
Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Performance evaluation of DNN with other machine learning techniques
in a cluster using Apache Spark and MLlib
https://doi.org/10.1016/j.jksuci.2018.09.022
1319-1578/� 2018 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Vignan’s Foundation for Science, Technology and
Research, VFSTR University, Vadlamudi, Guntur, Andhra Pradesh, India.

E-mail address: jayalakshmialuru94@gmail.com (K.V. Krishna Kishore).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
A.N.M. JayaLakshmi, K.V. Krishna Kishore ⇑
Department of Computer Science and Engineering, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 7 March 2018
Revised 4 September 2018
Accepted 26 September 2018
Available online 28 September 2018

Keywords:
Sentiment analysis
Classification
Text mining
Big data
Distributed computing
Apache Spark framework
Sentiment analysis on large data has become challenging due to the diversity, and nature of data.
Advancements in the internet, along with large data availability have obviated the traditional limitations
to distributed computing. The objective of this work is to carry out sentiment analysis on Apache Spark
distributed Framework to speed up computations and enhance machine performance in diverse environ-
ments. The analysis, such as polarity identification, subjective analysis and email spam etc., are carried on
various text datasets. After pre-processing, Term Frequency-Inverse Document Frequency (TF-IDF) and
unsupervised Spark-Latent Dirichlet Allocation (LDA) clustering algorithms are used for feature extrac-
tion and selection to improve the accuracy. Deep Neural Networks (DNN), Support Vector Machines
(SVM), Tree ensemble classifiers are used to evaluate the performance of the framework on single node
and cluster environments. Finally, the proposed work aims at building an approach for enhancing
machine performance, more in terms of runtime over accuracy.
� 2018 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the last decade, a wide interest has been generated in
the area of sentiment analysis for applications that range from cus-
tomer services to health care to marketing. Since the rapid growth
of web and content generated on it being mostly in the format of
text, text mining has become inevitable for various applications
in different fields. This real time text data, mostly the unstructured
data, which has been a challenge for processing and obtaining the
user required results. In particular the challenges deals with peo-
ple’s experiences, opinions, and feelings. It is felt that the process-
ing of text data, aided by machine learning techniques (Khan et al.,
2016) can provide useful applications in various areas.

This explains the growing relevance of sentiment analysis in the
last decade. For carrying out Sentiment analysis, data is crawled
from various forms of web sources such as social media news arti-
cles, and live journals (Ahmed et al., 2015). Out of these, social
media has attracted great attention when compared to other
sources. Sentiment analysis involves use of natural language pro-
cessing (NLP) techniques to systematically extract, identify subjec-
tive information, and study effective states from the crawled data.
Hence, text analysis emphasizes on working with text data to
know about things such as predicting the market value of a newly
launched product based on surveys. Polarity detection is based on
user reviews, movie ratings etc., Subjectivity & Objectivity analysis
and email spam detections are based on the text contents in the
mail. This dramatic growth in the area of sentiment analysis has
made it possible to extend its applications to process huge
amounts of Big Data. The speed with which volumes of the data
is being generated from users through various sources is to be
processed, which brings distributed programming into the frame.
The application of the distributed programming technique helps
in attaining scalability and resolves performance issues of various
kinds of structured and unstructured data which cannot be
handled by a single node system. Thus the blending of sentiment
analysis with distributed frameworks can provide more effective
results when compared to the existing models.

In this paper, we aim to compare the sentiment analysis with
distributed environment (Burdorf, 2015) based on the Apache
Spark Framework. Preprocessing and feature selection of the text
from various datasets is done. Classification is performed using
supervised machine learning algorithms, which includes working
with ensemble techniques as well. We analyzed the performance

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2018.09.022&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2018.09.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jayalakshmialuru94@gmail.com
https://doi.org/10.1016/j.jksuci.2018.09.022
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

1312 A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319
of the model built in our work by focusing on the features
extracted from input, rather than the accuracy.

The content in the article is arranged as follows. Section 2, pre-
sents a review of related works on the area of research. Section 3,
discusses on the Distributed computing framework. Section 4
explains the Implementation of the work and the classification
algorithms used in the proposed system. Finally, Section 5 presents
an evaluation of the results obtained, while Section 6 draws the
conclusions with suggestions for future scope in the area.
2. Related works

The tremendous increase of interest in the area of sentiment
analysis is mainly due to the availability of data and the improve-
ments brought in the era of the internet, advancements in new
techniques and algorithms (Pang and Lee, 2006; Suttles and Ide,
2013; Bhavitha et al., 2017) has proved that blending sentiment
analysis with machine learning can provide more scope of predict-
ing success of newly launched products. The comparative study
done on both supervised and unsupervised machine learning tech-
niques reveal the efficacy of supervised techniques such as SVM
over unsupervised techniques in sentiment analysis. Various meth-
ods and approaches for addressing the issues of sentiment analysis
in real time, such as Polarity shift problem, binary classification,
data sparsely, and accuracy are described in (Abirami and
Gayathri, 2016).

