
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2009 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

7-20-2009

Modeling Coordination in Offshore Software
Development
Narayan Ramasubbu
Singapore Management University, nramasub@smu.edu.sg

Amit Mehra
Indian School of Business, Amit_Mehra@isb.edu

Vijay mookerjee
University of Texas at Dallas, vijaym@utdallas.edu

Follow this and additional works at: http://aisel.aisnet.org/pacis2009

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Ramasubbu, Narayan; Mehra, Amit; and mookerjee, Vijay, "Modeling Coordination in Offshore Software Development" (2009).
PACIS 2009 Proceedings. Paper 102.
http://aisel.aisnet.org/pacis2009/102

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2009%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009?utm_source=aisel.aisnet.org%2Fpacis2009%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2009%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2009%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009?utm_source=aisel.aisnet.org%2Fpacis2009%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009/102?utm_source=aisel.aisnet.org%2Fpacis2009%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org>

MODELING COORDINATION IN OFFSHORE SOFTWARE
DEVELOPMENT

Research-in-progress paper

Abstract

Controlling and minimizing coordination costs has been shown to be an important factor to reduce

overall project performance in distributed software development. In this research-in-progress paper

we investigate the effects of software complexity, software integration, distributed labor division

policies, learning effects on software coordination costs. Drawing from data collected on 130

software construction cycles in 34 large projects of a leading offshore development firm, we first

present our analysis on how coordination costs relate to team organization factors and complexity of

evolving software. We base our analytic model of coordination costs in offshore software development

on these empirical relationships, and give an overview of our modeling approach. We apply our

model of software coordination costs to develop resource allocation policies in the projects we

studied. We consider both waterfall and iterative software development methodologies and also

tandem and parallel integration schemes. Our modeling approach helps managers to develop a

dynamic coordination policy to aid iterative software development in distributed development

environments.

Keywords: Global software development, offshore services, coordination, software engineering.

The papers submitted for review MUST NOT contain any information on the

author(s). Submission for review has to be anonymous. Papers submitted for review

not being anonymous will be rejected without review.

MODELING COORDINATION IN OFFSHORE SOFTWARE

DEVELOPMENT

1. BACKGROUND & MOTIVATION

Offshore software development refers to the mode of information systems development where
majority of the development tasks are conducted at a remote development center (‘offshore’), away
from a customer’s premises (‘onsite’). Outsourcing development tasks to offshore centers help firms
to leverage the significantly low labor costs prevalent in those parts of the world. For example,
software labor costs in India are three to seven times lower as compared to those in the USA (Mercer
2004). Countries like India have emerged as an attractive location for software development in the
context of the growing business need to develop software applications rapidly, and in a cost effective
manner without compromising on quality. Out of the 140-odd companies with SEI-CMM level 5
certification world-wide 42 are from India, the largest pool of high maturity software organizations
from any country (Paulk 2003). According to a recent survey, custom software applications worth $
3.23 billion were jointly developed by software service companies in India and United States.
Although in the beginning U.S. software firms took the lead by setting up software factories in India,
of late Indian firms have started setting up development centers in the U.S. to provide seamless
services to their clients. During 2003-2007 as many as 270 Indian companies set up offices,
subsidiaries and alliances in the United States (Nasscom-McKinsey). Considering the phenomenal
growth in offshore model, it is important to formally study and understand issues specific to this mode
of development.

Though production costs are lower at offshore centers, it is not possible for a software development
manager to allocate all her resources to the offshore center because there are certain activities that
have to be performed at the customer’s premises (where physical hardware and real users are present).
For example, Apte and Mason (1995) discuss the need for customer contact and physical presence in a
distributed environment for improved customer service. Presence of resources at onsite also helps
easier gathering of end user requirements and to get a quick feedback on prototypes. Further,
implementation of large scale software is a complex task and often involves several configuration
settings and changes that require physical presence at the hardware site. Moreover resources are
required to be present at the customer’s site to handle urgent production failures. Thus even in the
offshore mode of development, resources need to be present at both ‘offshore’ and ‘onsite’. Presence
of geographically distributed resources gives rises to additional increase in the total costs of
production in the form of higher coordination and integration costs. In contrast to co-located scenario,
managers will now have to make decisions on integration and resource allocation policies that govern
dispersed tasks.

