
Indian School of Business

Essays in Revenue Management

by

Asrar Ahmed

A dissertation submitted

to the

Operations Management Department

Indian School of Business

November 2024

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Committee Members

Name Signature

Milind Sohoni (Chair)

Sumit Kunnumkal (Member)

Chaithanya Bandi (Member)

Vishwakant Malladi (Member)

ii

Abstract

Revenue management is the strategic utilization of resources to maximize revenue and is

widely studied across industries, ranging from online platforms to retail to transporta-

tion. The three essays in this thesis focus on two distinct but related problems within

revenue management: assortment optimization and network capacity control. Together,

these essays provide insights into how novel models and optimization techniques can be

leveraged to maximize revenue in different contexts.

In the first essay, I consider the problem faced by an online service platform that matches

suppliers with consumers. Unlike traditional matching models, which treat them as pas-

sive participants, I allow both sides of the market to exercise their choices. To model

this setting, I introduce a two-sided assortment optimization model wherein each partic-

ipant’s choice is modeled using a multinomial logit choice function, and the platform’s

objective is to maximize its expected revenue. I first show that the problem is NP-hard

even when the number of suppliers is limited to two and provide a mixed-integer linear

programming formulation. Next, I discuss two simple greedy heuristics and argue that

these can lead to arbitrarily bad solutions. I then develop relaxations that provide upper

and lower bounds and investigate the tightness of these relaxations by obtaining para-

metric approximation guarantees. Finally, I present numerical results on synthetic data

demonstrating the practical utility of these relaxations.

In the second essay, I consider discrete fractional programs, which are extensively used

to model assortment optimization problems. I bridge the gap between the discrete and

continuous fractional programming literature by solving a class of 0-1 fractional pro-

grams as continuous fractional programs. Specifically, I consider 0-1 linear fractional

programs under cardinality-type constraints and provide a continuous reformulation with

integral maxima, albeit with a higher number of ratio terms. Therefore, I consider the

direct relaxation and use the insights from the reformulation to show that the resultant

fractional solution can be rounded off with a parametric guarantee. As applications,

I develop a Lagrange relaxation-based upper bound solution for assortment optimiza-

tion under the mixture-of-multinomial logit model and show that it improves upon the

existing discretization-based approach. I then derive, as corollaries, tighter parametric

iii

bounds for a class of assortment optimization problems. Additionally, I illustrate that the

reformulation can help improve the discrete local search heuristic solution by exploiting

the continuous solution space. I substantiate this further numerically, showing that the

reformulation is quite effective and provides significant performance gains over current

approaches.

In the third essay, motivated by the operations of the Indian Railways, I consider a

novel variant of the classical network revenue management problem. I have a firm that

sells multiple products that use multiple resources and adopts a booking limit policy

to control the sales of the products. In the traditional booking limit policy, the firm

partitions its resource capacities by allocating a fixed amount of capacity to each product

or a group of products in order to limit its sales. I consider a setting where, in addition

to the partitioned capacities, the firm sets aside some capacity that is common to all the

products. The common, pooled capacity is useful as it can capture spill-over demand for

the products once their partitioned capacities are exhausted. The firm’s decision problem

is to determine the optimal partitioned and pooled capacities. I model the above problem

as a dynamic program and discuss the conditions under which a simple only-partitioning

(where all capacity is dedicated) strategy can be optimal. While an only-partitioning

strategy is easy to compute, a hybrid allocation strategy with partitioned and pooled

capacities is computationally difficult due to the large state space of the dynamic program.

To address this, I first develop a new Lagrangian relaxation-based solution wherein I

decompose the network problem by product and resource. I then show that the resultant

relaxation-based hybrid allocation strategy can be computed efficiently. I evaluate the

solution numerically against well-known upper bounds on a real-world dataset and find

that the proposed approach provides a tighter upper bound on the optimal revenue. I

also evaluate the solution with respect to revenue and observe that it offers significant

improvements over existing heuristic strategy.

Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor Milind Sohoni, for

his endless support and encouragement throughout my research journey and beyond. His

guidance, feedback, and kind words have been invaluable in shaping my work and helping

me grow as a researcher. I am especially grateful for his patience when I made mistakes

and for always being there to provide clarity and motivation. I feel incredibly fortunate

to have him as my mentor, and I will always be indebted to him for the opportunity.

I would like to extend my sincere thanks to Professor Chaithanya Bandi, who helped

me navigate the technical challenges I encountered, especially during the early stages of

FPM. His expertise and insights were instrumental in overcoming these hurdles. I am also

grateful to Professor Sumit Kunnumkal, whose courses deepened my understanding and

appreciation of optimization techniques, which I was able to apply in my research. His

guidance has been crucial in shaping my thinking and research approach. Additionally,

I would like to thank Professor Vishwakant Malladi for his motivation and for being on

my committee.

My heartfelt thanks go to Professor Sripad Devalkar, who introduced me to operations

management research and taught me the importance of clarity in approaching problems.

I am also thankful to the operations management faculty at large, especially Professor

Pallavi Basu, for the courses offered and for their motivation throughout my journey.

I would also like to express my gratitude to my friends, especially Adithya Patil, Himanshu

Arha, and Pankaj Jindal, for their feedback, long discussions, and for making my stay at

ISB a memorable one. Special thanks go to my friends and batchmates Suresh, Sandhya,

Bullipe, and Aindrila for their unwavering support.

Last but not least, I would like to thank my family, without whose support I wouldn’t

have been able to complete this journey. Thank you!

iv

Contents

Abstract ii

Acknowledgements iv

1 Two-Sided Assortment Optimization 1

1.1 Introduction . 1

1.2 Literature Review . 3

1.2.1 Matching theory . 3

1.2.2 Assortment Optimization . 4

1.3 Two-Sided Assortment Optimization Problem 7

1.3.1 Two-sided Assortment Optimization Model 7

1.3.2 Computational Complexity . 10

1.3.3 Exact MILP Reformulation . 11

1.4 Greedy Heuristics . 13

1.4.1 Revenue Ordered Heuristic: . 13

1.4.2 Greedy Separable Heuristic . 14

1.5 Relaxations and Bounds . 16

1.5.1 One-Sided Relaxation . 16

1.5.1.1 Continuous Relaxation 18

1.5.2 Two-Sided Relaxation . 20

1.6 Numerical Analysis . 21

1.7 Conclusion . 24

1.8 Appendix . 25

1.8.1 Submodularity of One-sided Relaxation 34

1.8.2 Uniform Distribution . 35

2 On Solving Discrete Fractional Programs and Its Applications to As-
sortment Optimization 36

2.1 Introduction . 36

2.2 Related Work and Contribution . 38

v

Contents vi

2.2.1 Literature Review . 38

2.2.2 Contribution . 41

2.3 ZOFP-CS: Formulation and Standard Solutions 42

2.3.1 Formulation . 42

2.3.2 Standard Solutions . 43

2.3.2.1 Mixed Integer Linear Programming Formulation. 43

2.3.2.2 Local Search Heuristic. 44

2.4 The Continuous Reformulation and The Direct Relaxation 45

2.4.1 Reformulation . 46

2.4.2 Direct Relaxation . 53

2.5 Applications: Tighter Bounds and Improved Local Maxima 54

2.6 Numerical Experiments . 67

2.7 Conclusions . 71

3 Capacity Pooling for Network Revenue Management 73

3.1 Introduction . 73

3.2 Literature Review . 75

3.3 Model . 78

3.4 Upper Bounds . 83

3.4.1 Lagrange Relaxation . 84

3.4.2 Deterministic Linear Program . 89

3.4.3 Standard NRM Lagrange Relaxation 90

3.5 Numerical Experiments . 93

3.5.1 Upper bound . 94

3.5.2 Revenue . 95

3.6 Conclusion . 97

3.7 Appendix . 98

3.7.1 Proofs . 98

3.7.2 Numerical Results . 99

Bibliography 105

Chapter 1

Two-Sided Assortment Optimization

1.1 Introduction

The gig economy has witnessed significant growth over the last decade largely driven

by the advent of online platforms that match supply and demand Page-Tickell and

Yerby (2020). Examples include delivery platforms (e.g., Uber Eats, Deliveroo), free-

lance job portals (e.g., Upwork, Fiverr, TaskRabbit), ride sharing apps (e.g., Uber, Lyft)

and matchmaking portals (e.g., eHarmony, Tinder, OkCupid). These platforms differ in

the amount of autonomy given to the participants. For example, on Uber, the riders and

drivers are matched by the platform and have limited freedom in selecting each other.

On freelance job portals like Upwork and TaskRabbit, the employers as well as the ap-

plicants can exercise their choice. In this paper, we consider the latter setting wherein

a platform has to match two groups of participants, and the individuals in each group

have a preference over the other. Participants on these platforms are expected to reveal

their preferences using specific attributes and the platform then uses the preferences of

1

Two-sided Assortment Optimization 2

both sides of the market to provide the best possible recommendation to each participant.

However, the final match depends on individual choices.

This setting differs from traditional matching literature like kidney exchange Roth (1984)

and organ donation Roth et al. (2004, 2007), where the platform considers the preferences

of both sides and provides stable matches without considering the uncertainty associated

with the individual choice. It also differs from the literature on online retail marketplaces

where only one-side of the market, namely the customers, exercise their choice over the

products offered by the platform Caro et al. (2014); Golrezaei et al. (2014). However,

we borrow the choice models that have been studied within this stream of literature to

model individual choices. Specifically, we employ the Multinomial Logit (MNL) function

to model participant choice over an offered assortment.

In the two-sided assortment optimization problem considered here, we assume the plat-

form has a set of suppliers and consumers. Each participant has a preference value

associated with individuals on the other side of the market and selects from the offered

assortment according to the MNL choice model. A successful match generates revenue for

the platform and its objective is to compute an optimal assortment for each participant

to maximize the expected revenue. Thus, our model extends the MNL based assortment

optimization literature to two-sided markets by incorporating the effect of choice decisions

by both sides on the final outcome.

The paper is organized as follows. In §3.2, we discuss the related literature and sum-

marize our contributions. In §3.3, we introduce the two-sided assortment optimization

model, comment on the computational complexity and provide the mixed-integer linear

programming (MILP) formulation. In §1.4, we present two simple greedy heuristics and

argue that these can lead to arbitrarily bad solutions. In §1.5, we introduce the two

Two-sided Assortment Optimization 3

relaxations and provide the corresponding parametric guarantees. In §1.6, we perform

numerical analysis and evaluate the relaxations against the benchmark greedy heuristics.

Finally, we conclude in §1.7. We provide proofs for the analytical results in 1.8.

1.2 Literature Review

In this section, we discuss the related work from the extant literature that can be broadly

classified into two categories– matching theory and assortment optimization.

1.2.1 Matching theory

The static matching theory that has extensively been used in medical matches Roth

(1984), course allocation Sönmez and Ünver (2010), organ donations Roth et al. (2004,

2007) and labor markets Roth (1991) began with the seminal work by Gale and Shapley

Gale and Shapley (1962). These standard matching models consider two-sided markets

wherein the participants are divided into bipartite set, and each set of participants have

preferences over the other. Given the preference, the match maker’s goal is to develop a

matching mechanism that guarantees “stable matches.”

Variants of the above model that incorporate dynamic arrival and departures Ünver

(2010), matching failure Dickerson et al. (2013), and dynamic arrivals with threshold

waiting time Anderson et al. (2014) have also been studied. Arnosti et al. Arnosti et al.