Having such a wide range of applications of analytics, various
forms of analytics like prediction, descriptive, prescriptive and
diagnosis can provide immense advantage for real time big data
analytics using Apache Strom, Hive, and HBase. Implementation
of sentiment analysis using Apache Spark, has been done in
(Baltas et al., 2017), where data crawled through Twitter has been
classified using binary and ternary classifiers. Intensive machine
learning algorithms on Spark have been evaluated (Svyatkovskiy
et al., 2016). The problem of Policy diffusion detection problem
(US) is considered as a use case, in which distributed text process-
ing pipelines with spark data frames comprising Avro framework,
Spark ML, Graph Frames, and Histogram suite are used.

Distributed analytics is now proving to play an important role in
the real time applications (Oussous et al., 2017), which can indeed
provide an improved facility of processing large scale datawithmin-
imal time complexity. The extreme learning framework, thus goes
beyond big data analytics as proposed by (Oneto et al., 2016), in
which Statistical Learning Theory (SLT) to build an ExtremeLearning
Machine (ELM). They used conventional ELM to work on big data
using Spark which is deployed on Hadoop Cluster. A deep learning
model (Alsheikh et al., 2016) is proposed inmobile big data analytics
(MBD), and is a scalable learning frameworkusingApacheSpark. The
model proposes the parallelization of a deep model by slicing the
MBD into many partitions in a spark resilient distributed dataset
(RDD). The results indicate the attainment of a higher performance
using deep learning models when compared to the conventional
lightermodels through the Spark framework on Actitracker dataset,
which included accelerometer samples of 6 regular activities like
jogging, walking, climbing stairs, standing, sitting, and laying down
from the 563 crowd sourcing users.

An ensemble mail spam detection system using Apache Spark is
implemented (KarthikaRenukaet al., 2017). Target Prediction indis-
covering the Drug uses Apache Spark is proposed (Harnie et al.,
2017), where remodeling of the existing pipeline has been imple-
mented using Apache Spark for target prediction of drug molecule
which damages proteins. SA’s on social media such as Reddit, Live
Journals, Twitter, etc., have been making tremendous applications
in various fields. Nodarakis et al., 2016 proposed sentiment analysis
using the Spark on large scale tweets. The hashtags and emoticons in
tweets, are considered as input features and classified as sentiments
in the distributed computing environment. The Bloom filter is used
to compress the size and boost the performance as well. Various
approaches proposed in sentiment analysis in literature are primar-
ily focused onperformance irrespective of time complexity. If data is
small in size, analysis will be completed within time frame. But,
when analysing large corpus, time is a major constraint, so the pro-
posed framework will reduce the time taken for sentiment analysis.
3. Distributed computing environment

3.1. Map reduce model

Hadoop is a processing framework used to support the process-
ing of large datasets in distributed computing (Bhosale and
Gadekar, 2014). Map Reduce acts as a strong pillar in the Hadoop
ecosystem. Map Reduce is a distributed and parallel programming
model, which enables the processing of Big Data on a cluster com-
puting environment. Map Reduce programming mainly consists of
two functions, namely map () and reduce (). Mapper provides the
mapping of input data according to the number of input partitions
provided to the worker node, and generates a Key-Value pair as an
output. Sort and Shuffle phase, provides the sorting of the data
according to the given key input and generates the format readable
for the Reducer.

The Reducer phase takes the input of these intermediate data
and makes the transformations on the values for a given key value
and generates the required output. The Apache Hadoop environ-
ment provides this feasibility of implementing the Map Reduce
framework on top of it. Map Reduce has a disadvantage as it
flushes the data to the disk between every iteration and the data
is to be read on each iteration from the disk, which costs a lot in
terms of time and disk I/O operations. This disadvantage has been
overcome through the usage of Apache Spark which is a distributed
programming framework developed to process the large volumes
of data in the memory.
3.2. Apache Spark model

Apache Spark is a new framework which can provide an
improved alternative to the Map Reduce model. Spark unlike
map reduce model doesn’t flushes out the data to the disk in each
step, instead the data is processed in the memory until the mem-
ory becomes full. Once the memory is filled, then it spills over
the data to the hard disk. Hence, Spark can also be referred as in-
memory processing. This advantage of spark can make its process-
ing very quick compared to map reduce models. Spark is generally
referred to be 10x times faster than map reduce models. Spark
framework can be implemented in various forms such as Stan-
dalone, on top of Hadoop Yarn (cluster manager), Cassandra or
HBase. This forms another advantage of spark, which unlike map
reduce doesn’t require HDFS (Hadoop Distributed File System) to
run. (Verma et al., 2016), instead spark can run on various other
forms as mentioned above.

The architecture of the Spark is shown in the Fig. 1.The Spark
Framework uses master/worker architecture where the worker
nodes are managed by the master node. The executors in the
worker nodes are implicitly built once the spark is deployed on
the cluster, and the tasks are run as per the instructions given by
the cluster manager (Eg: Yarn). The driver program is the user
command interface through which the user sends the instructions
and receives in the form of Spark Context or Spark Session. The
Spark Session acts as the central gateway for spark communication
from the spark versions 2.0 and above. At the core Spark works
based on the concept of Resilient Distributed Dataset (RDD).

Fig. 1. Spark Architecture.