Prior research on coordination in software does not specifically address the tradeoffs involved in
allocating resources to distributed development centers (onsite and offshore). Kraut and Streeter
(1995) examined the role of formal and informal communication mechanisms in coordinating work in
co-located software development. They argued that a majority of communication support tools
facilitated only formal communication and prescribed nurturing interpersonal and informal
communications to solve the problems of uncertainty and complexity in software development.
Grinter (1995; 1996) reports a case-study of the usage of a configuration management tool to
effectively coordinate software development activities. Herbsleb and Mockus (2003) formulate an
empirical theory of coordination and explain the role of modular design and information hiding
principles in facilitating coordination in software tasks. Koushik and Mookerjee (1995) formally
model coordination in co-located software construction based on release cycles and prescribe
solutions for determining the integration mechanisms for individual modules. This model was later
enhanced to accommodate system stability and team learning factors in the co-located scenario
(Mookerjee and Chiang 2002). Other researchers who studied coordination in software development

explain different mechanisms of coordination (Nidumolu 1995) and ways to manage expertise (Faraj
and Sproull 2000) also limit themselves to co-located scenarios.

Studies that consider the role of coordination and communication in distributed cross-functional teams
are beginning to emerge. Shami, Bos, Wright, et al. (2004) use experimental simulation to analyze the
effect of social networks on project outcomes in globally distributes software development. Sikora
and Shaw (1998) describe the use of a formal framework to model coordination of cross-functional
information systems development but do not specifically consider labor-cost differences, and
dispersion of individual tasks in software development. Toffolon and Dakhli (2000) describe a
coordination meta-lifecycle model and the ways to formally represent global software development
dependencies. They too do not consider the influence of resource allocation tradeoff present in
offshore software development for prescribing coordination solutions. Overall, there is a dearth of
studies in the literature that model tradeoffs involved in allocating resources to ‘offshore’ and ‘onsite’
development centers. Also there is a limited understanding of managerial decisions about appropriate
coordination and integration policies for distributed development tasks.

In this study we model coordination costs by explicitly capturing the effects of team organization and
the complexity of evolving software. Our goal is to help software managers derive optimal policies
for resource allocation at onsite and offshore as well as to develop a dynamic coordination policy to
aid software construction. The coordination policy in our model involves the appropriate time at
which the distributed team members integrate their code.

The rest of the paper is organized as follows. In section 2, we outline the basic set up of the software
development activity we study and model. In section 3 we describe our data collection and analysis.
In section 4 we discuss our preliminary analytical model in detail and discuss our approach in arriving
at a dynamic coordination policy. We outline our next steps in section 5, and conclude.

2. MODELING APPROACH OVERVIEW

A schematic view of the project phases in iterative software development is shown in Figure. 1. The
software project begins with the development of code at both offshore and onsite centers. After a
certain time ‘t’, the onsite and offshore teams work on integrating their code and reconciling
problems. Once they are satisfied, the first release of the system is committed to the global code
repository. This chain of events continues for ‘j’ cycles until the scope of the project is completed. We
categorize the effort involved in these activities in to development costs and coordination costs.
Coordination costs include the effort spent on integrating the software code between onsite and
offshore centers to deliver one working, global system. The unit of analysis for our study is at the
level of software construction cycle.

Figure 1. Software Project Activity

Base

code
Developme

nt & unit

testing

Module

Integratio

n

System

verification &

Integration

System

Release –

Project

end

Developme

nt costs
Coordination Costs

Handed

over to

maintenanc

e

‘I’ number of cycles

System

release

for jth

cycle

Our modeling approach involves two stages. In the first stage, we extend prior analytical coordination
models (Mookerjee and Chiang 2002) to address distributed software development. A key factor in
grounding this analytical model is to show that the coordination costs in distributed software
development consist of fixed and variable elements. The fixed component of the coordination cost is
independent of the construction cycle, and is typically influenced by the way the teams are organized
and the nature of communication mechanisms between them. The variable component of the
coordination cost is dependent on the software code developed during the construction cycle. This
separation of the coordination costs in to two components, one related to team organization and the
other related to software complexity that has evolved during the particular construction cycle forms
the basis for the analytical model we are developing.