(2014) examine congestion in a two-sided dynamic matching market and show that simple

intervention policies that limit the visibility of one side, improve the social welfare of all

participants on the platform.

Two-sided Assortment Optimization 4

In the above work, while the platform takes the preference of both sides of the mar-

ket, it does not model the specific individual choice. In our setting, we explicitly model

participant choice and limit the role of the platform to providing an assortment recom-

mendation.

1.2.2 Assortment Optimization

The assortment optimization literature can be categorized into four threads. The first

thread is the static one-sided assortment optimization traditionally used in retail settings,

where the platform computes the optimal assortment of products to be offered, given the

consumer preferences Talluri and Van Ryzin (2004). In their seminal work, Talluri and

Ryzin Talluri and Van Ryzin (2004) showed that under the MNL choice model, the one-

sided assortment optimization can be solved efficiently and, in fact, in closed form. Since

then, various extensions have been proposed that consider more general choice models.

For example, the nested logit model Davis et al. (2014); Li et al. (2015) and the mixture

of multinomial logit model Rusmevichientong et al. (2014). Other extensions include

incorporating additional constraints like the capacitated MNL Rusmevichientong et al.

(2009) and MNL with product costs Kunnumkal and Mart́ınez-de Albéniz (2019). These

variants have been shown to be generally computationally difficult, and various algorithms

have been developed which provide approximation guarantees.

The second thread is the dynamic one-sided assortment optimization which extends the

static model to account for dynamic consumer arrivals. Golrezaei et al. Golrezaei et al.

(2014) develop an indexing algorithm that incorporates the product inventory information

to compute the optimal assortment in real-time for multiple customer types and provide

Two-sided Assortment Optimization 5

approximation guarantees. Chen et al. Chen et al. (2021) study the dynamic setting

under the nested choice model.

The third thread is the static two-sided assortment optimization which is of primary

interest in this paper. Ashlagi et al. Ashlagi et al. (2019) introduced the two-sided as-

sortment optimization problem when the platform’s objective is to maximize the number

of matches. They consider a sequential setting where the platform offers an assortment of

suppliers to the consumers, who then simultaneously and independently select a supplier

using the MNL choice function. Each supplier is then offered only the subset of con-

sumers who selected that supplier. However, they restrict the choice function of suppliers

to uniform-MNL. They show that the problem is NP-hard and provide a constant-factor

approximation guarantee. For the above setting, Torrico et al. Torrico et al. (2020) pro-

vide an improved approximation guarantee of 1−e−1

8
. Further, they extend the model to

revenue maximization objective by defining supplier dependent rewards and consider the

special case when one of the sides is easy-to-match– when the preference for the platform

options for one side is at least as high as the outside option. When the consumers are

easy-to-match, they provide a 1−e−1

2
approximation guarantee, and when the suppliers are

easy-to-match, they provide a 1−e−1

4
approximation. However, under the revenue maxi-

mization objective, when both sides follow the general MNL choice function they do not

provide any guarantees.

The final thread is the dynamic two-sided assortment optimization which extends the

static setting to dynamic consumer arrivals. Aouad and Saban Aouad and Saban (2020)

consider a platform with a set of suppliers and dynamically arriving consumers. They

show that the problem is NP-hard, and develop algorithms that provides an approx-

imation guarantee greater than 1 − 1
e
when the supplier’s choice function is MNL or

Two-sided Assortment Optimization 6

Nested logit function. However, they consider the case when the platform’s objective is

to maximize the number of matches.

In this paper, we consider the static two-sided assortment optimization introduced in

Ashlagi et al. (2019) and extend it in following ways:

(i) We present a general model for the two-sided assortment optimization wherein

the platform’s revenue and the participant’s preference values depend on supplier-

consumer pair and the platform’s objective is to maximize the expected revenue.

We allow both sides to follow the general MNL choice function and show that the

problem is NP-hard even when the number of participants on one side of the market

is limited to two.

(ii) We discuss two simple greedy heuristics. The first is the revenue-ordered heuristic,

which is widely studied within assortment optimization literature and is known to

be optimal for the static one-sided assortment optimization under the MNL choice

function Talluri and Van Ryzin (2004). We show that it can lead to arbitrarily bad

solutions. The second heuristic essentially solves for the optimal assortment for each

supplier independently and, we again show this heuristic can lead to arbitrarily bad

solutions as well. However, numerically we observe this heuristic provides tighter

upper bound compared to the other solutions we present.

(iii) We introduce two relaxations, the one-sided relaxation and the two-sided relaxation.

While the two-sided relaxation is easy to solve and reduces to the bipartite matching

problem, we show that the one-sided relaxation is NP-hard. We discuss a continu-

ous relaxation solution and provide parametric approximation guarantees for these

solutions in general and then show that, when one of the sides is easy-to-match,

Two-sided Assortment Optimization 7

the one-sided relaxation provides 1
2
approximation, and when both sides are easy-

to-match, the simple bipartite matching provides 1
4
approximation guarantee.

1.3 Two-Sided Assortment Optimization Problem

In this section, we introduce the two-sided assortment optimization model, discuss the

computational complexity and present the MILP formulation.

1.3.1 Two-sided Assortment Optimization Model

We consider a platform with n suppliers and m consumers. We let N = {1, ..., n} denote

the set of suppliers and M = {1, ...,m} denote the set of consumers. Given an assort-

ment, we assume each supplier (consumer) independently selects at most one consumer

(supplier). We say a match between a supplier i and consumer j is successful if i and

j select each other. We further assume, for a successful match between supplier i and

consumer j, the platform receives a payoff rij. The platform’s goal is to offer a subset, or

an assortment, of consumers (suppliers) to each supplier (consumer) so as to maximize

its expected revenue.

Let Se
i ⊆ M be the assortment of consumers offered to supplier i, Sc

j ⊆ N be the

assortment of suppliers offered to consumer j and S = {Se
1 , ..,Se

n,Sc
1, ...,Sc

m}. S is said

to be consistent if consumer j is offered to supplier i, then i is offered to j as well, i.e.,

j ∈ Se
i iff i ∈ Sc

j . Let Pij(Se
i) be the probability that supplier i selects consumer j from

the assortment Se
i and Qji(Sc

j) the probability that consumer j selects supplier i from

Two-sided Assortment Optimization 8

the assortment Sc
j . Then, the two-sided optimization problem is given by:

Z = max
S

n∑
i=1

m∑
j=1

rij · Pij(Se
i) · Qji(Sc

j). (1.3.1)

Note that S will be optimal only if it is consistent.

We assume the above choice probabilities follow the MNL choice function. Let vij denote

supplier i’s preference for consumer j and vi0 denote i’s preference for the outside option.

Let uji denote consumer j’s preference for supplier i and uj0 denote j’s preference for the

outside option. Under the MNL model, the probabilities are given by

Pij(Se
i) =

vij
vi0 +

∑
k∈Se

i
vik

; Qji(Sc
j) =

uji

uj0 +
∑

l∈Sc
j
ujl

, ∀i ∈ N , j ∈M. (1.3.2)

Since S is consistent, the above probabilities can be defined using the following binary

variable. LetXij ∈ {0, 1} denote whether supplier i and consumer j are in each other’s as-

sortment. Let X = {Xij : Xij ∈ {0, 1}, i ∈ N , j ∈M}. Given X, the choice probabilities

can equivalently be written as:

Pij(X) =
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

; Qji(X) =
uji ·Xij

uj0 +
∑n

l=1 ujl ·Xlj

, ∀i ∈ N , j ∈M.

(1.3.3)

Let Z(X) denote the expected payoff associated with assortment X, given as follows:

Z(X) =
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 +
∑n

l=1 ujl ·Xlj

)
. (1.3.4)

Two-sided Assortment Optimization 9

The optimal two-sided assortment X∗ can be obtained by solving the problem:

Z = max
X
{Z(X) : Xij ∈ {0, 1}}. (1.3.5)

We observe that, our model extends the earlier static models by allowing the revenue rij

and the preference values vij, uji, to be dependent on supplier-consumer pair. In Ashlagi

et al. Ashlagi et al. (2019) the revenue term is uniformly set to 1, as the platform’s ob-

jective is to maximize the expected number of matches. As discussed in section 3.2, they

provide approximation guarantees when the consumer’s preference value depends only on

the supplier, i.e., uji = ui, ∀i ∈ N , j ∈ M, and the suppliers follow the uniform-MNL

choice function, i.e., when vij = 1, ∀i, j. Torrico et al. Torrico et al. (2020) consider the

revenue maximization objective for the special case when the rewards depend only on

the suppler, rij = ri, ∀i, j. Thus our model strictly generalizes the existing static mod-

els. However, we highlight that our model differs from the sequential setting considered

in Ashlagi et al. (2019); Torrico et al. (2020) in the following way. In Ashlagi et al.

(2019); Torrico et al. (2020), the platform computes an assortment for the consumers,

and the supplier i’s assortment is restricted to be the subset of consumers that select the

supplier i. In our model, we allow the platform to simultaneously compute the optimal

assortments for both sides. And, since we ensure the assortments are consistent, supplier

i’s assortment includes the set of consumers to whom supplier i is offered.

The stylized static model considered in this paper is applicable for platforms wherein the

participant-platform interaction is passive and the platform need not ensure a successful

match in real-time. Further, as discussed in Ashlagi et al. Ashlagi et al. (2019), the static

model is relevant when there is a delay between participant’s response to each other.

This would allow the platform to use the existing pool of active participants to compute

Two-sided Assortment Optimization 10

optimal recommendations offline, as long as their profiles are static. For example, on

matchmaking websites like eHarmony.com or job portals like Monster.com, participant’s

profiles remain the same for reasonable duration of time. However, on platform where

participants arrive or depart the system dynamically, or their profiles change frequently,

the dynamic models would be more relevant. For example, on dating apps like Tinder,

the user’s location is used as an additional attribute to provide recommendations Tyson

et al. (2016). In such settings, the platform cannot compute the assortments offline.

1.3.2 Computational Complexity

In this subsection, we show that the two-sided optimization is computationally difficult

even with two suppliers, identical rewards, and no outside option for consumers. The

result follows from the NP-hardness proof for the one-sided relaxation that we discuss in

section 1.5.

Theorem 1.3.1. The two-sided assortment optimization is NP-hard.

While the general two-sided assortment optimization is computationally difficult even in

simple settings, the following result shows that computing the optimal two-sided assort-

ment for a single supplier reduces to the standard MNL optimization problem with an

adjusted reward function which has an intuitive interpretation.

Observation 1.3.1. For a single supplier i, the two-sided assortment optimization re-

duces to the following MNL:

max
Xij∈{0,1}

{
m∑
j=1

r̃ij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)}
,

Two-sided Assortment Optimization 11

where r̃ij = rij · uji

uj0+uji
. Thus, the optimal assortment can be obtained by rank ordering

the consumers with respect to r̃ij Talluri and Van Ryzin (2004). Note that, r̃ij is the

platform’s payoff on matching i, j adjusted with j’s preference for i and its preference for

the outside option. As the consumer j’s affinity to the outside option increases, i.e., higher

uj0, the adjusted platform payoff on matching i, j decreases. Thus, for two consumers

with identical rewards, the consumer with the better outside option is less likely to be

included in i’s assortment.