A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319 1313
RDD’s provide the implementations such as distributed data
collection, fault-tolerance of the nodes, capability to use various
data sources and parallelism. Our proposed model uses the data
frames for storing and operating the datasets. Data frames provide
a way more natural for working on tabular data. Although using
data frames will have no impact on the implementation of the
work, as the files will continue to be distributed as RDD’s. It is only
the syntax which changes. Spark performs two basic operations,
i.e., transformations and actions. The transformations executes
the work on the RDD’s which converts the input data using opera-
tions such as map, join, reduce by key etc., and returns the output
back to RDD’s and actions collects the data from the RDD’s.

3.3. Spark’s MLlib

MLlib is the Sparks machine learning library which forms the
implementation of machine learning techniques. It is a scalable
machine learning library which can implement techniques of Clas-
sification, Regression, and Clustering. Spark is built on the Scala
programming language, but API’s such as Java, Python can also
be operated on Hadoop or standalone environments.

4. Implementation

The architecture of the proposed model for implementation is
given in Fig. 2. In the first phase data cleaning has been taken
up, followed by extraction of the features for modelling. Then
classification algorithms for classification of feature set are used
in employing Spark MLlib to build the model. The first step of
initial pre-processing is followed by the feature vector which is
utilized by the classifier to classify the sentiment from each
given text. Fig. 3 shows the overall workflow of the system.
The distribution of the work across the cluster is shown. Consid-
ering the program execution as a job the spark divides the job
into parallel partitions of RDDs. A spark job is referred as the
computation of those partitions sliced into stages. The job in
execution is split into N number of stages by the default Spark
DAG Scheduler (Directed Acyclic Graph Scheduler). Each Stage
has an id and the DAG Scheduler maintains the track of next
Stage Id. A DAG scheduler thus splits a given job into a collec-
tion of stages where the required transformations and actions
are consecutively performed. A Stage can have dependencies
on other stages and therefore can trigger the execution of depen-
dent stages. A Stage can only work on the partitions of RDD’s.
The partitions of each set of RDD’s are divided into respective
tasks (n number of tasks for n partitions) for each stage. When
a Spark Context is created, each worker node starts an Executor.
The Executor runs tasks on the nodes and returns back the
results in the form of RDDs. The Result Stage is the final stage
which tracks the completion of all the stages and returns the
spark actions to the user program. The execution work flow of
the proposed system on spark cluster also follows the same flow

Fig. 3. Work Flow Overview.

Fig. 2. System Overview.

1314 A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319
as mentioned above. Considering the project as a sequence of 4
steps which requires the execution of one step followed by the
other which involves reading of the data from the file followed
by tokenization and stop word removal, Count Vectors and TF-
IDF, topic modelling or LDA, classification. The respective steps
are divided into N number of stages based on the user program
by the default DAGScheduler which runs as N number of tasks
on worker nodes by the executors. The stages are executed as
tasks among the cluster of 8 worker nodes. The tasks are split
randomly among the nodes and the transformations on the data-
sets are executed. Table 1 shows the methods used for spark
operations such as transformations and actions on datasets.

A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319 1315
4.1. Feature description

4.1.1. Extraction and Transformation
In this section, we show how the features are utilized to model

the classifier. For the given text, we combine the feature to its
respective feature vectors. We used a Data Frame-based API for
the feature Extraction and Transformation which follows the
implementation of Term frequency-Inverse document frequency
(TF-IDF) (Liu and Yang, 2012). The TF-IDF is a vectorization method
of features which is widely used in text mining. It reflects the
importance of a term assigned to a document in the corpus. Term
Frequency TF(t,d) where ‘t’ is the term, ‘d’ represents a document in
a corpus ‘D’. It refers to the number of occurrences of the term ‘t’ in
a document. Document Frequency DF(t,d) is the count of the doc-
uments which contains the term ‘t’. Whereas inverse document
frequency is the numerical count of the amount of information, a
term provides. TF_IDF is the product of TF and IDF.

IDF t;dð Þ ¼ log Dj j þ 1ð Þ= DF t;Dð Þ þ 1ð Þð Þ ð1Þ

TFIDFðt;d;DÞ ¼ TFðt;dÞ � IDFðt;DÞ ð2Þ
where |D| is the total number of documents in the corpus.

Spark’s MLlib uses TF and IDF models individually to obtain the
features, where both Hashing Term Frequency and Count Vector-
izer can be used to generate Term Frequency vectors.

4.1.2. Latent Dirichlet allocation in Spark
Latent Dirichlet allocation (LDA) is a topic model which refines

topics from a collection of documents. LDA (Onan et al., 2016) is
used for clustering of the documents, where the cluster centers
refer to the topics from the given text data. This unsupervised
machine learning algorithm is implemented through RDD-based
Spark Clustering API which takes Online LDA Optimizer as the
Table 1
Used Methods in the Model.

Method Name

SparkSession.builder.appName(’nlp’).getOrCreate():Spark Session is the entry point
extracts an existing Session using the builder function.

Spark.read.csv (‘‘input text file”, header = True, sep = ‘\t’): Reads a csv file data in the c
the column separator in the data file.

Tokenizer (inputCol = ‘‘text”, outputCol = ‘‘token_text”): Splits the word tokens from
StopWordsRemover(inputCol = ’token_text’,outputCol=’stop_tokens’, caseSensitive = fa

which provides no contextual meaning to the given text data as well. Case Sensitive
are treated as case insensitive. The stop word list used is the default English stop
Retrieval Group http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words.