Before diving in to the analytical model, we proceeded to empirically test our idea through data
collected from real world projects. Empirically testing the planned model gives validity to our
approach. Further, the empirical models gives us a good basis to derive the cost distributions of
software development activity for each construction cycle and the individual development centers. We
revisit the our modeling in detail in section 4.

3. DATA COLLECTION, ANALYSIS & FINDINGS

The empirical data for this research was collected from one of the top five software development
firms in the world, in terms of market capitalization for IT services, and is assessed at level 5 of the
CMM-I process capability model. This firm employs more than forty thousand personnel across
twenty countries. We collected software project data from this research site through a field study.
During the field study we extracted detailed project level data from the centralized process database
maintained by the quality department of the firm. All the data we had extracted had been previously
audited by the quality department. Overall, we were able to observe 130 construction cycles of 34
large projects. For each of these construction cycles, we gathered the development effort, amount of
code developed, the coordination effort, the team sizes at onsite and offshore development centers.
We also noted the total construction cycles in each of these projects along with the total code size
developed for the project and the number of errors discovered in the code. A summary statistics of
this data set is shown in Table 1 and the correlation between the variables is shown in Table 2.

Variable

Mean

Std. dev.

Min

Max

Construction Cycle 2.59 1.30 1 6

Development Effort 1017.69 1153.03 14 6910

Coordination Effort 134.90 159.86 1 1152

Defects 13.35 30.06 0 169

Team Size at Location 1 2.19 1.45 1 9

Team size at location 2 8.15 4.86 3 21

Cycle Function Points 223.01 313.55 3 2868

Total Project Function Points 1532.14 1336.94 33 6385

Total Number of construction

cycles in sample
130

Total Number of Projects 34

Table 1. Summary Statistics

Our data analysis began by exploring the relationship between the coordination effort in each
construction cycle and the team size and cycle function points and the construction cycle stage. The
observed relationships are presented in Figures 2-6. As depicted in the Figures 2-4, we find that the
coordination effort per construction cycle is positively associated with the organization of the teams at
the onsite and offshore centers and the interaction between them. Notice that the effect of the team
organization is same for all the construction cycles that belong to a single project, i.e., this is
independent of the variations in the construction cycles within a project.

Figure 5 depicts the effect of complexity on the coordination effort. Consistent with findings from the
software engineering literature, we see that larger the function points, more coordination effort is
needed. As depicted in the Figure 6, we find that there is a significant learning effect on the
coordination costs between the onsite and offshore teams. As they get advanced in the project, despite
the increase in the number of function points to deal with, the overall coordination effort required for
the later stage construction cycle is lower. These exploratory results provide an excellent foundation
for us to build the analytical model of coordination in distributed software development to derive
appropriate coordination policies.

Variables

1

2

3

4

5

6

7

8

Defects 1 1.00

Total Project Function
Points

2 0.77* 1.00

Construction Cycle 3 -0.06* -0.11* 1.00

Development Effort 4 0.39* 0.42* -0.05 1.00

Coordination Effort 5 0.38* 0.52* -0.02 0.67* 1.00

Cycle Function Points 6 0.49* 0.60* 0.00 0.73* 0.59* 1.00

Team Size at Site 1 7 0.28* 0.34* -0.06 0.50* 0.56* 0.15 1.00

Team size at Site 2 8 0.55* 0.63* -0.06 0.41* 0.55* 0.39* 0.53* 1.00

Table 2. Correlations

Note: * Indicates Pairwise correlations significant at 5%

0
2
0

0
4

0
0

6
0

0
8

0
0

c
o
o

rd
in

a
ti
o

n
 e

ff
o

rt

0 2 4 6 8 10
Team Size at Location 1

Team Effects

Figure 2. Effect of Team Size Near Client Site on

Coordination Effort

4. DERIVING DYNAMIC COORDINATION POLICY

4. 1. Basic model in co-located scenario

The following characterizes the co-located development setting:
1. The system to be developed consists of N distinct modules interconnected to each other. A

module is defined as a compilation unit of code.
2. There are S developers in the team.
3. Each module is developed by exactly one developer.
4. The project has a fixed time schedule and fixed budget for development. Let T be the

available calendar time for development and let C be the overall cost of the project
permissible by the budget.