1.3.3 Exact MILP Reformulation

Since Z is non-linear, we provide an equivalent MILP formulation which can be readily

solved using standard optimization software. Recall that the objective is given by:

Z = max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 +
∑n

l=1 ujl ·Xlj

)}
. (1.3.6)

Let Xi0 = 1, X0j = 1, N+ = N ∪ {0} andM+ =M∪ {0}. We formulate the equivalent

MILP by defining variables ρij, Wik,lj, ∀i ∈ N , ∀j ∈M as follows:

ρij =
1

(vi0 +
∑m

k=1 vik ·Xik) · (uj0 +
∑n

l=1 ujl ·Xlj)
, Wik,lj = ρij ·Xik ·Xlj. (1.3.7)

Theorem 1.3.2. The non-linear two-sided assortment optimization in 1.3.6 is equivalent

to the following MILP:

ZMILP = max
W,X,ρ

n∑
i=1

m∑
j=1

rij · vij · uji ·Wij,ij, (1.3.8a)

Two-sided Assortment Optimization 12

s.t.

vi0 · uj0 · ρij +
n∑

l=1

vi0 · ujl ·Wi0,lj +
m∑
k=1

vik · uj0 ·Wik,0j

+
n∑

l=1

m∑
k=1

vik · ujlWik,lj = 1, ∀i ∈ N , j ∈M,

(1.3.8b)

Wik,lj ≤ Xik, ∀i ∈ N , j ∈M, l ∈ N+, k ∈M+, (1.3.8c)

Wik,lj ≤ Xlj, ∀i ∈ N , j ∈M, l ∈ N+, k ∈M+, (1.3.8d)

Wik,lj ≤ ρij, ∀i ∈ N , j ∈M, l ∈ N+, k ∈M+, (1.3.8e)

Wik,lj ≥ ρij +Xik +Xlj − 2, ∀i ∈ N , j ∈M, l ∈ N+, k ∈M+,

(1.3.8f)

ρij ≥ 0, Xij ∈ {0, 1}, ∀i ∈ N , j ∈M, (1.3.8g)

Wik,lj ≥ 0, ∀i ∈ N , j ∈M, l ∈ N+, k ∈M+. (1.3.8h)

The first term in the constraint 2.3.2c vi0 · uj0 · ρij, is the probability that both supplier

i and consumer j select their outside options, the second term
∑n

l=1 vi0 · ujl ·Wi0,lj, is

the probability that i selects the outside option and j selects from the assortment, the

third term
∑m

k=1 vik · uj0 · Wik,0j, is the probability that j selects the outside option

and i selects from the assortment, and the last term
∑n

l=1

∑m
k=1 vik · ujl ·Wik,lj, is the

probability that both i and j select from the offered assortment. Constraints 2.3.2d-1.3.8f

are the linearization constraints for the bilinear variable Wik,lj. While the above MILP

formulation is intractable, the linear programming relaxation, denoted by ZLP , provides

a benchmark upper bound.

Since it is difficult to compute the optimal solution for the two-sided formulation, we

first consider two simple greedy heuristics and comment on their performance. We then

Two-sided Assortment Optimization 13

discuss the two relaxations that allow us to obtain the upper and lower bound solutions

with parametric guarantees.

1.4 Greedy Heuristics

In this section, we present two greedy heuristics and argue that both can lead to arbitrarily

bad solutions with respect to the optimal value.

1.4.1 Revenue Ordered Heuristic:

In the assortment optimization literature, a revenue-ordered solution is an assortment

that includes all products above a threshold revenue. While the standard MNL admits

an optimal assortment that belongs to the set of revenue ordered assortments Talluri

and Van Ryzin (2004), they are generally not optimal for extensions of the MNL like

the mixture of multinomials Feldman and Topaloglu (2015) or the nested-logit choice

models Davis et al. (2014).

We define the revenue-ordered heuristic for the two-sided assortment optimization prob-

lem as follows. Let Rd = {r1,1, ..., rm,n}̸= be the set of distinct reward values. For each

ck ∈ Rd, we define X
r
k = {Xij : Xij ∈ {0, 1}} to be an assortment such Xij = 1 if rij ≥ ck

and 0 otherwise. Let Xr = {Xr
k , ∀ck ∈ Rd} be the set of revenue ordered assortments.

We now argue that a revenue ordered heuristic that selects an assortment Xr
k ∈ Xr, such

that Z(Xr
k) is maximized, can lead to arbitrarily bad solutions.

Example 1: Consider two suppliers and two consumers. Let rij =
1
2
and vi0 = uj0 = 0 for

i, j ∈ {1, 2}. Let v1,1 = v2,2 = 1, v1,2 = v2,1 =
ϵ
2
, u1,2 = u2,1 = 1, and u1,1 = u2,2 =

ϵ
2
. The

two-sided optimal assortment assigns exactly one consumer (supplier) to each supplier

Two-sided Assortment Optimization 14

(consumer), and since the outside preference is 0, it ensures that each supplier (consumer)

selects the offered consumer (supplier) with probability 1, resulting in a total expected

revenue of 1. For the revenue-ordered heuristics, since the rewards are identical, both the

consumers (suppliers) are offered to both the suppliers (consumers). Supplier 1 selects

consumer 1 with probability 1
1+ ϵ

2
. However, consumer 1 selects supplier 1 with probability

ϵ
2

1+ ϵ
2
. This reduces the match probability of any supplier-consumer pair to

ϵ
2

(1+ ϵ
2
)2

and the

overall platform revenue reduces to 2 ·
ϵ
2

(1+ ϵ
2
)2
, which converges to 0 as ϵ→ 0.

While the example shows that the revenue-ordered heuristic can lead to arbitrarily bad

solutions, it also highlights the observation in Arnosti et al. Arnosti et al. (2014) that in

two-sided markets limiting the visibility of one side improves the overall social welfare.

1.4.2 Greedy Separable Heuristic

We now consider a second heuristic, which exploits observation 1.3.1, that computing the

optimal assortment for one supplier is tractable. While we show that the heuristic can

lead to an arbitrarily bad lower bound, numerically we observe it provides tighter upper

bound than the one-sided and the two-sided relaxations that we introduce in the next

section. Consider Z as defined in equation 1.3.6. We obtain a separable upper bound as

follows:

Z = max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 +
∑n

l=1 ujl ·Xlj

)}
, (1.4.1a)

≤
n∑

i=1

max
Xij∈{0,1}

{
m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 +
∑n

l=1 ujl ·Xlj

)}
, (1.4.1b)

=
n∑

i=1

max
Xij∈{0,1}

{
m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji

uj0 + uji

)}
, (1.4.1c)

Two-sided Assortment Optimization 15

= max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji

uj0 + uji

)}
. (1.4.1d)

where, Equality 1.4.1c follows from observation 1.3.1. And, since 1.4.1c is separable across

suppliers, 1.4.1d follows. Denote the separable upper bound with Zg:

Zg = max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji

uj0 + uji

)}
. (1.4.2a)

Let Xg be the optimal solution of 1.4.2a. Since, Xg is feasible with respect to the

two-sided assortment optimization problem, it provides a lower bound, Z(Xg) ≤ Z. We

now show that Xg, the assortment obtained by independently maximizing the revenue

for each supplier, can lead to arbitrarily bad lower bounds.

Example 2: Consider an instance of two-sided assortment optimization with two suppliers

and two consumers. We define the rewards as r1,1 = 1, r1,2 = ω, r2,1 = 1
3
, r2,2 = 1. Let

vi,j = 1,∀i ∈ N , j ∈ M, u1,1 = u1,2 = u2,1 = 1 and u2,2 = ω where ω > 2. Let the

outside preference for both consumers and suppliers be 1, uj,0 = vi,0 = 1, ∀i ∈ N , j ∈M.

The optimal two-sided assortment assigns consumer 1 to supplier 2 and consumer 2 to

supplier 1. The resultant revenue is given by 3ω+1
12

. The separable greedy solution that

optimizes independently for each supplier assigns consumer 2 to both the suppliers. The

resultant revenue is given by 1
1+2/ω

. Note that, as ω increases, the revenue–due to the

greedy heuristic solution converges to 1, whereas the revenue for the two-sided optimal

solution increases with ω. Thus, the greedy separable heuristic can lead to arbitrarily

solutions.

Two-sided Assortment Optimization 16

1.5 Relaxations and Bounds

In this section, we introduce the one-sided and two-sided relaxation based solutions and

present the parametric bounds.

1.5.1 One-Sided Relaxation

We obtain the one-sided relaxation by setting the preference for the outside option of all

consumers to zero. Define Z̃ as follows:

Z̃ = max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij∑n
l=1 ujl ·Xlj

)}
. (1.5.1)

Let X̃ be the corresponding optimal one-sided relaxation solution. The following result

holds for X̃:

Proposition 1.5.1. For each consumer j ∈M,
∑n

i=1 X̃ij ≤ 1.

Thus, when the preference for the outside option is zero, at optimality, consumers are

recommended to at most one supplier. Proposition 1.5.1 allows us to rewrite the one-sided

relaxation as follows:

Z̃ = max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij∑n
l=1 ujl ·Xlj

)}
, (1.5.2a)

=

max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij∑n
l=1 ujl ·Xlj

)∣∣∣∣∣
n∑

i=1

Xij ≤ 1, ∀j ∈M

}
,

(1.5.2b)

= max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)∣∣∣∣∣
n∑

i=1

Xij ≤ 1,∀j ∈M

}
, (1.5.2c)

Two-sided Assortment Optimization 17

where, the second equality follows from Proposition 1.5.1. And since
∑n

l=1 Xlj ≤ 1,

uji·Xij∑n
l=1 ujlXlj

= Xij, ∀j ∈M, the third equality follows.

We now show that Z̃ is NP-hard. Similar to Caro et al. (2014), we use the reduction

from the PARTITION problem which is known to be NP-complete. We first make the

following observation that when the rewards are identical, the one-sided relaxation assigns

each consumer to exactly one supplier.

Observation 1.5.1. If rij = c, ∀i ∈ N , j ∈ M and c > 0, then for each consumer

j ∈M,
∑n

i=1 X̃ij = 1.

Consider the following decision theoretic version of the one-sided relaxation.

One-Sided Feasibility

INPUTS: A set of m consumers indexed by j and two suppliers indexed 1, 2 with r1j =

r2j = 1, ∀j ∈ {1, ...,m}, the preference weights v1,1, .., v2,m, the preference for outside

option v1,0, v2,0, and a target profit K (we slightly abuse the notation and use vi,j for vij

to avoid ambiguity).

Decision: Is there a partition S1, S2 of consumers such that S1 ∩ S2 = ∅ and S1 ∪ S2 =

{1, 2, ..,m} such that

∑
j∈S1

v1,j

v1,0 +
∑

j∈S1
v1,j

+

∑
j∈S2

v2,j

v2,0 +
∑

j∈S2
v2,j
≥ K. (1.5.3)

Note that S1 ∪ S2 = {1, 2, ..,m} follows from observation 1.5.1.

Theorem 1.5.1. One-sided feasibility problem is NP-complete.

Theorem 1.5.1 also proves theorem 1.5.3, since the one-sided relaxation is obtained by

setting uj0 = 0, ∀j ∈ M. While the general one-sided relaxation is computationally

Two-sided Assortment Optimization 18

intractable, we observe that for the special case when rij = 1 or rij = ri, ∀i ∈ N , j ∈M,

the optimization problem given in 2.5.19a, satisfies the submodularity property Han et al.

(2020) 1. Thus, a simple greedy algorithm can be constructed that guarantees (1− e−1)-

approximate solution Nemhauser et al. (1978). We, therefore, first provide parametric

bound for an approximate solution.