CountVectorizer():Counts the number of times a word occurs in the given documen
IDF (): Calculates the importance of the word in the whole document.
StringIndexer():Assigns the numerical value to the string column.
Pipeline (stages = [stage1, stage2, Stage n]): Pipelines the execution sequence of the
VectorAssembler(inputCols = [’tf_idf’],outputCol = ’features’):Assembler assembles th
LDA (featurescol=”features”,k = 10): Provides topic modelling for the obtained feature
df.select([‘label’],[‘features’]): selects the features and label columnar data from the a
ChiSqSelector(numTopFeatures = 10,featuresCol=”features”,outputCol = ”selectedF

features among the list of features.
pyspark.ml.classification.DecisionTreeClassifier(): Classifies the data using decision

RandomForestClassifier(labelcol = ’label’,’featurescol = ’topicdistribution’): Clas
as base class. pyspark.ml.classification. NaiveBayes(): Classifies the sample data
MultilayerPerceptronClassifier(): To classify the data using back propagation neu

(training,testing) = Feature Vector.randomSplit([0.9,0.1]):The random Split method
System Overview) data in the ratio of 90 training samples and 10 testing samples

Model = pyspark.ml.classification.MultilayerPerceptronClassifier().fit(training):The
provided classifier.

Test results = model. Transform (testing): The transform method transforms the tes
MulticlassClassificationEvaluator (metric Name = ”accuracy”).evaluate (test results):

results obtained by transforming the test data (described in the system overview)

Head (): It outputs the top 10 rows by default from the data frame.
Show (count, truncate = False): It outputs the transformations applied on the data t
Collect(): It is used to collect the data from the data frame
optimizer parameter. The parameter is an iterative mini-batch
sampling and is much friendlier for distributed models. The output
vector from the TFIDF is taken as the input of LDA topic modelling.
From the extracted topics obtained through this unsupervised
learning, we classify the data using supervised techniques.

4.2. Supervised Learning:

4.2.1. Naïve Bayes classifier
Naïve Bayes (Huang and Li, 2011) is a well-known multi class

classifier. Spark MLlib has multinomial naïve Bayes and Bernoulli
naïve Bayes classifiers. Multinomial naive Bayes (Jurafsky and
Martin, 2016) is an approach for distinguishing the document clas-
sification. The term frequency tf(t,d) is calculated as

Normalized term frequency ¼ tf t;dð Þ=nd ð3Þ
Where, ‘nd’ is referred as the number of terms in d document.
In the multinomial model, the class conditional probability P of

the text x can be calculated as,

P xjwj
� � ¼Ym

i¼1

P xijwj
� � ð4Þ

The multivariate Bernoulli naive Bayes model is an alternate
approach for classifying the text document on binary data. The fea-
ture vector has ‘m’ dimensions with the number of words referred
as ‘m’ in the whole vocabulary (The Bag of Words Model). The value
of 1 is the occurrence of the word in the particular document, and a
value of 0 represents the absence of the word in the document. The
Bernoulli trials are written as follows

P xjwj
� � ¼Ym

i¼1

P xijwj
� �b � 1� P xijwj

� �� � 1�bð Þ where b 2 0;1ð Þ ð5Þ
Functionality

to work on Data frames in Spark. Creates a new Session or Transformations

olumnar format with header names. The sep parameter shows

the given text file reading it line by line
lse): Removes the commonly used words and also the words
Boolean attribute is set false by default to indicate that words
words list which can be found from Glasgow Information

t

instructions given.
e feature vector contents and provides the output features.
vector based on the value of k given.
vailable data frame
eatures”): Chi-Squared feature selection decides top 10

trees algorithm. pyspark.ml.classification.
sifies the data using ensemble techniques using decision tree
to build the model pyspark.ml.classification.
ral networks.
splits the pre-processed (described as Feature Vector in the
out of given 100 data samples.
fit method fits the training data to build the model using the

t data using the build model and forms the predicted labels.
Evaluates the accuracy of the model predicted using the test
with the model build using the train data.

Actions
o the user, with truncated values set to False in default.

http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
http://pyspark.ml
http://pyspark.ml
http://pyspark.ml
http://pyspark.ml
http://pyspark.ml

1316 A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319
P^ xijxj
� � ¼ df xi ;y þ 1

� �
=ðdf y þ 2Þ ð6Þ

Empirical comparisons has proved that the multinomial model
surpass the multivariate Bernoulli model if the size of the vocabu-
lary is comparatively large since multivariate Bernoulli performs
well with small vocabulary sizes (McCallum and Nigam, 1998).

4.2.2. Decision tree algorithm
The decision tree (Barros et al., 2012) follows a greedy method

which performs a recursive binary partitioning of the features. The
decision trees are considered as effective classifiers in classifica-
tion, prediction, and for resolving decision-making problems.
Decision trees are generally referred to as trees covering both clas-
sification and regression (or) CART. To maximize the information
gain at a tree node argmaxs, IG (D, s) is to be applied to a dataset
D. The current implementation provides two impurity measures,
which are Gini impurity and entropy. The implementation in the
current work is made based on the current implementations done
on spark 2.2.0 version. The current work uses the default parame-
ters of spark framework which are maxDepth with a value of 5,
maxBins (number of bins used for splits at each node) with a value
of 32, impurity (default:gini)

Gini impurity :
Xc
i¼1

ðf ið1� f iÞÞ; ð7Þ

Entropy :
Xc
i¼1

ð�ðf ilogðf iÞÞÞ; ð8Þ

where

� f i is the frequency, C is count of unique labels.