-5
0

0
5

0
1

0
0

1
5

0
c
o

o
rd

in
a

ti
o

n
 e

ff
o

rt

1 2 3 4 5 6
construction cycle

learning effects

Figure 6. Effect of Learning on Coordination

Effort

0
2

0
0

4
0

0
6
0

0
8
0

0
c
o

o
rd

in
a

ti
o
n

 e
ff
o

rt

0 1000 2000 3000
Construction Cycle Function Points

Complexity Effect

Figure 5. Effect of Complexity (Function

Points) on Coordination Effort

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
c
o

o
rd

in
a

ti
o

n
 e

ff
o

rt

0 20
Team Size at Location 2

Team Effects

Figure 3. Effect of Offshore Team Size on

Coordination Effort

0
2

0
0

4
0

0
6
0

0
8

0
0

c
o

o
rd

in
a

ti
o
n

 e
ff
o

rt

0 50 100 150 200
Team size-1 X Team size-2

Team Effect

Figure 4. Effect of Offshore-Onsite Team

Interaction on Coordination Effort

Now, we proceed to develop functional forms for the costs associated with various activities during
software development. Let ĕi be the effort in person hours needed to develop the ith module in the
system. The variable ĕ follows some positive distribution with mean ē.

Total development effort for the project = ∑
=

N

i 1

ĕi …… Eq(1)

Expected total development effort = E (∑
=

N

i 1

ĕi) = N * ē …… Eq(2)

Letting ‘c’ be the cost of development per person hour we get,

Total expected cost of development = c *N * ē …… Eq(3)

Since there are S developers working simultaneously,

Total expected time of development = N * ē / S …… Eq (4)

Now let us proceed to module integration phase of development. Module integration consists of
integrating individually developed modules to rest of the modules in the system. Since there are N
interconnected modules in the system, each module has (N-1) connections. The interconnections
between modules are primarily due to module coupling (Dhama 1995). Coupling refers to the
software property that measures interdependence between modules. Interdependence between
modules arises because of data and logical flow between modules. The strength of interdependence
between modules depends on the import and export interfaces between modules, the number of
parameters passed through these interfaces and the environmental settings that determine logical
invoking (‘calling or being called’) of modules. To model the strength of interdependence between
modules we use the notion of pair-wise coefficient of interaction (PCI), pi,j. Note that, pi,j = pj,i for any
pair of modules i,j. The value of PCI is greater for modules that are tightly coupled with each other
and is lower for modules that are loosely coupled. Further the value of PCI is zero if the modules are
not connected at all. We model pi,j as a uniform random variable with mean µp and standard deviation
σp. The effort needed to integrate a module to the system depends on the structural complexity of the
system and as well as the functional modifications or enhancements that have been done to the
module. Structural complexity of the system is modeled through the pair-wise coefficient of
interaction mentioned above. Integration effort required due to functional enhancements can be
modeled as a function of development effort that was spent on the module (Koushik and Mookerjee
1995). Thus, we derive module integration effort as,

Module integration effort = ∑ ∑
=

−

=

N

i

N

j1

)1(

1

pi,j * ĕi …… Eq (5)

Expected Module integration effort = N * (N-1) * µp * ē …… Eq (6)
Total module integration cost = c * N * (N-1) * µp * ē …… Eq (7)
Since S developers are working at the same time,
Total module integration time = (N * (N-1) * µp * ē) / S …… Eq (8)