Let X̃a be a γ-approximate solution to the one-sided relaxation problem in 2.5.19a. Let

umin = min
i∈N
j∈M

{ uji

uj0
} and α = 1

1+umin . Recall that X
∗ is the optimal solution for the two-sided

assortment optimization problem. Then the following result holds:

Proposition 1.5.2. Z(X̃a) ≥ γ · (1− α) · Z(X∗).

Thus, a γ approximate solution to the one-sided relaxation provides a γ · (1−α) approxi-

mation to the two-sided assortment optimization problem. It follows that, for the special

case, when rij = 1 or rij = ri,∀i ∈ N , j ∈ M, a greedy solution that provides 1 − e−1

guarantee for one-sided relaxation problem, provides a (1 − e−1) · (1 − α) guarantee for

the two-sided assortment optimization. And, when consumers are easy-to-match, α = 1
2

and we recover the 1−e−1

2
guarantee observed in Torrico et al. (2020).

We now consider the continuous relaxation of 2.5.19a and provide parametric bounds in

expectation by constructing a solution using randomized assignment.

1.5.1.1 Continuous Relaxation

Consider the one-sided relaxation given in equation 2.5.19a.

Z̃ = max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)∣∣∣∣∣
n∑

i=1

Xij ≤ 1,∀j ∈M

}
,

1For the sake of completeness, we include the submodularity proof in 1.8.1

Two-sided Assortment Optimization 19

= max
Xij∈{0,1}

n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 + vij +
m∑

k=1,
k ̸=j

vik ·Xik

)∣∣∣∣∣∣∣∣∣∣∣
n∑

i=1

Xij ≤ 1,∀j ∈M

. (1.5.4a)

Let Z̃c be the continuous relaxation obtained by replacing the binary constraints in

2.5.19b with Xij ∈ [0, 1]. Note that, we take the vij term out in the denominator in

equation 2.5.19b before relaxation as it allows us to obtain the parametric bound. While

the continuous relaxation is still computationally difficult, it’s a special case of the frac-

tional programming problem for which scalable solutions have been developed Benson

(2007); Caro et al. (2014). Let X̃c = {X̃c
ij} be the optimal solution to the continuous

relaxation. Since X̃c
ij ∈ [0, 1] and

∑
i X̃

c
ij ≤ 1, we use randomized assignment to obtain an

integral solution. Let Qj be a random variable for consumer j such that P (Qj = i) = X̃c
ij.

Qj assigns each consumer j to supplier i with probability X̃c
ij. Define the resultant as-

sortment obtained using randomized assignment as X̃b = {X̃b
ij : X̃

b
ij = 1Qj=i}. Since X̃b

ij

is binary, it is feasible with respect to Z. Let EQ[Z(X̃
b)] be the expected value of the

solution X̃c, where the expectation is over the random variable Q = {Qj : j ∈ M}. Let

α be defined as before, then following result holds:

Theorem 1.5.2. (1− α)Z(X∗) ≤ EQ[Z(X̃
b)] ≤ Z(X∗).

For the special case when consumers are easy-to-match, the randomized solution provides

a 1
2
approximation in expectation. We observe that, for both X̃a and X̃c solutions, as

the preference parameter of the consumers for the platform increases (compared to the

outside option), i.e., uji increases, α decreases and the performance guarantee increases.

Two-sided Assortment Optimization 20

1.5.2 Two-Sided Relaxation

We obtain the two-sided relaxation by setting the preference for the outside option for

the suppliers and the consumers to zero. Define
≈
Z as follows:

≈
Z = max

Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij∑m
k=1 vik ·Xik

)
·

(
uji ·Xij∑n
l=1 ujl ·Xlj

)}
. (1.5.5)

Let
≈
X be the corresponding optimal two-sided assortment. Similar to one-sided relax-

ation, the following result holds for
≈
X

Proposition 1.5.3. For each supplier i ∈ N ,
∑m

j=1

≈
Xij ≤ 1 and for each consumer

j ∈M,
∑n

i=1

≈
Xij ≤ 1.

Thus, when the preference for the outside option is zero for both sides of the market,

each consumer (supplier) is recommended to at most one supplier (consumer). We use

the above proposition to rewrite the two-sided assortment optimization as follows:

≈
Z = max

Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij∑m
k=1 vik ·Xik

)
·

(
uji ·Xij∑n
l=1 ujl ·Xlj

)}
, (1.5.6a)

=

max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij

(
vij ·Xij∑m
k=1 vik ·Xik

)
·

(
uji ·Xij∑n
l=1 ujl ·Xlj

)∣∣∣∣∣
m∑
j=1

Xij ≤ 1,
n∑

i=1

Xij ≤ 1,∀i ∈ N , ∀j ∈M

}, (1.5.6b)

= max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

rij ·Xij

∣∣∣∣∣
m∑
j=1

Xij ≤ 1,
n∑

i=1

Xij ≤ 1, ∀i ∈ N , ∀j ∈M

}
, (1.5.6c)

where, 1.5.6b follows from proposition 1.5.3. Therefore, the two-sided relaxation reduces

to the standard bipartite matching problem. We now provide the parametric bound for

Two-sided Assortment Optimization 21

the matching solution. Let vmin = min
i∈N
j∈M

{ vij
vi0
}, β = 1

1+vmin , and α be defined as before.

Then, we obtain:

Theorem 1.5.3. (1− α)(1− β)Z(X∗) ≤ Z(
≈
X) ≤ Z(X∗).

Similar to the one-sided approximation, the above result implies that, when both the

sides are easy-to-match, a simple bipartite matching provides a 1
4
approximation to the

two-sided optimization problem. We note that while the matching solution provides a

lower approximation guarantee, it is computationally faster.

1.6 Numerical Analysis

In this section, we evaluate the solutions under various parameter settings 2. For the

upper bounds, we report the linear programming relaxation ZLP , the greedy separable

heuristic Zg, the one-sided continuous relaxation Z̃c, and the two-sided relaxation
≈
Z.

We report the lower bounds obtained using the revenue-ordered heuristic Z(Xr), the

greedy separable heuristic solution Z(Xg), the randomized one-sided relaxation solution

EQ[Z(X̃
b)], and the two-sided relaxation solution Z(

≈
X). We compute EQ[Z(X̃

b)] by

simulating the continuous relaxation solution X̃c, 10,000 times and report the average

value.

Across all simulations, we set the outside option to 10 for all suppliers and consumers,

and sample their platform affinities vij, uji, from a uniform distribution [0, V], where V

is a parameter of interest. We sample the reward values from a uniform distribution

2All the optimization solutions, except X̃c, were obtained using CPLEX V12.9.0. For X̃c, we used
Gekko Beal et al. (2018). The simulations were run on Intel core i7, 16 GB RAM, Ubuntu 18.04.5 LTS
using Python 3.6.9

Two-sided Assortment Optimization 22

Problem
Z(XLP) Zg Z̃

≈
Z

(δ, V) UB ηu UB ηu UB ηu UB ηu

(1.0, 10) 226.01±18.77 10.27±1.29 40.54±2.52 1.84±0.22 69.01±4.26 3.14±0.41 180.39±4.89 8.24±1.19

(1.0, 50) 906.31±43.96 10.89±1.06 108.52±4.8 1.3±0.11 127.06±6.81 1.53±0.15 179.08±4.74 2.15±0.2

(1.0, 100) 1096.93±43.72 9.84±0.73 134.6±5.08 1.21±0.08 144.21±6.37 1.29±0.08 179.54±5.0 1.61±0.12

(2.0, 10) 443.33±27.1 14.61±1.47 49.17±2.1 1.62±0.14 101.66±3.6 3.36±0.38 191.85±2.41 6.34±0.72

(2.0, 50) 1804.72±66.1 18.97±1.64 120.21±3.45 1.26±0.09 149.78±4.31 1.57±0.13 191.37±2.07 2.01±0.17

(2.0, 100) 2191.48±59.23 17.47±1.01 145.77±3.15 1.16±0.06 162.91±4.68 1.3±0.06 191.96±1.97 1.53±0.08

(3.0, 10) 663.79±29.76 18.13±1.44 54.38±1.47 1.49±0.11 119.05±2.6 3.25±0.27 194.98±1.44 5.33±0.44

(3.0, 50) 2735.88±68.03 26.49±1.63 127.25±2.94 1.23±0.07 161.73±3.38 1.57±0.1 194.78±1.62 1.89±0.12

(3.0, 100) 3302.62±72.5 25.61±1.34 150.91±2.51 1.17±0.06 170.18±3.19 1.32±0.06 194.89±1.57 1.51±0.07

Table 1.1: Upper bounds

over [5, 20] and vary the consumer-to-supplier ratio, δ. Thus, each problem instance is

characterized by the tuple (δ, V).

For each instance, we report the performance by taking the average across 100 simulations.

For upper bounds, we report the average upper bound, denoted by UB, and the average

ratio of the upper bound to the maximum lower bound, denoted by ηu(> 1). For the

lower bounds, we report the average lower bound, denoted by LB, and the average ratio

of lower bound to the minimum upper bound denoted by ηl(< 1).

We run the simulations by setting the number of suppliers to 10 and considering δ ∈

{1, 2, 3} and V ∈ {10, 50, 100}. The configuration (δ = 2, V = 10) implies, the number

of suppliers n = 10, consumers m = 20, and the preference for platform options, vij, uji,

for both suppliers and consumers, is less than the preference for the outside option with

probability 1.

Two-sided Assortment Optimization 23

Problem
Z(Xr) Z(Xg) EQ[Z(X̃

b)] Z(
≈
X)

(δ, V) LB ηl LB ηl LB ηl LB ηl

(1.0, 10) 18.69±2.2 0.46±0.04 16.2±1.59 0.4±0.03 21.91±3.81 0.54±0.08 16.88±4.1 0.42±0.09

(1.0, 50) 52.73±7.19 0.49±0.07 43.81±5.36 0.4±0.05 82.6±8.95 0.76±0.07 75.16±9.88 0.69±0.09

(1.0, 100) 67.92±9.36 0.5±0.06 59.47±9.03 0.44±0.06 109.94±9.25 0.82±0.06 105.29±9.45 0.78±0.06

(2.0, 10) 25.52±2.29 0.52±0.04 24.11±1.66 0.49±0.03 30.56±3.41 0.62±0.06 17.9±4.47 0.36±0.09

(2.0, 50) 68.2±8.21 0.57±0.06 62.83±7.02 0.52±0.05 95.64±7.79 0.8±0.06 77.11±11.85 0.64±0.09

(2.0, 100) 88.25±11.15 0.6±0.07 84.43±10.37 0.58±0.07 124.82±7.83 0.86±0.05 111.53±12.38 0.76±0.08

(3.0, 10) 29.94±2.58 0.55±0.04 30.09±1.8 0.55±0.03 36.8±3.03 0.68±0.05 18.06±4.03 0.33±0.07

(3.0, 50) 79.0±8.26 0.62±0.06 74.67±7.1 0.59±0.05 103.62±6.84 0.81±0.05 78.16±10.5 0.61±0.08

(3.0, 100) 98.28±10.73 0.65±0.07 94.19±10.09 0.62±0.06 128.62±6.68 0.85±0.04 113.55±11.78 0.75±0.07

Table 1.2: Lower bounds

Table 1.1 summarizes the upper bounds. Across all problem instances, the greedy sepa-

rable upper bound Zg provides the tightest upper bound and is within a factor of 2 of the

maximum lower bound. It significantly outperforms the linear programming relaxation

ZLP as well as the one-sided and two-sided relaxation. Additionally, as δ or V increases,

the upper bound becomes tighter.