4.2.3. Ensembles
Spark MLlib library supports notable ensemble algorithms, Gra-

dient Boosted Trees (GBT) and Random Forest classifiers (RF)
(Gupte et al., 2014). These GBT and RF ensemble models use deci-
sion trees as their base model. Random Forest Classifiers are found
to be one of the best classifiers to solve real world classification
problems (Fernández-Delgado et al., 2014). Random forest trains
a set of decision trees individually, to implement the training in
parallel. Combining the predictions from each tree reduces the
variance which improves the performance of the test data. GBTs
iteratively train decision trees to minimize the loss function and
compare the predicted value with the labeled data. Random Forest
algorithmworks by randomly selecting K features from a total of M
features where K<<M. The node d is selected among k features
using best split algorithm. The daughter nodes from dode are fur-
ther divided using the best split approach. The default K value of
spark version 2.2.0 is used in the current work. The default param-
eters of the RFC, GBT in the spark implementations are used for
classifying the proposed work. The default parameters set are num-
Trees (number of trees) default: 20, maxDepth (maximum depth of
the tree) default:5, maxBins (number of bins used for splits at each
node) default:32, impurity deafult:gini

Log Loss:

XN
i¼1

log 1þ exp �2yiF xið Þð Þð Þð Þ ð9Þ

where

� N is number of instances,
� yi = label of ith instance
� xi is the features of ith instance,
� F(xi) = predicted label of ith instance
4.2.4. Linear Support vector Machine
Support Vector Machines (SVM) (Mullen and Collier, 2004) is

used for classification, regression and other tasks. SVM generates
hyper planes for a multi-dimensional area. The hyper planes acts
as the functional margin which reduces error rate for the classi-
fiers. Spark’s ML classifier supports binary classification with
SVM using linear kernel function. The Linear SVC classifier of spark
has outperformed well for the distributed frameworks which con-
tains large size datasets. The default parameters set are maxIter
(maximum number of iterations):100, tol(error rate) default:1e-06.

4.2.5. Deep learning
Multilayer Perceptron Classifier (MLPC) (Ain et al., 2017) is a

classification based on the feed forward artificial neural network.
MLPC contains multiple layers of nodes resulting in deep learning.
Each layer is interconnected to the next layer forming a network.
Feature vector is connected to the nodes of the input layer. Nodes
of the hidden layer use sigmoid (logistic) function as the activation
function or transition function (Mhaskar et al., 1994), whereas
nodes of the output layer use the Softmax activation function. Deep
Neural Network (DNN) implemented in the current work contains
a total of 4 layers out of which the middle two layers are hidden
layers and the first layer is the input layer comprising of the
selected numTopFeatures (number of top features selected) number
of neurons. The last layer is the output layer which contains two
neurons based on the unique class labels in the given dataset.
The number of neurons in the hidden layers are picked in random
for each dataset to improve the accuracy. The default parameters of
the Multilayer Perceptron Classifier () method of spark are used for
the implementation of MLPC in the current work. The default
parameters are maxIter (maximum number of iterations):100,
blockSize (block size for stacking input data) default: 128, seed:
1234, solver (algorithm) default:l-bfgs.

Sigmoid Function : f zið Þ ¼ 1=ð1þ e�zi Þ ð10Þ
SoftmaxFunction : f zið Þ ¼ ezi
XN
k¼1

ezk
 !

ð11Þ

where, N is the number of nodes in the output layers, which forms
the number of the classes, and Zi is calculated as zi = wix + bi where
wi is the weight of ith node and b is the bias for each node.
5. Experimental evaluation

A series of experiments were conducted to evaluate the
performance of the proposed model mainly under the perspective
of running time and classification performance. Varieties of the
datasets and a number of nodes are considered in analyzing the
performance of the machine learning models. A Cluster is set up
for experimentation with 8 computing nodes based on the size
requirement of the datasets considered. Each one of them has four
2.4 GHz processors and 16 GB RAM, and 200 GB hard disks. On
each node 64-bit Centos version 7 operating system has been
installed. One of the nodes is considered as the master node and
the other 7 nodes were considered as the slave nodes. Spark ver-
sion 2.2.0 was set up on top of Hue. The Hue spark application is
recently created which lets the users to interact directly with the
spark application from any browser through any system. Pyspark
library set up is installed with the required python API to run the
applications on top of spark which is inbuilt with the Scala. Pro-
posed model has been implemented on Spark Data frames which
reads the data in the format of tabular values. The resilient dis-
tributed datasets (RDD’s) then undergo the process of work distri-
bution and fault tolerance to work on different nodes in the cluster.

Table 3
Precision, Recall, F-Score values of Subjectivity/Objectivity Dataset’s.