In the system integration phase of project, overall system is tested for faults using the test conditions
developed by the project team. In this phase, interconnections between modules are tested for
conformity with agreed upon design specifications. This results in the identification of a certain
number of faults with the way module integration was conducted. To correct these faults modules
have to be individually analyzed and the interconnections re-adjusted. Moreover, overall system
integration effort depends on the stability of the application platform technology that supports the
interconnected modules. Application platform stability depends on the extent of usage of application
programming interfaces supported by the system, adherence to standards and base technology updates
applied to the system. The effort spent on system integration thus depends on the number of faults
discovered, structural complexity of the system and overall system stability. Let us suppose that ‘f’
number of faults are discovered during the system integration process. Since these faults are at

interfaces, two modules are associated with each of these faults. Effort required to correct a fault is
therefore given by,
Effort to correct a system integration fault = pi,j* (ei + ej) * β …… Eq (9)
Where, β is the application platform stability factor.
Expected effort to correct a system integration fault = 2 * µp * ē * β ……Eq (10)

Because of the adjustment made to the ith and jth module, 2(N-2), other connections have to be verified
for conformance with design specification. So the overall expected effort spent on system integration
is given by,

Total effort for system integration = ∑
=

f

k 1

4* (N-2) * µp * ē * β ……Eq (11)

= 4f * (N-2) * µp * ē * β ……Eq (12)
For each fault, two developers are involved. So 2f out of the S developers have to work in order to fix
the ‘f’ faults discovered for system integration. Thus,
Total time for system integration = 1/2S * [f2*4* (N-2) * µp * ē * β] .…Eq (13)

Some researchers (Koushik and Mookerjee 1995) have posited that a ‘ripple effect’ occurs during
system integration. That is, an infinite sequence of adaptations results because of continuing
modifications of interconnected modules. Modern structured development methodologies stem the
ripple effect by freezing a design base line. Project teams usually spend time ‘upfront’ before coding
process starts to freeze the design of interfacing systems. This helps during system integration,
because any faults have to be corrected in accordance to the agreed upon standards and not on ad hoc
developments. In this study we assume that design base lines are available and that infinite
adaptations do not occur during system integration. Apart from system development and integration
developers also spend effort on program comprehension, communication and coordination.
Communication costs in a software team have been reported to be a nonlinear function of team size in
past research (Kraut, Egido and Galegher 1990; Mookerjee and Chiang 2002). Developers also spend
considerable amount of effort comprehending different modules and interconnections present in the
system. They also spend time in preparing test cases and documenting their knowledge on the system
for future use. Program comprehension costs include a fixed cost that captures the effort spent on test
preparation and module comprehension as well as variable costs that depend on the number of faults
that are discovered. When a fault is discovered, programmers need to perform root cause analysis and
understand the reasons for the error.

These costs are modeled as,

Effort spent on communication = K1 * S2 ……Eq (14)

Where, K1 is a factor that captures the communication effort per person considering the effect of team
structures and organizational hierarchy.

Expected communication cost = c*k1*S2 ……Eq (15)
Expected time spent on communication = K1 *S ……Eq (16)
Program comprehension effort = k2 * N + K3 * f ……Eq (17)

Where, K2 is a factor that captures program comprehension effort considering any learning effect in
the teams. As programmers become more aware of the system, effort required for comprehension
decreases. K3 captures effort required to discuss and learn about faults taking in to consideration the
severity and complexity of faults that are discovered.

Program comprehension cost = c*k2*N+K3*f ……Eq (18)
Expected time spent on program comprehension = 1/S(c*k2*N) + 2/S(K3*f2) …...Eq (19)

Overall project costs = development cost + module integration cost + system integration cost +
communication costs + program comprehension costs
The objective of a development manager is to determine, optimal team size S* such that the project
cost is minimized. This can be formulated as a constraint programming (CP) as following:
Minimize project cost with respect to S and subject to

 1) Schedule constraint – Total Project development time < T
 2) Budget constraint - Total Project costs < C

3) Functionality constraint – Total of N modules have to be delivered to customer

4.2. Offshore scenario

The software system in this scenario remains the same, however the team that develops the system is
dispersed between the primary development center (offshore) and a secondary development center
(onsite). Let us suppose that S1 be the number of developers who are assigned to the onsite
development center and that they handle N1

 modules. Assuming that individual onsite and offshore developers have similar amount of work loads
we have,

S1/S = N1/N ……Eq (20)

Dispersion in resources between onsite and offshore = (1-S1/S)2=(1-N1/N) 2 .…Eq (21)