With respect to the lower bounds (table 1.2), the one-sided randomized solution EQ[Z(X̃
b)],

outperforms the two-sided relaxation, the greedy separable solution, as well as the revenue-

ordered heuristic across all problem instances. We observe that, on an average, it is well

within a factor of 0.5 of the minimum upper bound and that these bounds are tighter

than the theoretical guarantees 3. We also observe that as V increases, the performance

of the one-sided as well as the two-sided solution increases. This follows from the the-

oretical results that as the preference for platform options increases (compared to the

3In 1.8.2, for the particular case when uj0 = κ, and uji ∼ U [κl, κu], we show the one-sided relaxation
provides 1− κ

κu−κl
ln(κu+κ

κl+κ) guarantee in expectation. This implies, for uj0 = 10 and uji ∼ U [0, V], we
obtain theoretical guarantees of 0.30, 0.64, and 0.76 for V = 10, 50, and 100, respectively.

Two-sided Assortment Optimization 24

outside option), the performance guarantees of the two relaxations increases. Further,

the lower bound for the randomized solution increases with the consumer-to-supplier,

and for δ = 3, on an average, it is within a factor of 0.69 of the minimum upper bound.

Finally, we observe that, on an average, the revenue-ordered heuristic outperforms the

greedy separable heuristic.

1.7 Conclusion

In this paper, we presented a general two-sided assortment optimization model that ex-

tends the existing literature by allowing the platform’s revenue and the participant’s

preference to depend on supplier-consumer pair. The NP-hardness result, even with

two suppliers, along with the negative results for the two benchmark greedy heuristics,

highlight the difficulty of the two-sided assortment optimization problem.

We developed two simple relaxation based solutions. The one-sided relaxation sets the

outside option to zero for consumers and the two-sided relaxation sets it to zero for both

consumers and suppliers. Our parametric guarantees help highlight the performance as

well as the limitations of simple matching solutions.

This work can be explored further in the multiple ways. The first is to develop bounds

that scale well with the number of participants. While we numerically observed the per-

formance of the one-sided relaxation increases with increase in the consumer-to-supplier

ratio, it does not immediately follow from the current theoretical results. The second

is to extend the static model to incorporate cardinality constraints and analyze special

cases under which the parametric guarantees still hold e.g., limiting the assortment size

to one for either or both sides of the market. Finally, given the relaxations provide upper

Two-sided Assortment Optimization 25

and lower bound guarantees, it would be worthwhile to explore their efficacy within a

branch-and-bound regime to compute optimal two-sided assortments.

1.8 Appendix

Observation 1.3.1: For a single supplier i, the two-sided assortment optimization re-

duces to the following MNL:

max
Xij∈{0,1}

{
m∑
j=1

r̃ij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)}
,

Proof: Consider the two-sided assortment optimization Z defined in 1.3.6 for a given

supplier i:

Z = max
Xij∈{0,1}

{
m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 +
∑n

l=1 ujl ·Xlj

)}
, (1.8.1a)

= max
Xij∈{0,1}

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 + uji +
n∑

l=1,
l ̸=i

ujl ·Xlj

)
, (1.8.1b)

= max
Xij∈{0,1}

{
m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 + uji

)}
, (1.8.1c)

= max
Xij∈{0,1}

{
m∑
j=1

r̃ij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)}
, (1.8.1d)

where 1.8.1c follows from the observation that when maximizing with respect to supplier

i, Xlj = 0,∀l ̸= i .

Two-sided Assortment Optimization 26

Theorem 1.3.1: The two-sided assortment optimization is NP-hard.

Proof: The proof follows from the observation that, a specific instance of a two-sided

optimization problem with preference parameter uj0 = 0, ∀j inM, is equivalent to a

general instance of the one-sided relaxation. And it follows from theorem 1.5.1 that the

one-sided relaxation is NP-hard .

Theorem 1.3.2: The non-linear two-sided assortment optimization in 1.3.6 is equivalent

to the MILP 2.3.2a-2.3.2g.

Proof: Let X̂, Ŵ, ρ̂ be any feasible for the MILP. It suffices to show that, for X̂ij ∈ {0, 1},

W and ρ satisfy 1.3.7. Consider the MILP given in 2.3.2a-2.3.2g. Since X̂ij is binary,

the linearization constraints 2.3.2d-1.3.8f ensure the following:

Ŵik,lj = ρ̂ij · X̂ik · X̂lj, (1.8.2a)

Ŵi0,lj = ρ̂ij · X̂lj, (1.8.2b)

Ŵik,0j = ρ̂ij · X̂ik. (1.8.2c)

Further, ρ̂, Ŵ satisfy 2.3.2c and we obtain:

vi0 · uj0 · ρ̂ij +
n∑

l=1

vi0 · ujl · ρ̂ij · X̂lj +
m∑
k=1

vik · uj0 · ρ̂ij · X̂ik

+
n∑

l=1

m∑
k=1

vik · ujl · ρ̂ij · X̂ik · X̂lj = 1, ∀i ∈ N , j ∈M,

(1.8.3a)

which ensures:

ρ̂ij =
1

(vi0 +
∑m

k=1 vik · X̂ik) · (uj0 +
∑n

l=1 ujl · X̂lj)
. (1.8.4a)

∴ Ŵij,ij =
X̂ij · X̂ij

(vi0 +
∑m

k=1 vik · X̂ik) · (uj0 +
∑n

l=1 ujl · X̂lj)
, (1.8.4b)

Two-sided Assortment Optimization 27

(1.8.4c)

The MILP objective then reduces to the non-linear two-sided optimization in 1.3.6:

ZMILP =
n∑

i=1

m∑
j=1

rij · vij · uji · X̂ijX̂ij

(vi0 +
∑m

k=1 vik · X̂ik) · (uj0 +
∑n

l=1 ujl · X̂lj)
, (1.8.5a)

=
n∑

i=1

m∑
j=1

rij

(
vij · X̂ij

vi0 +
∑m

k=1 vik · X̂ik

)
·

(
uji · X̂ij

uj0 +
∑n

l=1 ujl · X̂lj

)
. (1.8.5b)

Proposition 1.5.1: For each consumer j ∈M,
∑n

i=1 X̃ij ≤ 1.

Proof: Consider Z̃ defined in equation 1.5.1. Let the objective function value at X be

Z̃(X), given as follows:

Z̃(X) =
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij∑n
l=1 ujl ·Xlj

)
. (1.8.6)

Let X̃ be the optimal solution of 1.5.1 i.e., X̃ = argmaxX Z̃(X).

Assume there exists j1, such that
∑n

i=1 X̃ij1 > 1. We prove by constructing a solution

X̃f such that Z̃(X̃f) ≥ Z̃ and
∑n

i=1 X̃
f
ij1

= 1. Let S̃c
j1
∈ N be the set of suppliers such

that X̃ij1 = 1, ∀i ∈ S̃c
j1
. Let i1 be the index of a supplier such that:

i1 = argmax
i∈S̃c

j1

rij1

(
vij1

vi0 + vij1 +
m∑

k=1,
k ̸=j1

vikX̃ik

)
, (1.8.7)

Two-sided Assortment Optimization 28

We construct the solution X̃f as follows:

X̃f
ij =

X̃ij if j ̸= j1 and i ̸= i1,

0 if j = j1 and i ̸= i1,

1 if j = j1 and i = i1.

(1.8.8)

Thus, X̃f is identical to X̃ except for consumer j1. For j1, X̃
f assigns value 1 to supplier

i1 satisfying equation 1.8.7. We now show that Z̃(X̃f) ≥ Z̃ and by definition of X̃f ,∑
i X̃

f
ij1

= 1. Rewrite Z̃(X̃) as follows:

Z̃(X̃) =
n∑

i=1

m∑
j=1

rij

(
vijX̃ij

vi0 +
∑m

k=1 vikX̃ik

)(
ujiX̃ij∑n
l=1 ujlX̃lj

)
, (1.8.9a)

=
n∑

i=1

m∑
j=1

rij

(
vij

vi0 + vij1X̃ij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
ujiX̃ij∑n
l=1 ujlX̃lj

)
, (1.8.9b)

=
m∑
j=1

n∑
i=1

rij

(
vij

vi0 + vij1X̃ij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
ujiX̃ij∑n
l=1 ujlX̃lj

)
, (1.8.9c)

=

m∑
j=1,
j ̸=j1

n∑
i=1

rij

(
vij

vi0 + vij1X̃ij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
ujiX̃ij∑n
l=1 ujlX̃lj

)

+
n∑

i=1

rij1

(
vij1

vi0 + vij1X̃ij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
uj1iX̃ij1∑n
l=1 uj1lX̃lj1

), (1.8.9d)

=

m∑
j=1,
j ̸=j1

n∑
i=1

rij

(
vij

vi0 + vij1X̃ij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
ujiX̃ij∑n
l=1 ujlX̃lj

)

+
n∑

i=1

rij1

(
vij1

vi0 + vij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
uj1iX̃ij1∑n
l=1 uj1lX̃lj1

), (1.8.9e)

Two-sided Assortment Optimization 29

=

m∑
j=1,
j ̸=j1

n∑
i=1

rij

(
vij

vi0 + vij1X̃ij1 +
m∑

k=1,k ̸=j1

vikX̃
f
ik

)(
ujiX̃

f
ij∑n

l=1 ujlX̃
f
lj

)

+
n∑

i=1

rij1

(
vij1

vi0 + vij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
uj1iX̃ij1∑n
l=1 uj1lX̃lj1

), (1.8.9f)

≤

m∑
j=1,
j ̸=j1

n∑
i=1

rij

(
vij

vi0 + vij1X̃
f
ij1

+
m∑

k=1,k ̸=j1

vikX̃
f
ik

)(
ujiX̃

f
ij∑n

l=1 ujlX̃
f
lj

)

+
n∑

i=1

rij1

(
vij1

vi0 + vij1 +
m∑

k=1,k ̸=j1

vikX̃ik

)(
uj1iX̃ij1∑n
l=1 uj1lX̃lj1

)
︸ ︷︷ ︸

term-2

, (1.8.9g)

≤

m∑
j=1,
j ̸=j1

n∑
i=1

rij

(
vij

vi0 + vij1X̃
f
ij1

+
m∑

k=1,k ̸=j1

vikX̃
f
ik

)(
ujiX̃

f
ij∑n

l=1 ujlX̃
f
lj

)

+ ri1j1

(
vi1j1 · X̃

f
i1j1

vi0 + vi1j1 +
m∑

k=1,k ̸=j1

vi1kX̃
f
i1k

), (1.8.9h)

= Z̃(X̃f), (1.8.9i)

where, equality 1.8.9b follows from the observation that X̃ij · X̃ij = X̃ij, 1.8.9c follows

from linearity of summation, 1.8.9e follows from the fact that X̃ is binary, and the

equality 1.8.9f follows from the definition of X̃f . The first inequality 1.8.9g follows

from the observation that X̃f
ij1
≤ X̃ij1 , ∀i ∈ S̃

c

j1
, the second inequality 1.8.9h fol-

lows from the observation that term-2 in equation 1.8.9g is a convex combination ofrij1

(
vij1

vi0+vij1+
m∑

k=1,k ̸=j1

vikX̃ik

)
, i ∈ S̃c

j1

 and from the definition of i1 .