Performance Metrics Naive Bayes Decision Trees Random Forest Gradient Boosted Trees Linear SVC DNN

Precision(single node Tf_idf) 89.25 88.2 88.89 89.25 89.27 88.05
Recall(single node Tf_idf) 89.24 88.51 89.12 89.58 89.26 88.04
F-Score(single nodeTf_idf) 89.24 88.51 89.23 89.11 89.27 88.04
Precision(cluster Tf_idf) 89.97 88.89 89.54 90.21 90.43 88.05
Recall(cluster Tf_idf) 89.96 88.13 90.43 90.96 90.4 88.04
F-score(cluster Tf_idf) 89.96 88.54 90.29 91.12 90.40 88.04
Precision(single node LDA) 65.50 65.38 68.15 68.75 64.63 67.90
Recall(single node LDA) 65.73 63.94 65.38 66.12 65.13 69.45
F-Score(single node LDA) 64.23 63.35 65.33 65.33 64.09 68.64
Precision(cluster LDA) 66.20 65.61 64.79 65.11 65.21 66.28
Recall(cluster LDA) 66.44 66.19 66.59 66.87 65.03 66.60
F-score(cluster LDA) 66.14 65.39 66.13 66.58 65.16 67.42

Table 4
Precision, Recall, F-Score values of Polarity Dataset’s.

Performance Metrics Naive Bayes Decision Trees Random Forest Gradient Boosted Trees Linear SVC DNN

Precision(single node Tf_idf) 79.47 79.81 80.01 80.45 82.39 70.43
Recall(single node Tf_idf) 79.42 79.45 80.20 80.89 82.35 69.27
F-Score(single node Tf_idf) 79.41 79.94 80.16 80.54 82.35 69.12
Precision(cluster Tf_idf) 79.63 80.12 81.16 81.67 82.48 68.85
Recall(cluster Tf_idf) 79.55 80.45 80.98 81.63 82.46 69.80
F-score(cluster Tf_idf) 79.55 80.89 81.34 82.22 82.46 69.00
Precision(single node LDA) 51.67 53.76 54.84 54.14 53.23 51.99
Recall(single node LDA) 52.24 54.50 54.73 54.73 50.67 51.93
F-Score(single node LDA) 46.88 52.65 53.19 54.43 52.14 50.26
Precision(cluster LDA) 52.29 54.12 54.86 55.14 76.14 52.95
Recall(cluster LDA) 52.41 54.27 54.29 54.89 87.12 53.43
F-score(cluster LDA) 47.20 53.53 52.87 54.32 81.3 51.49

Fig. 4. Accuracy of Overall Dataset’s with LDA.

Table 2
Precision, Recall, F-Score values of Email spam Dataset’s.

Performance Metrics Naive Bayes Decision Trees Random Forest Gradient Boosted Trees Linear SVC DNN

Precision(single node Tf_idf) 94.98 95.01 95.96 96.98 97.96 95.40
Recall(single node Tf_idf) 91.57 92.34 93.32 93.02 97.91 95.49
F-Score(single node Tf_idf) 92.47 92.98 93.18 93.25 97.83 95.27
Precision(cluster Tf_idf) 94.46 94.45 95.6 95.88 90.96 95.4
Recall(cluster Tf_idf) 91.93 92.27 93.16 94.96 90.96 95.49
F-score(cluster Tf_idf) 92.57 93.22 94.11 94.11 90.96 95.27
Precision(single node LDA) 76.64 93.33 93.94 93.94 75.59 88.16
Recall(single node LDA) 87.81 93.95 94.48 94.83 86.78 88.78
F-Score(single node LDA) 81.81 93.27 93.80 94.10 80.53 85.61
Precision(cluster LDA) 72.55 92.99 93.17 92.97 85.9 88.15
Recall(cluster LDA) 85.37 93.12 93.12 93.12 87.72 88.60
F-score(cluster LDA) 78.25 92.81 93.01 93.78 86.88 85.46

A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319 1317

Fig. 5. Accuracy of Overall Dataset’s with Tf_idf.

Fig. 6. Time Complexities of Overall Dataset’s with LDA.

Fig. 7. Time Complexities of Overall Dataset’s with Tf_idf.

1318 A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319

A.N.M. JayaLakshmi, K.V. Krishna Kishore / Journal of King Saud University – Computer and Information Sciences 34 (2022) 1311–1319 1319
5.1. Classification performance and running time

The classification performances of the models are evaluated in
terms of accuracy using the random split method. The model
trained using the ensemble classifiers outperforms the rest of the
classifiers. The outputs generated through the ensemble trees tech-
niques such as Random Forest and Gradient Boosted Trees show
higher rates of accuracy. Assuming the fact that accuracy can also
depend upon various influencing factors, classifiers with 55–60% of
accuracy range can also be considered. In this framework, we have
implemented the models which may not excel in terms of
accuracy, but it is an effective model in terms of runtime.

Tables 2–4 shows the precision, recall and F-score performances
of the model on the provided datasets. The values are considered
on both cluster and single node systems. Figs. 4-7 shows the graph-
ical representation of the performances on various classifiers.
These graphs infers various performance metrics such as accuracy,
runtime on various classifiers like Naïve Bayes, Decision Trees,
Random Forest, Gradient Boosted Trees Ensemble techniques and
Deep Neural Networks, Linear SVC. Fig. 4 shows the plotting of
accuracy on overall datasets over various classifiers with LDA.
The classifier accuracy on the single node versus cluster is show-
cased. Similarly the graphs in Fig. 5 show the performance metrics
with TF-IDF on overall dataset’s which shows the performance of
the datasets over the single node and the Spark cluster. Figs. 6
and 7 shows the time complexity of models with LDA and with
TF-IDF feature selection on various classifiers run on single node
and cluster environments.