Development effort = ∑
=

1

1

N

i

ei + ∑
−

=

1

1

NN

j

ei ……Eq (22)

Expected development effort = N1 * ē + (N-N1) * ē ……Eq (23)

Letting c1 and c2 be the cost of development in onsite and offshore we get,
Expected cost of development = c1* N1 * ē + c2*(N-N1) * ē = ē * (c1*N1 + c2*(N-N1) ……Eq (24)

For any one module owned by a developer at onsite, there are (N1-1) interconnections located locally
(at onsite) and (N-N1) interconnections with modules located at offshore. Similarly, for a module
located at offshore there are N1 number of interconnections located at onsite and (N-N1-1) number of
modules located locally. Using this, we model module integration effort as shown below:

Module integration effort =∑∑
=

−

=

1

1

1

1

N

i

N

j

pi,j * ĕi + ∑ ∑
−

=

−

=

1

1

1

1

NN

i

N

j

pi,j * ĕi ……Eq (25)

Therefore,
Expected Module integration effort = N1 * (N-1) * µp * ē + (N-N1) * (N-1) * µp * ē
 ……Eq (26)
Expected cost of module integration = [c1 * N1 + c2 *(N-N1)] * (N-1) * µp * ē ……Eq (27)

Assuming that ‘f’ number of faults are discovered during system integration and that the likelihood of
discovering faults in any of the modules remains the same we have,

Faults to be corrected at onsite = N1 / N * f ……Eq (28)
Faults to be corrected at offsite = (1 – N1 / N)* f ……Eq (29)
Further for each fault corrected 2* (N-2) interconnections each have to be checked by onsite

and offshore personnel.

Effort for system integration at onsite = ∑
=

fNN

k

)/1(

1

4* (N-2) * µp * ē * β

= (N1/N)*f*4* (N-2) * µp * ē * β ……Eq (30)

Effort for system integration at offshore = ∑
−

=

fNN

k

)/11(

1

4* (N-2) * µp * ē * β

 = (1-N1/N)*f*4* (N-2) * µp * ē * β ……Eq (31)

Expected cost of system integration = f*4* (N-2) * µp * ē * β* [c1*(N1/N) + c2*(1-N1/N)]
 ……Eq (32)

Expected time for system integration = 1/2S * [f2*4* (N-2) * µp * ē * β] ……Eq (33)

Effort spent on communication in the offshore scenario is two fold. There is intra-site communication
with team members co-located and there is also inter-site communication with team members located
in the remote development center. We posit that inter-site communication is a function of the
dispersion of team members and the richness of medium used in communication.
Effort spent on communication = k1 S1

2 + k1 (S-S1)
2 + k4 (1-S1/S)2 ……Eq (34)

Where the factor K4 measures the effort per person considering the richness of the communication
medium

Expected communication costs = (c1+c2)/2 * [k1 S1

2 + k1 (S-S1)
2 + k4 (1-S1/S)2] ……Eq (35)

Program comprehension effort = 2(k2N1 + k2(N-N1)) + k3 N1 / N * f + k3 (1-N1/N)*f ……Eq (36)
Program comprehension cost = c1* ((k2N1 + k2(N-N1)) + k3 (N1 / N) * f) + c2*((k2N1 +

k2(N-N1)) + k3 (1-N1/N)*f) ……Eq (37)

The objective of a development manager is now to determine, optimal team size S* and S1* such that
the project costs are minimized. This can be formulated as a constraint programming (CP) as
following:

Minimize project costs with respect to S, S1 and subject to
 1) Schedule constraint – Total Project development time < T
 2) Budget constraint - Total Project costs < C

3) Functionality constraint – Total of N modules have to be delivered to customer

4.3. Iterative offshore development

Unlike traditional software development methodologies such as the waterfall model of development,
iterative development methodologies such as spiral model of development (Boehm 1988), rapid
application development approaches such as prototyping and extreme programming (Beck and Andres
1999) encourage building a software system in several cycles. The following characterizes my
iterative development setting:

1. There are N interconnected modules in the system.
2. The final system is built in ‘I’ number of cycles.
3. In any jth cycle ‘mj’ number of modules are released with enhancements. These mj

modules have to be integrated with each other and with the system.
4. Prior to the system release in any of the I cycles, remaining (N-mj) modules are

adjusted for these enhancements.
5. There are S developers in the development team, S1 of them are allocated the secondary

development center located at onsite. The ownership of the modules is spread according
to N1/N=S1/S.