Observation 1.5.1 If rij = c, ∀i ∈ N , j ∈ M and c > 0, then for each consumer j,∑n
i=1 X̃ij = 1.

Two-sided Assortment Optimization 30

Proof: Consider Z̃ defined in equation 2.5.19a for reward rij = c:

Z̃ = c · max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)∣∣∣∣∣
n∑

i=1

Xij ≤ 1,∀j ∈M

}
, (1.8.10a)

= c · max
Xij∈{0,1}

{
n∑

i=1

(∑m
j=1 vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)∣∣∣∣∣
n∑

i=1

Xij ≤ 1,∀j ∈M

}
, (1.8.10b)

Let X̃ be the optimal solution of 1.8.10b. Assume there exists consumer j1 such that∑n
i=1 X̃ij1 = 0. For each supplier i, let yi =

∑m
j=1 vij · X̃ij. Since, yi

vi0+yi
is increasing in

yi, assigning j1 to any of the suppliers, say i1, such that vi1j1 > 0, would increase the

objective, thereby contradicting the claim that X̃ is the optimal solution .

Theorem 1.5.1: The one-sided feasibility problem is NP-complete.

Proof: Similar to Caro et al. (2014), we use reduction from the partition problem which

is known to be NP-complete. Consider the following general instance a partition problem:

INPUTS: A set of m products indexed by j; the weight associated with each product

c1, .., cm Decision Is there a subset S of products such that
∑

j∈S cj =
∑

j /∈S cj

Let C = 1
2

∑
j cj. It follows that if there exists a subset S, then

∑
j∈S cj =

∑
j /∈S cj = C.

Without loss of generality we assume C ∈ Z+. Recall that, one-sided feasibility problem

is defined as follows:

INPUTS: A set of m consumers indexed by j and two suppliers indexed 1, 2 with r1j =

r2j = 1, ∀j ∈ {1, ...,m}, the preference weights v1,1, .., v2,m, the preference for outside

option v1,0, v2,0, and a target profit K (we slightly abuse the notation and use vi,j, uj,i for

vij, uji, respectively to avoid ambiguity).

Decision Is there a partition S1, S2 of consumers such that S1 ∩ S2 = ∅ and S1 ∪ S2 =

Two-sided Assortment Optimization 31

{1, 2, ..,m} such that

∑
j∈S1

v1,j

v1,0 +
∑

j∈S1
v1,j

+

∑
j∈S2

v2,j

v2,0 +
∑

j∈S2
v2,j
≥ K. (1.8.11)

We now define a specific instance of the above one-sided feasibility problem. Let v1,j =

v2,j = cj, v1,0 = v2,0 = 1 and let K = 2C
1+C

. The remaining proof follows from Caro et al.

(2014) which we include for the sake of completeness. First, if there exists a partition

of products such that
∑

j∈S cj =
∑

j /∈S cj = C, then the inequality 1.8.11 is satisfied as

equality. We now show that if there exists an assortment whose revenue is K = 2C
1+C

, then

there exists a product partition as well. Let
∑

j∈S1
cj = y. Since the maximum value of y

is 2C, the left hand side of inequality 1.8.11 is bounded by the maximum of y
1+y

+ 2C−y
1+2C−y

,

which is concave over [0, 2C] and achieves its maximum at y = C, thus completing the

proof .

Proposition 1.5.2: Z(X̃a) ≥ (1− α) · γ · Z(X∗).

Proof: Consider the one-sided relaxation in 2.5.19a, let X̃ be the optimal one-sided

relaxation solution. Let Z̃(X) be the objective value at X, given as follows:

Z̃(X) =
n∑

i=1

m∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
, (1.8.12)

then, the solution X̃a is γ-approximate if Z̃(X̃a) ≥ γ · Z̃(X̃).

Z(X̃a) =
n∑

i=1

m∑
j=1

rij

(
vijX̃

a
ij

vi0 +
∑m

k=1 vikX̃
a
ij

)
·

(
ujiX̃

a
ij

uj0 +
∑n

l=1 ujlX̃a
lj

)
, (1.8.13a)

=
n∑

i=1

m∑
j=1

rij

(
vij · X̃a

ij

vi0 +
∑m

k=1 vikX̃
a
ik

)
·

(
ujiX̃

a
ij

uj0 + uji

)
, (1.8.13b)

Two-sided Assortment Optimization 32

≥
n∑

i=1

m∑
j=1

rij

(
vij · X̃a

ij

vi0 +
∑m

k=1 vikX̃
a
ik

)
·

(
umin

1 + umin

)
, (1.8.13c)

= Z̃(X̃a) · (1− α), (1.8.13d)

≥ (1− α) · γ · Z̃(X̃), (1.8.13e)

≥ (1− α) · γ · Z(X∗), (1.8.13f)

where, the second equality 1.8.13b, follows from the observation that
∑n

l=1 X̃
a
lj ≤ 1 .

Theorem: 1.5.2: (1− α)Z(X∗) ≤ EQ[Z(X̃
b)] ≤ Z(X∗).

Proof: Since X̃b is feasible w.r.t Z, we have EQ[Z(X̃
b)] ≤ Z(X∗) ≤ Z̃c where, we

recall that Q = {Qj} is the random variable that assigns consumer j to supplier i with

probability X̃c. Consider the Z(X) defined in equation 1.5.5. We obtain:

EQ[Z(X̃b)] =
n∑

i=1

m∑
j=1

rij EQ

[(
vijX̃

b
ij

vi0 +
m∑
k=1

vikX̃
b
ik

)
·

(
ujiX̃

b
ij

uj0 +
∑n

l=1 ujlX̃
b
lj

)]
, (1.8.14a)

=

n∑
i=1

m∑
j=1

rij EQ

[(
vij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
b
ij

)
·

(
ujiX̃

b
ij

uj0 + uji

)]
, (1.8.14b)

≥
n∑

i=1

m∑
j=1

rij

(
vij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
c
ik

)
· EQj

[(
ujiX̃

b
ij

uj0 + uji

)]
, (1.8.14c)

≥
n∑

i=1

m∑
j=1

rij

(
vij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
c
ik

)
· EQj

[(
uminX̃b

ij

1 + umin

)]
, (1.8.14d)

=
n∑

i=1

m∑
j=1

rij

(
vijX̃

c
ij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
c
ik

)
·

(
umin

1 + umin

)
, (1.8.14e)

= Z̃c · (1− α), (1.8.14f)

(1− α) · Z̃c ≤ EQ[Z(X̃b)] ≤ Z(X∗). (1.8.14g)

Two-sided Assortment Optimization 33

The second equality 1.8.14b follows from the observation that X̃b is binary and for each

consumer j,
∑n

l=1 X̃
b
lj ≤ 1. The first inequality 1.8.14c follows from Jensen’s inequal-

ity and the fact that Qj are independent. Proposition 1.5.3: For each supplier i,∑m
j=1

≈
Xij ≤ 1 and for each consumer j,

∑n
i=1

≈
Xij ≤ 1.

Proof: The proof follows from the convexity argument used in proposition 1.5.1 .

Theorem 1.5.3:(1− α)(1− β)Z(X∗) ≤ Z(
≈
X) ≤ Z(X∗).

Proof: Since
≈
X is feasible w.r.t Z, we have Z(

≈
X) ≤ Z(X∗) ≤

≈
Z(

≈
X).

≈
Z(

≈
X)− Z(

≈
X) =

n∑
i=1

m∑
j=1

rij

[(
vij ·

≈
Xij∑m

k=1 vik ·
≈
Xik

)(
uji ·

≈
Xij∑n

l=1 ujl ·
≈
Xlj

)

−

(
vij ·

≈
Xij

vi0 +
∑m

k=1 vik ·
≈
Xik

)(
uji ·

≈
Xij

uj0 +
∑n

l=1 ujl ·
≈
Xlj

)]
,

(1.8.15a)

=
n∑

i=1

m∑
j=1

rij

(
vij ·

≈
Xij∑m

k=1 vik ·
≈
Xik

)(
uji ·

≈
Xij∑n

l=1 ujl ·
≈
Xlj

)[

1−

(∑m
k=1 vik ·

≈
Xik

vi0 +
∑m

k=1 vik ·
≈
Xik

)(∑n
l=1 ujl ·

≈
Xlj

ui0 +
∑n

l=1 ujl ·
≈
Xlj

)]
,

(1.8.15b)

=
n∑

i=1

m∑
j=1

rij

(
vij ·

≈
Xij∑m

k=1 vik ·
≈
Xik

)(
uji ·

≈
Xij∑n

l=1 ujl ·
≈
Xlj

)[

1−

(
vij

vi0 + vij

)(
uji

ui0 + uji

)]
, (1.8.15c)

≤

n∑
i=1

m∑
j=1

rij

(
vij ·

≈
Xij∑m

k=1 vik ·
≈
Xik

)(
uji ·

≈
Xij∑n

l=1 ujl ·
≈
Xlj

)
[
1− vmin

1 + vmin

umin

1 + umin

] (1.8.15d)

=
≈
Z(

≈
X)

[
1− vmin

1 + vmin

umin

1 + umin

]
, (1.8.15e)

Two-sided Assortment Optimization 34

(1− α)(1− β)
≈
Z(

≈
X) ≤ Z(

≈
X) ≤ Z(X∗), (1.8.15f)

where 1.8.15c follows from proposition 1.5.3 .

1.8.1 Submodularity of One-sided Relaxation

Proposition 1.8.1. If rij = ri, ∀i ∈ N , j ∈M, then the one-sided relaxation Z̃ (2.5.19a)

is submodular.

Proof: Consider the one-sided relaxation in 2.5.19a with rij = ri:

Z̃ = max
Xij∈{0,1}

{
n∑

i=1

m∑
j=1

ri

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)∣∣∣∣∣
n∑

i=1

Xij ≤ 1,∀j ∈M

}
(1.8.16a)

= max
Xij∈{0,1}

{
n∑

i=1

ri

(∑m
j=1 vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)∣∣∣∣∣
n∑

i=1

Xij ≤ 1,∀j ∈M

}
(1.8.16b)

Recall that, Se
i denotes the assortment of consumers offered to supplier i and let Se =

{Se
1 , ...,Se

n}. Then 1.8.16b can be rewritten as

Z̃ = max
Se

{
n∑

i=1

ri

(∑
j∈Se

i
vij

vi0 +
∑

k∈Se
i
vik

)∣∣∣∣∣
n⋂

i=1

Se
i = ∅

}
(1.8.17)

For supplier i, denote fi(Se
i) =

∑
j∈Se

i
vij

vi0+
∑

k∈Se
i
vik

. Then, it follows from Han et al. (2020) that

fi(Se
i) is submodular for each i. And since ri ≥ 0,

∑n
i=1 ri · fi(Se

i) is also submodular .

Two-sided Assortment Optimization 35

1.8.2 Uniform Distribution

Proposition 1.8.2. If uj0 = κ and uji ∼ U [κl, κu], ∀j ∈ M where κ > 0, κu > κl > 0,

then the randomized solution X̃b provides 1− κ
κu−κl

ln(κu+κ
κl+κ

) approximation in expectation.