6. Conclusion and future work

In this proposed work, an efficient Spark framework with clus-
ter is implemented to improve the time complexity in analyzing
the sentiment analysis from the given corpus or from the real-
time streaming. The text data from the corpus is taken as input
in which features are extracted in the proposed model and further
proceeded with clustering using LDA followed by the classification
using various classifiers. The performance of the proposed frame-
work using various classifiers is better on cluster when compared
to the performance on a single node. The evaluation shows that
the performances of DNN and LinearSVC, Tree Ensemble classifiers
are better in the current work when compared to the rest of the
classifiers. Through the evaluation, we have proved that our pro-
posed system is scalable in terms of computation on large data
and efficient. The limitation of the current work relies on LDA
based feature extractions of sentiment analysis on distributed
environments. The current availability of LDA on default spark ver-
sions is used in the work, which in turn has limited the accuracy of
the model. The modelling of LDA with Rank based topic modelling
can further improve the accuracy of the model.

In future, extraction of optimum features on high volumes of
data will be considered. Furthermore, we will design a better
machine learning model such as Generative Adversarial Network
for improving performance under high volumes of data at a faster
rate against other classification methods. The accuracy can be
targeted in future for further implementation.

References

Khan, W., Daud, A., Nasir, J.A., Amjad, T., 2016. A survey on the state-of-the-art
machine learning models in the context of NLP. Kuwait J. Sci. 43, 95–113.
Ahmed, K., Tazi, N., El Hossny, A.H., 2015. Sentiment analysis over social networks:
an overview. 2015 IEEE Int. Conf. Syst. Man, Cybern., 2174–2179 https://doi.org/
10.1109/SMC.2015.380.

Burdorf, C., 2015. A Distributed Sentiment Analysis. Development Environment.
Pang, B., Lee, L., 2006. Opinion Mining and Sentiment Analysis. Found. Trends�

InformatioPang, B., Lee, L. (2006). Opin. Min. Sentim. Anal. Found. Trends� Inf.
Retrieval, 1(2), 91–231. doi10.1561/1500000001n Retr.1,91–231 https://doi.
org/10.1561/150000001.

Suttles, J., Ide, N., 2013. Distant supervision for emotion classification with discrete
binary values. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics) 7817. LNCS, 121–136 10.1007/978-3-642-
37256-8_11.

Bhavitha, B.K., Rodrigues, A.P., Chiplunkar, N.N., 2017. Comparative study of
machine learning techniques in sentimental analysis ICICCT2017 Proc. Int.
Conf. Inven. Commun. Comput. Technol., 216–221 https://doi.org/10.1109/
ICICCT.2017.7975191.

Abirami, M.A.M., Gayathri, M.V., 2016. A survey on sentiment analysis methods and
approach. 2016 Eighth Int. Conf. Adv. Comput. 72–76. https://doi.org/10.1109/
ICoAC.2017.7951748.

Baltas, A., B, A.K., Tsakalidis, A.K., 2017. Algorithmic Aspects of Cloud Computing
10230, 15–25. https://doi.org/10.1007/978-3-319-57045-7.

Svyatkovskiy, A., Imai, K., Kroeger, M., Shiraito, Y., 2016. Large-scale text processing
pipeline with Apache Spark. Proc. – 2016 IEEE Int. Conf. Big Data, Big Data 2016,
3928–3935. https://doi.org/10.1109/BigData. 2016.7841068.

Oussous, A., Benjelloun, F.Z., Ait Lahcen, A., Belfkih, S., 2017. Big data technologies: a
survey. J. King Saud Univ. – Comput. Inf. Sci. https://doi.org/10.1016/j.
jksuci.2017.06.001.

Oneto, L., Bisio, F., Cambria, E., Anguita, D., 2016. Statistical learning theory and ELM
for big social data analysis. Eee Comput. Intell. Mag. 45–55. https://doi.org/
10.1109/MCI.2016.2572540.

Alsheikh, M.A., Niyato, D., Lin, S., Tan, H.-P., Han, Z., 2016. Mobile Big Data Analytics
Using Deep Learning and ApacheSpark, 22–29. https://doi.org/10.1109/
MNET.2016.7474340.

Karthika Renuka, D., Visalakshi, P., Rajamohana, S.P., 2017. An ensembled classifier
for email spam classification in hadoop environment. Appl. Math. Inf. Sci. 11,
1123–1128 https://doi.org/10.18576/amis/110419.

Harnie, D., Saey, M., Vapirev, A.E., Wegner, J.K., Gedich, A., Steijaert, M., Ceulemans,
H., Wuyts, R., De Meuter, W., 2017. Scaling machine learning for target
prediction in drug discovery using Apache Spark. Futur. Gener. Comput. Syst.
67, 409–417. https://doi.org/10.1016/j.future.2016.04.023.

Nodarakis, N., Tsakalidis, A., Sioutas, S., Tzimas, G., 2016. Large scale sentiment
analysis on twitter with spark. CEUR Workshop Proc., 1558

Bhosale, H.S., Gadekar, D.P., 2014. A review paper on big data and hadoop. Int. J. Sci.
Res. Publ. 4, 2250–3153.