Let ĕij be the effort in person hours needed to develop the ith module in the jth cycle. The variable ĕ
follows some positive distribution with mean ē. M modules are released in every cycle. The
probability of a module picked has ownership at onsite is N1/ N and at offshore is (N-N1)/N.

Development effort = ∑ ∑
= =

I

j

NNm

i

j

1

/1*

1

eji + ∑ ∑
=

−

=

I

j

NNm

i

j

1

)/11*(

1

eji ……Eq (38)

Expected development cost = ∑
=

I

j 1

[c1(mj * N1/N) + c2(mj * (1-N1/N))] * ēj ……Eq (39)

At the start of a jth cycle, number of modules available for module integration is given by

 Mj = ∑
−

=

1

1

j

k

mk

So for the first module released during the jth cycle has to be integrated with Mj modules released
during the previous cycle. We derive this effort as,

Integration effort for first module released during jth cycle = ∑
=

Mj

x 1

p1,x * ej1 …Eq (40)

Now, the ith module released during the jth cycle, has to be integrated with i-1 new modules released
during this cycle and Mj modules released during the previous cycles. Thus the overall module
integration effort for the jth cycle is given as,

Total module integration effort = ∑
=

I

j 1

{∑
=

jM

x 1

p1,x * ej1 + ∑
=

jm

i 1

∑
+−

=

jMi

k

1

1

pik * eji} …Eq (41)

The probability of each of the mj modules being released during the jth cycle having ownership at
onsite is N1/N and at offshore is (1- N1/N). Thus the cost of module integration is modeled as,
Total module integration cost =

[c1*N1/N + c2*(1-N1/N)] * ∑
=

I

j 1

{∑
=

jM

x 1

p1,x * ej1 + ∑
=

jm

i 1

∑
+−

=

jMi

k

1

1

pik * eji} …Eq (42)

Let ‘fj’ number of faults are discovered during system integration of the jth cycle. For each fault
corrected (N-2) interconnections have to be checked by onsite and offshore personnel. In iterative
development, the entire system is not fully connected until all of the I iterations are complete. Thus
structural stability of the system increases as the system is developing. During beginning of the jth
cycle only Mj(Mj-1) of the N(N-1) interconnections are stable. Thus structural stability of the system
can be derived as,

Structural stability of the system = 1-∆, where ∆ = Mj(Mj-1) / N (N-1)
We posit that structural stability of a system has an exponential effect on the effort required for
integration. Thus,

System integration effort required =

∑
=

I

j 1

{ ∑
=

jfNN

k

)/1(

1

2* (N-2) * µp * ē * β + ∑
−

=

jfNN

k

)/11(

1

2* (N-2) * µp * ē * β }* Exp (1-∆) Eq (43)

Expected effort for system integration = ∑
=

I

j 1

 {(N1/N)*fj*2* (N-2) * µp * ē * β +

 (1-N1/N)*fj*2* (N-2) * µp * ē * β}* Exp (1-∆) …Eq (44)

Expected time for system integration = 1/2S * [f2*2* (N-2) * µp * ē * β] * Exp (1-∆) …Eq (45)

Program comprehension and test preparation cost for each cycle is given by,

Program comprehension effort = ∑
=

I

j 1

k2mj + k3fj ……Eq (46)

Program comprehension cost = [c1* (N1/N) + c2* (1- N1/N)] * ∑
=

I

j 1

k2mj + k3fj) ..Eq (47)

The objective of a development manager is now to determine not only the optimal team size S* and
S1* but also the optimal number of iterations I * and the number of modules mj* to be released in
each of the I* cycles, such that the project cost is minimized. This can be formulated as a constraint
programming (CP) as following:
Minimize project cost, with respect to S, S1, I & m and subject to
 1) Schedule constraint – Total Project development time < T
 2) Budget constraint - Total Project costs < C

3) Functionality constraint – Total of N modules have to be delivered to customer

5. CONCLUSION

Our study identifies the key relationships between coordination effort, team organization and software
complexity. We have empirically shown the presence of team effects that affect coordination costs
independent of the software complexity effects present in a software construction cycle. Also we
showed the presence of significant learning effects that reduce coordination effort at the later stage of
the construction cycles, despite an increase in software complexity. These findings form the basis of
our analytic model of coordination effort which we use to develop coordination policies for both plan-
based, waterfall and iterative models of offshore software development.

