Inferring Supplier Quality in the Gig Economy: The Effectiveness of Signals in Freelance Job Markets

Kathuria, A and Saldanha, T J V and Khuntia, J and Andrade Rojas, M and Mithas, S and Hah, H (2021) Inferring Supplier Quality in the Gig Economy: The Effectiveness of Signals in Freelance Job Markets. In: Proceedings of the 54th Hawaii International Conference on System Sciences.

Full text not available from this repository. (Request a copy)


Inferring quality of labor suppliers is a challenge in the gig economy. Many online freelance job markets address this challenge by incorporating signals. We test effectiveness of two kinds of information signals as indicators of supplier quality: skill signal (which reflects suppliers’ skill and potential), and achievement signal (which reflects suppliers’ past achievement). We theorize that two job characteristics in cross-national labor demand settings strengthen effectiveness of these signals: job duration, and cultural distance. Econometric analysis on a dataset from a leading online freelance job marketplace containing information on jobs posted by buyers and completed by suppliers located across several countries supports our hypotheses. We find that both skill and achievement signals are more effective at inferring supplier quality in jobs involving longer duration, and in jobs involving greater cultural distance between buyers and suppliers.

Affiliation: Indian School of Business
ISB Creiators:
ISB Creators
Kathuria, A
Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: SITES, Cultural Distance, Platforms, Job duration
Subjects: Information Systems
Depositing User: Gurusrinivasan K
Date Deposited: 28 Mar 2021 05:07
Last Modified: 28 Mar 2021 05:07
Publisher URL:
Publisher OA policy:
Related URLs:

Actions (login required)

View Item View Item
Statistics for DESI ePrint 1411 Statistics for this ePrint Item