Verma, A., Mansuri, A.H., Jain, N., 2016. Big data management processing with
Hadoop MapReduce and spark technology: a comparison. 2016 Symp. Colossal
Data Anal. Networking, CDAN2016. https://doi.org/10.1109/
CDAN.2016.7570891.

Liu, M., Yang, J., 2012. An improvement of TFIDF weighting in text categorization.
Int. Conf. Comput. Technol. Sci. 47, 44–47. https://doi.org/10.7763/IPCSIT.2012.
V47.9.

Onan, A., Korukoglu, S., Bulut, H., 2016. LDA-based topic modelling in text
sentiment classification: an empirical analysis. Int. J. Comput. Linguist. Appl.
7, 101–119.

Huang, Y., Li, L., 2011. Naive Bayes classification algorithm based on small sample
set. 2011 IEEE Int. Conf. Cloud Comput. Intell. Syst 34–39. https://doi.org/
10.1109/CCIS.2011.6045027.

Jurafsky, D., Martin, J.H., 2016. Naive Bayes and Sentiment Classification. Speech
Lang, Process.

McCallum, A., Nigam, K., 1998. A comparison of event models for naive bayes text
classification. AAAI/ICML-98 Work. Learn. Text Categ., 41–48 https://doi.org/
10.1.1.46.1529.

Barros, R.C., Basgalupp, M.P., De Carvalho, A.C.P.L.F., Freitas, A.A., 2012. A survey of
evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev. 42, 291–312. https://doi.org/10.1109/
TSMCC.2011.2157494.

Gupte, A., Joshi, S., Gadgul, P., Kadam, A., 2014. Comparative study of classification
algorithms used in sentiment analysis. Int. J. Comput. Sci. Inf. Technol. 5, 6261–
6264.

Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Amorim Fernández-
Delgado, D., 2014. Do we need hundreds of classifiers to solve real world
classification problems? J. Mach. Learn. Res. 15, 3133–3181. https://doi.org/
10.1016/j.csda.2008.10.033.

Mullen, T., Collier, N., 2004. Sentiment analysis using support vector machines with
diverse information sources. Conf. Empir. Methods Nat. Lang. Process. 412–418.
https://doi.org/10.3115/1219044.1219069.

Ain, Q.T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A., 2017.
Sentiment analysis using deep learning techniques: a review. Int. J. Adv.
Comput. Sci. Appl. 8, 424–433 https://doi.org/10.14569/IJACSA.2017.080657.

Mhaskar, H.N., Micchelli, C.A., 1994. How to choose an activation function. Adv.
Neural Inf. Process. Syst. 6, 319–326.

http://refhub.elsevier.com/S1319-1578(18)30212-X/h0005
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0005
https://doi.org/10.1109/SMC.2015.380
https://doi.org/10.1109/SMC.2015.380
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0015
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0025
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0025
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0025
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0025
https://doi.org/10.1109/ICICCT.2017.7975191
https://doi.org/10.1109/ICICCT.2017.7975191
https://doi.org/10.1109/ICoAC.2017.7951748
https://doi.org/10.1109/ICoAC.2017.7951748
https://doi.org/10.1109/BigData.2016.7841068
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1109/MCI.2016.2572540
https://doi.org/10.1109/MCI.2016.2572540
https://doi.org/10.18576/amis/110419
https://doi.org/10.1016/j.future.2016.04.023
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0075
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0075
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0080
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0080
https://doi.org/10.1109/CDAN.2016.7570891
https://doi.org/10.1109/CDAN.2016.7570891
https://doi.org/10.7763/IPCSIT.2012.V47.9
https://doi.org/10.7763/IPCSIT.2012.V47.9
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0095
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0095
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0095
https://doi.org/10.1109/CCIS.2011.6045027
https://doi.org/10.1109/CCIS.2011.6045027
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0105
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0105
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0110
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0110
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0110
https://doi.org/10.1109/TSMCC.2011.2157494
https://doi.org/10.1109/TSMCC.2011.2157494
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0120
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0120
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0120
https://doi.org/10.1016/j.csda.2008.10.033
https://doi.org/10.1016/j.csda.2008.10.033
https://doi.org/10.3115/1219044.1219069
https://doi.org/10.14569/IJACSA.2017.080657
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0140
http://refhub.elsevier.com/S1319-1578(18)30212-X/h0140

	Performance evaluation of DNN with other machine learning techniques in a cluster using Apache Spark and MLlib
	1 Introduction
	2 Related works
	3 Distributed computing environment
	3.1 Map reduce model
	3.2 Apache Spark model
	3.3 Spark’s MLlib

	4 Implementation
	4.1 Feature description
	4.1.1 Extraction and Transformation
	4.1.2 Latent Dirichlet␣allocation in Spark

	4.2 Supervised Learning:
	4.2.1 Naïve Bayes classifier
	4.2.2 Decision tree algorithm
	4.2.3 Ensembles
	4.2.4 Linear Support vector Machine
	4.2.5 Deep learning

	5 Experimental evaluation
	5.1 Classification performance and running time

	6 Conclusion and future work
	References