Proof: Let EU [·] denote the expectation over random variable U = {uji}. From inequal-

ity 1.8.14c, we have

EU [EQ[Z(X̃b)]] ≥
n∑

i=1

m∑
j=1

rij

(
vij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
c
ik

)
· EU

[
EQj

[(
ujiX̃

b
ij

uj0 + uji

)]]
,

(1.8.18a)

=

n∑
i=1

m∑
j=1

rij

(
vijX̃

c
ij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
c
ik

)
· EU

[
uji

uj0 + uji

]
, (1.8.18b)

=
n∑

i=1

m∑
j=1

rij

(
vijX̃

c
ij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
c
ik

)
· EU

[
1− uj0

uj0 + uji

]
, (1.8.18c)

=
n∑

i=1

m∑
j=1

rij

(
vijX̃

c
ij

vi0 + vij +
m∑

k=1,k ̸=j

vikX̃
c
ik

)
· EU

[
1− κ

κ+ uji

]
, (1.8.18d)

= Z̃c

(
1− κ

κu − κl
ln
(κu + κ

κl + κ

))
, (1.8.18e)

where 1.8.18e follows from the observation that, if uji ∼ U [κl, κu] then κ + uji ∼ U [κ +

κl, κ + κu], and
1

κ+uji
follows the inverse-uniform distribution, whose mean is given by

1
κu−κl

ln
(

κu+κ
κl+κ

)
.

Chapter 2

On Solving Discrete Fractional

Programs and Its Applications to

Assortment Optimization

2.1 Introduction

Linear fractional programs (LFP) involve maximizing the sum of linear ratios over a linear

constraint set. The two standard classes of the LFP that find wide applications are the

discrete 0-1 linear fractional programs (ZOFP) and the continuous linear fractional pro-

grams (CFP). Applications of ZOFP include but are not limited to assortment optimiza-

tion (Méndez-Dı́az et al., 2014; Bront et al., 2009), crew scheduling (Arora et al., 1977),

information retrieval (Hansen et al., 1990), and k-choice facility location (Tawarmalani

et al., 2002). Applications of CFP include cluster analysis (Rao, 1971), queuing-location

(Drezner et al., 1990), and geometric programming problems (Chen et al., 2000), among

36

On Solving Discrete Fractional Programs 37

others. Both ZOFP and CFP are computationally difficult (Borrero et al., 2017), except

in special cases; for example, when the number of ratios is limited to one, the uncon-

strained ZOFP with a positive denominator and the unconstrained CFP is polynomially

solvable. To this end, scalable algorithms that exploit different underlying structures have

been developed for each class. However, beyond the observation that relaxing ZOFP leads

to CFP, there is limited work that studies the underlying relationship between them.

In this paper, we consider a special class of ZOFP, called the 0-1 Fractional Programs

with Cardinality Constraints over Subsets (ZOFP-CS). ZOFP-CS readily models a wide

range of applications mentioned above, including the unconstrained and the cardinality-

constrained assortment optimization under the mixture of multinomial logit choice (Désir

et al., 2022), information retrieval (Hansen et al., 1990), the k-choice facility location

problem (Tawarmalani et al., 2002) and as subproblems in choice-based network revenue

management (Bront et al., 2009). We present an equivalent continuous reformulation

called the Reformulated Continuous Fractional Program with Cardinality Constraints over

Subsets (RCFP-CS) and show that any local optimal of RCFP-CS is integral. While the

reformulation is computationally difficult, since the CFP is NP-hard, it allows us to

apply the tools and methods commonly used for the continuous fractional program to

the discrete problem. It also allows us to develop better bounds for a class of assortment

optimization problems.

Our work is closely related to the literature on solving discrete problems via continuous

relaxations, which typically involves computing approximate or sometimes even exact so-

lutions by solving either a direct continuous relaxation or a continuous reformulation of

the discrete problem. These methods provide additional insights into the discrete problem

structure and help develop scalable solutions (see Pardalos, 1996) for a summary of con-

tinuous approaches for discrete optimization problems and their advantages). While they

On Solving Discrete Fractional Programs 38

have been used extensively in the linear and quadratic integer programming literature,

they have not been well-explored in the fractional programming domain.

The rest of the paper is organized as follows. In §3.2, we discuss relevant literature

and highlight our contribution. In §2.3, we introduce the class of ZOFP-CS and the

traditional benchmark solutions. In §2.4, we provide the reformulation and the bounds on

direct relaxation. In §2.5, we provide applications by considering work in the assortment

optimization literature. Finally, in §3.5, we perform numerical analysis and conclude in

§3.6.

2.2 Related Work and Contribution

In this section, we first review the existing literature on the 0-1 linear fractional program

and the continuous fractional programs. We then discuss recent work in assortment

optimization that uses the continuous relaxation of the underlying discrete problem to

compute approximate solutions with parametric bounds and conclude the section with a

summary of our contributions.

2.2.1 Literature Review

Based on the number of ratio terms, the extant literature on ZOFP can broadly be

categorized into two threads; the single-ratio and the multiple-ratio case. The single

ratio case with a strictly positive denominator is polynomially solvable (Hammer et al.,

1968; Boros and Hammer, 2002; Hansen et al., 1991), either when it is unconstrained

or if the constraint space is such that any class of linear objective functions can be

On Solving Discrete Fractional Programs 39

maximized over it in polynomial time (Megiddo, 1979; Avadhanula et al., 2016). In fact,

the unconstrained case can be solved in closed form (Boros and Hammer, 2002).

The multiple ratio case, which is of primary interest in this paper, is computationally

difficult even when the number of ratios is limited to two regardless of the constraint set

and whether the denominator is strictly positive or not (Skiscim and Palocsay, 2001).

Prokopyev et al. 2005 shows that it is NP-hard to compute a constant factor approxima-

tion for the unconstrained multiple ratio ZOFP. To this end, various algorithms have been

proposed. One common approach is to formulate the problem as a mixed-integer linear

programming problem which can be readily solved using off-the-shelf solvers (Tawar-

malani et al., 2002; Li, 1994; Wu, 1997). Méndez-Dı́az et al. 2014 develop valid inequal-

ities to improve the MILP performance. More recently, Sen et al. 2018 propose a conic

mixed integer programming formulation, in the context of assortment optimization, and

show that it provides better runtime than the MILP formulation.

However, for large-scale problems, the above algorithms quickly become intractable. An

alternative is to develop scalable upper and lower-bound solutions. For example, for

assortment optimization under the mixture-of-multinomial logit model, which can be

readily modeled as a 0-1 linear fractional program, Feldman and Topaloglu (2015) de-

velop a Lagrange relaxation-based upper bound. They provide a parametric relaxation,

discretize the parameter space, and solve the continuous relaxation of the resultant 0-1

knapsack problem. Kunnumkal and Mart́ınez-de Albéniz (2019) improve the bound by

characterizing the optimal value of the parameter. We develop a similar parametric La-

grange relaxation solution based on our reformulation and show that it improves upon

the upper bound in Feldman and Topaloglu (2015). We characterize the optimal value

of the parameter and additionally show that the resultant continuous knapsack problem

has integral solutions.

On Solving Discrete Fractional Programs 40

A common approach for the lower bound solution is to use the local search heuristic,

which starts from a feasible solution and moves greedily to a neighboring solution until a

local optimum is obtained. For example, for choice-based network revenue management,

Bront et al. (2009) formulate the column-generation subproblem as the unconstrained 0-1

fractional program and report that the heuristic provides close to the optimal solution

for most problem instances. However, we observe in the numerical exercise that the

heuristic performs poorly for the constrained case, and the reformulation can significantly

improve the discrete local optima by utilizing the continuous solution space. Further, the

performance gains increase as the constraints become tighter.

Similar to ZOFP, the extant literature on CFP can be categorized into the single-ratio

and the multiple ratio case. The single ratio problem is polynomially solvable, and vari-

ous algorithms have been developed that include Charnes and Cooper’s transformation,

which solves an equivalent linear program (Charnes and Cooper, 1962), the parametric

approach by Dinkelbach (Dinkelbach, 1967), and the interior-point method (Freund and

Jarre, 2001). The multiple ratio CFPs, on the other hand, are computationally difficult

even when the number of ratios is limited to two (Matsui, 1996). However, efficient al-

gorithms have been developed for the continuous case. For example, Kuno (Kuno, 2002,

2005) develops a branch-and-bound algorithm based on trapezoidal partitioning of the

solution space when all the numerators and denominators are positive. Benson 2007

present a simplicial branch-and-bound algorithm that only assumes a non-zero denom-

inator. Depetrini and Locatelli (2011) develop a fully-polynomial time approximation

scheme (FPTAS) when the number of ratio terms is fixed. In both Benson (2007) and

Depetrini and Locatelli (2011), the algorithm complexity depends on the number of ratio

terms. While the reformulation we consider increases the number of ratio terms, we also

show that it allows for the direct relaxation fractional solution to be rounded off with

On Solving Discrete Fractional Programs 41

parametric guarantees.

In the context of assortment optimization, which can be readily modeled as a 0-1 linear

fractional program, two recent papers (Caro et al., 2014; Ahmed et al., 2022) develop

parametric approximation guarantees by solving the continuous relaxation of the under-

lying discrete problem. Caro et al. (2014) consider the assortment packing problem and

formulate it as a fractional program. They then develop parametric bounds in expec-

tation by solving the relaxed problem and using a randomized heuristic. We show that

our reformulation provides tighter bounds. Ahmed et al. (2022) also provide parametric

bounds in expectation using a similar approach for the two-sided assortment optimization

problem. Our reformulation is similar to Ahmed et al. (2022). However, we show that

the reformulation, in fact, gives an integral solution.

2.2.2 Contribution

In this paper, we consider the class of 0-1 fractional programs under cardinality-type

constraints and make the following contributions:

i. We provide a continuous reformulation and show that any local optimum of the

reformulation is integral.

ii. Since the reformulation increases the number of ratio terms, we consider the direct

relaxation and show that the resultant fractional solution can be rounded off with

parametric approximation guarantees.

iii. We provide a Lagrange relaxation based upper bound for assortment optimization

under the mixture-of-multinomial and show that it improves upon the parametric

discretization-based approach by Feldman and Topaloglu (2015).

On Solving Discrete Fractional Programs 42

iv. As corollaries, we derive tighter parametric bounds for the assortment packing prob-

lem (Caro et al., 2014) and the two-sided assortment optimization (Ahmed et al.,

2022).

v. We provide an illustrative example to argue that the reformulation can significantly

improve the discrete local optima by exploiting the continuous solution space. Nu-

merically, we observe the performance gains to be as high as 60% when the constraints

are tight.

To the best of our knowledge, our work is the first to solve a class of discrete fractional

programs as a continuous fractional program. We believe this has broader implications

for solving large discrete fractional programs, as it brings to bear the scalable methods

associated with continuous optimization.

2.3 ZOFP-CS: Formulation and Standard Solutions

2.3.1 Formulation

Let y ∈ {0, 1}n be a n-dimensional binary variable, S = {S1, ..., Sm} be m mutually

exclusive subsets of indices of y and let Mj ∈ Z+ be the cardinality size associated with

each subset Sj, j = {1, ...,m}. Let ai, ci be n-dimensional vectors such that ail, cil ≥

0,∀l ∈ {1, ..., n}. The 0-1 fractional program with cardinality constraints over subsets

(ZOFP-CS) is given by:

ZOFP−CS : Z = max
y∈{0,1}n

p∑

i=1

aTi · y
bi + cTi · y

∣∣∣∣∣∣
∑
k∈Sj

yk ≤Mj, ∀j ∈ {1, ...,m}

 ,

(2.3.1)

On Solving Discrete Fractional Programs 43

where we assume bi ≥ 0 and p ≥ 2. Note that, although we limit our discussion to∑
k∈Sj

yk ≤ Mj, the results trivially extend to the case with equality constraints, i.e.,∑
k∈Sj

yk = Mj, as well as the unconstrained case (by letting Mj ≥ n, or Mj = 1 and

restricting each set Sj to contain at most one element, we obtain the class of unconstrained

0-1 fractional programs).

