sex and share syringes if they use intravenous drugs. However, it is not possible to
analytically estimate this reduction as it depends on individual behavior (i.e., whether one would take
adequate precautions after being diagnosed) and if the people affected by this individual are a part of the
VHA system. Thus, to understand the benefits of early screening via reduced transmission to the general
population, we systematically reduced prevalence rates by a fixed percentage in future periods. This
reduction in prevalence rates affects parameter pL., the proportion of patients in each risk and CD4
category (Paltiel et al. 2005; Gandhi et al. 2007) and Nr",t, the number of new patients in each risk
category and health state in each period who enter the station.We then used the risk based screening
policy to calculate: 1) The change in budget to achieve the level of QALY’s gained at the initial
prevalence rate and 2) The change in QALY's gained if the budget levels are at the same level. These are
summarized in Figurel A.This figure shows that even small reduction in prevalence rate can significantly
reduce the budget required or increase the QALY's gained. We repeated this analysis for the policies
described in Section 3.5 and obtained similar results. Thus, thisanalysis provides a model based

justification for developing early screening programs.

Tables
Table 1A: System State Cost in $/per patient-month
Cx
Health State(i) ch cl Ck Cy ch
0 0.00 0.00 0.00 55.00 55.00
1 26.45 52.60 60.86 104.48 312.59
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2 2544 50.50 60.86 101.59 308.47
3 59.34 118.27 129.93 168.86 550.88
4 74.99 149.58 160.98 200.28 553.43
5 75.06 149.71 160.98 200.46 550.83
6 119.73 239.02 251.60 289.27 840.93
7-12 0.00 0.00 0.00 55.00 1820.70
13 0.00 0.00 0.00 0.00 0.00
Table 2A: Wages
Resource Wage ($/month)
Physician 15,000
Nurse 11,000
Laboratory Assistant 7550
Counselor 6500
Table3A: Incidence and Prevalence Rate
Risk Category incid, prev,
1 (high risk) 0.012 0.03
2 (low risk) 0.0001 0.001
Table 4A: Incoming proportion by CD4 count
i pi p3
0 9.70E-01 | 9.99E-01
1 4.05E-03 | 1.35E-04
2 4,05E-03 | 1.35E-04
3 6.60E-03 | 2.20E-04
4 4.05E-03 | 1.35E-04
5 4,05E-03 | 1.35E-04
6 7.20E-03 | 2.40E-04
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0

Table SA: Time Required by resource type and location y(k,l) in minutes/patient-visit

. Lab
Physician Nurse Technician Counselor
P 7 7 0 0
L 0 0 25 0
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10 |

10 |

Table 6A: Time Available per resource per month (in minutes/month) A(k,l)

P L S
phys 1600 0 2400
nurse 2000 0 3600
lab 0 6400 0
couns 0 0 3200
Table 7A: Out-patient visit frequency
Monitoring Treatment

i (@) (@h)-

0 0.63 0.53

1 0.63 0.53

2 0.79 0.72

3 0.89 0.79

4 0.87 0.88

5 0.86 1

6 0.96 1

7 0.00 2.51

8 2.51 2.51

9 2.51 2.51

10 2.51 2.51

11 2.51 2.51

12 2.51 2.51

13 0 0

Table 8A: Transition Rates (Mauskopf et al. 2005)
Initial State to 6 month Monthly

State i to state j Final State rate rate
62 500+ to 350-499 0.37 0.07294117
g2 33 0'4933;‘) 200- 037 | 007294117
g3 200339 o 100- 0z | 007204117
0.5 100-199 to 50-99 0.51 0.11134859
6, 50-99 to <50 051 | 0.11134859
613 <50 to death 0.51 0.11134859

49




Table 9A: Relative Risk of Transition between States (Mauskopf et al. 2005)