6. REFERENCES

Apte, U.M., and Mason, R.O. "Global Disaggregation of Information-Intensive Services,"
Management Science (41:7), 1995, pp 1250-1262.

Beck, K., and Andres, C. Extreme programming explained: embrace change Addison-Wesley
Professional, Boston, MA, 1999.

Boehm, B.W. "A spiral model of software development and enhancement," IEEE Computer (21:5),
1988, pp 61-72.

Dhama, H. "Quantitative Models of Cohesion and Coupling in Software," Journal of Systems and

Software (29), 1995, pp 65-74.
Faraj, S., and Sproull, L. "Coordinating expertise in software development teams," Management

Science (46:12), 2000, pp 1554-1568.
Grinter, R.E. "Using a configuration management tool to coordinate software development,"

Organizational computing systems, Milpitas, CA, 1995.
Grinter, R.E. "Supporting articulation work using software configuration management systems,"

Computer supported cooperative work (5:4), 1996, pp 447-465.
Herbsleb, J.D., and Mockus, A. "Formulation and preliminary test of an empirical theory of

coordination in software engineering," 11th ACM SIGSOFT international symposium on
foundations of software engineering, Helsinki, Finland, 2003, pp. 138-147.

Koushik, M.V., and Mookerjee, V.S. "Modeling Coordination in Software Construction: An Analytic
Approach," Information Systems Research (6:3), 1995, pp 220-254.

Kraut, R.E., Egido, C., and Galegher, J.R. "Patterns of contact and communication in scientific
research collaborations," in: Intellectual Teamwork: Social and technological foundations of

cooperative work, J.R. Galegher, R.E. Kraut and C. Egido (eds.), Lawrence Erlbaum Assoc,
Hillsdale, New Jersey, 1990, pp. 149-172.

Kraut, R.E., and Streeter, L.A. "Coordination in software development," Communications of the ACM
(38:3), 1995, pp 69-81.

Mercer "2003/2004 Global IT Function Salary Differentials," in: Mercer Consulting Inc, 2004.
Mookerjee, V.S., and Chiang, R. "A dynamic coordination policy for software system construction,"

IEEE Transactions on software engineering (28:6), 2002, pp 684-694.
Nasscom-McKinsey "NASSCOM-McKinsey Report 2002," National Association of Software and

Service Companies, New Delhi.
Nidumolu, S. "The effect of coordination and uncertainty on software project performance: Residual

performance risk as an intervening variable," Information Systems Research (6:3), 1995, pp
191-219.

Paulk, M.C. "List of Maturity Level 4 and 5 Organizations,
http://www.sei.cmu.edu/publications/articles/paulk/high.mat.orgs.html," Software
Engineering Institute, Pittsburgh.

Shami, N.S., Bos, N., Wright, Z., Hoch, S., Kuan, K.Y., Olson, J., and Olson, G. "An experimental
simulation of multi-site software development," 2004 Conference of the center for advanced
studies on collaborative research, Markham, Canada, 2004, pp. 255-266.

Sikora, R., and Shaw, M.J. "A multi-agent framework for the coordination and integration of
information systems," Management Science (44:11), 1998, pp S65-S78.

Toffolon, C., and Dakhli, S. "A framework for studying the coordination process in software
engineering," 2000 ACM symposium on applied computing, Como, Italy, 2000, pp. 851-857.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	7-20-2009

	Modeling Coordination in Offshore Software Development
	Narayan Ramasubbu
	Amit Mehra
	Vijay mookerjee
	Recommended Citation