Relative risk of transition
between states
CD4+ gain | VL decrease (relrisk rg)
First-line 79 2142 27%
Second-line 73 21.49 26.53%
Salvage therapy 76 21.697 22.80%
Optimized 32 20.763 51.95%
Table 10A: Transition Probability for OI (Paltiel et al. 2005)
0- 50- - 100 - 200 - 300 -
49/mm3 99/mm3 199/mm3 | 299/mm3 | 499/mm3 | >500/mm3
PCP 3.70E-02 3.10E-02 | 9.60E-03 | 3.73E-03 | 8.50E-04 4.10E-04
MAC 1.22E-02 3.75E-03 | 1.01E-03 | 2.20E-04 | 5.50E-05 5.90E-05
Toxoplasmosis 2.70E-03 1.40E-03 | 6.70E-04 | 4.20E-04 | 9.20E-05 2.90E-05
Cytomegalovirus 1.86E-02 5.23E-03 | 2.14E-03 | 5.80E-04 | 1.29E-04 5.90E-05
Fungal infection 1.12E-02 5.91E-03 | 1.35E-03 | 2.90E-04 | 2.76E-04 8.80E-05
Other 3.94E-02 2.46E-02 | 7.16E-03 | 2.24E-03 | 8.70E-04 4.70E-04
Total 1.21E-01 7.19E-02 | 2.19E-02 | 7.48E-03 | 2.27E-03 1.12E-03
Table 11A: Recovery Rates from OI
Infection Days of Recovery | Monthly Rate | Weight | Relative Risk
(MR) (W) | (MR X Wt)
PCP 21 1.42 0.082 0.1179
MAC 14-28 1.42 0.0173 0.0247
Toxoplasmosis 42 0.71 0.0053 0.0038
Cytomegalovirus 21-28 1.22 0.027 0.0327
Fungal Infection 70 0.42 0.019 0.0082
Others 163 0.074 0.0274 0.002
Weighted Average 1.06
Table 12A: Transition Rates High Risk , untreatedeil’{untre at
i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.999 | 0.001
1 0.926 | 0.073 0.001 | 0.000
2 0.925 | 0.073 0.002 | 0.000
3 0.920 | 0.072 0.007 | 0.001
4 0.869 | 0.109 0.019 | 0.002
5 0.825 | 0.103 0.064 | 0.008
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0.781

0.108

0.111

0.606

0.048

0.321

0.025

0.606

0.048

0.321

0.025

0.606

0.048

0.321

0.025

10

0.581

0.073

0.307

0.039

11

0.581

0.073

0.307

0.039

12

0.581

0.307

0.111

13

1.000

Table 13A: Transition Rates High Risk, Treated oY

1,treat

i/j

0

1

2

3

4

5

6

10

11

12

13

0

0.999

0.001

0.964

0.035

0.001

0.000

0.963

0.035

0.002

0.000

0.958

0.035

0.007

0.000

0.925

0.053

0.021

0.001

0.878

0.050

0.068

0.004

0.831

0.115

0.054

0.631

0.023

0.334

0.012

0.631

0.023

0.334

0.012

0.631

0.023

0.334

0.012

10

0.619

0.035

0.327

0.019

11

0.619

0.035

0.327

0.019

12

0.619

0.327

0.054

13

1.000

Table 14A: Transition Rates Low Risk, untreated o5

2, untreat

i/j

0

1

2

3

4

5

6

7

10

11

12

13

1.00

0.00

0.92

0.072

0.001

0.000

0.925

0.072

0.002

0.000

0.920

0.072

0.006

0.000

0.869

0.108

0.019

0.002

0.824

0.103

0.063

0.008

0.781

0.107

0.111

0.60

0.047

0.320

0.025

51




8 0.606 | 0.047 0320 | 0.025

9 0.606 | 0.047 0320 | 0.025

10 0.581 | 0.072 0307 | 0.038

1 0.581 | 0.072 0307 | 0.038

12 0.581 0307 | 0111
1.000

13 0

Table 15A: Transition Rates Low Risk, Treated Bé’{treat

if/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1.000 | 0.000

1 0.964 | 0.035 0.001 | 0.000

2 0.963 | 0.035 0.002 | 0.000

3 0.958 | 0.035 0.007 | 0.000

4 0.925 | 0.053 0.021 | 0.001

5 0.878 | 0.050 0.068 | 0.004

6 0.831 0.115 | 0.054

7 0.631 | 0.023 0334 | 0012

8 0.631 | 0.023 0334 | 0012

9 0.631 | 0.023 0334 | 0012

10 0.619 | 0.035 0327 | 0.019

1 0.619 | 0.035 0327 | 0.019

12 0.619 0327 | 0054

13 1.000

Table 16A: % Gap of Heuristics and % Improvement from Current Practice for 5 year Horizon

Budget Level : Low

Budget Level : Medium

Budget Level : High

% % Improvement | % Gap | % Improvement % % Improvement
Gap Gap
FSSS 0.17 10.25 0.05 18.26 4.56 2745
FSNS 0.87 17.37 0.59 19.33 4.48 38.22
VSSS 6.77 195.25 5.64 57.25 2.56 30.63
VSNS 8.18 278.28 7.45 56.36 5.34 38.77

Table 17A: % Gap of Heuristics and % Improvement from Current Practice for 10 year Horizon

Budget Level : Low

Budget Level : Medium

Budget Level : High

% % Improvement | % Gap | % Improvement % % Improvement
Gap Gap
FSSS 3.56 6.56 1.66 12.45 3.28 20.28
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FSNS 3.87 12.66 1.67 16.32 6.48 35.36

VSSS 6.43 181.36 7.54 45.88 8.56 28.54

VSNS 9.78 266.54 9.33 47.36 9.34 33.28
Figures

Figure 1A: Impact of Prevalence Rate Reduction on Budget and QALY gained
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