It is easy to check that ZOFP-CS models the unconstrained and the cardinality-constrained

MMNL (Rusmevichientong et al., 2014), information retrieval (Hansen et al., 1990), and

the k-choice facility location problems (Tawarmalani et al., 2002). However, in this work,

we discuss two recent papers in assortment optimization literature in greater detail. Theo-

retically, these papers are of interest to us as they solve the discrete optimization problem

using continuous relaxation and provide parametric bounds in expectation.

2.3.2 Standard Solutions

Observe that the inapproximability of ZOFP-CS immediately follows from the inapprox-

imability of the mixture of multinomial logit (Désir et al., 2022). The two commonly used

solutions for the ZOFP are the exact mixed-integer linear programming formulation and

the heuristic local search solution. We use these solutions to benchmark the reformulation

against the optimal solution and to highlight the performance improvement it offers over

the discrete local maxima.

2.3.2.1 Mixed Integer Linear Programming Formulation.

Following Tawarmalani et al. 2002, we formulate the ZOFP-CS as MILP by defining

the variable xi = 1

bi+
n∑

r=1
ciryr

and linearize the product terms wir = xiyr using big-M

On Solving Discrete Fractional Programs 44

constraints. The resultant MILP is given by:

Zm = max
w,x,y

p∑
i=1

n∑
r=1

air · wir, (2.3.2a)

s.t.∑
k∈Sj

yk ≤Mj, ∀j ∈ {1, ...,m}, (2.3.2b)

bixi +
n∑

r=1

cirwir = 1, ∀i ∈ {1, ..., p}, (2.3.2c)

wir ≤ xi, ∀i ∈ {1, ..., p}, ∀r ∈ {1, ..., n}, (2.3.2d)

wir ≤ Kyr, ∀i ∈ {1, ..., p},∀r ∈ {1, ..., n}, (2.3.2e)

wir ≥ xi +K(yr − 1), ∀i ∈ {1, ..., p},∀r ∈ {1, ..., n}, (2.3.2f)

wir ≥ 0, yi ∈ {0, 1}, xi ∈ [0, 1] ∀i ∈ {1, ..., p},∀r ∈ {1, ..., n}, (2.3.2g)

where K is a large positive constant. Constraints (2.3.2d)-(2.3.2f) are linearization con-

straints and constraint (2.3.2c) ensures xi definition is satisfied. The MILP formulation

allows us to compute the optimal solution using off-the-shelf solvers, at least for smaller

problem instances.

2.3.2.2 Local Search Heuristic.

Local search heuristics are commonly used in large-scale discrete optimization problems

where computing the optimal solution might be computationally difficult. The heuris-

tic starts from a feasible solution and moves greedily to a neighboring solution until it

converges to a potentially local optima.

On Solving Discrete Fractional Programs 45

For ZOFP-CS, we construct the heuristic solution as follows. Given a feasible solution

yls = (yls1 , ..., y
ls
n) ∈ Bn, let ye = (ỹ1, ..., ỹe, ..., ỹn) such that ỹk = ylsk if k ̸= e and ỹk =

1− ylsk otherwise, and N (yls) = {ye :
∑

k∈Sj
ỹk ≤Mj,∀j ∈ {1, ...,m}, ∀e ∈ {1, ..., n}} be

the feasible neighborhood of yls. We start from the feasible solution yls and iteratively

move to a neighboring point y ∈ N (yls) such that y = argmax
ye∈N (yls)

Z(ye) and Z(y) > Z(yls).

If there is no point in the neighborhood of yls such that Z(y) > Z(yls), then yls is

considered the discrete local optimal solution and the associated objective value denoted

as Z ls is the discrete local optima.

2.4 The Continuous Reformulation and The Direct

Relaxation

We begin with a simple example to show that a direct relaxation of the binary variables y

in ZOFP-CS leads to a fractional solution and introduce the reformulation for the example

before discussing the general case.

Example 2.4.0.1. Consider the following ZOFP-CS:

Z = max
y∈{0,1}n

{
4y1

1 + 2y1
+

3y2
1 + y2

∣∣∣∣y1 + y2 ≤ 1

}
. (2.4.1)

It is easy to check that for the above ZOFP-CS, the optimal integral solution is given by

{y1 = 0, y2 = 1} with Z = 3
2
and the optimal continuous relaxation solution is given

by {y1 = 0.415, y2 = 0.584} with the objective value of 2.01. We now reformulate the

On Solving Discrete Fractional Programs 46

optimization as follows:

Z = max
y∈{0,1}n

{
4y1

1 + 2y1
+

3y2
1 + y2

∣∣∣∣y1 + y2 ≤ 1

}
, (2.4.2a)

= max
y∈{0,1}n

{
4y1
3

+
3y2
2

∣∣∣∣y1 + y2 ≤ 1

}
, (2.4.2b)

= max
y∈[0,1]n

{
4y1
3

+
3y2
2

∣∣∣∣y1 + y2 ≤ 1

}
. (2.4.2c)

Equation (2.4.2b) follows from the integrality of y, and (2.4.2c) follows since the objective

is linear under cardinality type constraint with the optimal solution given by {y1 = 0, y2 =

1} and Z = 3
2
.

2.4.1 Reformulation

We now discuss the above continuous reformulation for the general case:

Z = max
y∈{0,1}n

p∑

i=1

aTi · y
bi + cTi · y

∣∣∣∣∣∣
∑
q∈Sj

yq ≤Mj, ∀j ∈ {1, ...,m}

 , (2.4.3a)

= max
y∈{0,1}n

p∑

i=1

n∑
l=1

ail · yl

bi + cilyl +
n∑

k=1,k ̸=l

cik · yk

∣∣∣∣∣∣
∑
q∈Sj

yq ≤Mj, ∀j ∈ {1, ...,m}

 ,

(2.4.3b)

= max
y∈{0,1}n

p∑

i=1

n∑
l=1

ail · yl

bi + cil +
n∑

k=1,k ̸=l

cik · yk

∣∣∣∣∣∣
∑
q∈Sj

yq ≤Mj, ∀j ∈ {1, ...,m}

 .

(2.4.3c)

Equation (2.4.3c) follows from (2.4.3b) since yl is binary. The reformulation essentially

makes the denominator free from the term in the numerator. The reformulated continuous

On Solving Discrete Fractional Programs 47

fractional program associated with ZOFP-CS in (2.3.1) is given by:

RCFP−CS : Zr = max
y∈[0,1]n

p∑

i=1

n∑
l=1

ail · yl

bi + cil +
n∑

k=1,k ̸=l

cik · yk

∣∣∣∣∣∣
∑
r∈Sj

yr ≤Mj, ∀j ∈ {1, ...,m}

 .

(2.4.4)

RCFP-CS is computationally difficult since it is equivalent to the multiple-ratio 0-1 frac-

tional program, which is known to be NP-hard. However, as we show below, RCFP-CS

has integral local optima.

Let the discrete and continuous feasible solution space be Y d and Y c, respectively, defined

as as follows:

Y d = {y ∈ {0, 1}n :
∑
r∈Sj

yr ≤Mj,∀j ∈ {1, ...,m}}. (2.4.5)

Y c = {y ∈ [0, 1]n :
∑
r∈Sj

yr ≤Mj,∀j ∈ {1, ...,m}}. (2.4.6)

For any feasible solution y ∈ Y c, let Z(y) and Zr(y) be the objective values of ZOFP-CS

and RCFP-CS, respectively:

Z(y) =

p∑
i=1

∑n
l=1 ail · yl

bi +
∑n

k=1 cik · yk
, (2.4.7a)

Zr(y) =

p∑
i=1

n∑
l=1

ail · yl

bi + cil +
n∑

k=1,k ̸=l

cik · yk
. (2.4.7b)

The reformulation provides a lower bound to ZOFP-CS, and the following lemma trivially

follows:

Lemma 2.1. For any yd ∈ Y d, Z(yd) = Zr(yd) and for any yc ∈ Y c, Z(yc) ≥ Zr(yc).

On Solving Discrete Fractional Programs 48

We now present the main result of the paper, which states that given any fractional

solution yc ∈ Y c, the objective value Zr(yc) can be improved by iteratively rounding off

the fractional values. Let yc
−k = {ycl : l ̸= k, l = {1, ..., n}}, i.e., yc

−k is the set of variables

except yk, Z
r(yk|yc

−k) be the objective as a function of yk, given the remaining variables

yc
−k and Bj(y

c) be the number of fractional terms of yc with indices in subset Sj, then:

Theorem 2.4.1. Given any fractional solution yc ∈ Y c with Bj(y
c) fractional terms,

∃ỹc ∈ Y c with Bj(y
c)− 1 fractional terms such that Zr(ỹc) ≥ Zr(yc).

Proof: We proceed by arguing that given a continuous relaxation solution yc, with Bj(y
c)

number of fractional variables with indices in subset Sj, the objective can be increased by

reducing fractional terms to Bj(y
c)− 1. Consider the base case with Bj(y

c) = 1 for some

j ∈ {1, ...,m}. Without loss of generality, assume index 1 ∈ Sj, such that yc1 ∈ (0, 1),

then given yc
−1, Z

r(y1|yc
−1) can be written as:

Zr(y1|yc
−1) =

p∑
i=1

ai1 · y1

bi + ci1 +
n∑

r≥2

cir · ycr
+

n∑
l≥2

ail · ycl
bi + cil + ci1y1 +

n∑
r≥2,r ̸=l

cir · ycr

 . (2.4.8)

The first term in (2.4.8) is linear, and the second term is convex in y1. It follows that

Zr(y1|yc
−1) is also convex, as the summation of convex functions is convex. Therefore,

maximizing Zr(y1|yc
−1) ensures y1 ∈ {0, 1}, since maximizing a convex function over

closed, convex set leads to boundary solutions. Note that the constraint
∑

r∈Sj
yr ≤ Mj

is not violated by rounding off y1 since we assume Mj to be integral.

On Solving Discrete Fractional Programs 49

Consider the case when Bj(y
c) > 1 for some j ∈ {1, ...,m}. Without loss of generality,

assume indices 1, 2 ∈ Sj, such that yc1, y
c
2 ∈ (0, 1) and yc1+yc2 = ϵ. Then given ycr, r /∈ {1, 2},

Zr can be written as:

Zr(y1, y2|yc
−{1,2}) =

p∑
i=1

ai1 · y1

bi + ci1 + ci2y2 +
n∑

r≥3

cir · ycr
+

ai2 · y2

bi + ci1y1 + ci2 +
n∑

r≥3

cir · ycr
+

n∑
l≥3

ail · ycl
bi + ci1y1 + ci2y2 + cil +

n∑
r≥3,r ̸=l

cir · ycr

,

(2.4.9a)

=

p∑
i=1

{
ai1 · y1

b̃i1 + ci2y2
+

ai2 · y2
b̃i2 + ci1y1

+
n∑

l≥3

ãil

b̃il + ci1y1 + ci2y2

}
, (2.4.9b)

where ãil = aily
c
l and b̃il = bi + cil +

n∑
r≥3,r ̸=l

cir · ycr. Since we assume yc1 + yc2 = ϵ,

Zr(y1, y2|yc−{1,2}) can be rewritten as:

Zr(y1|yc
−{1,2}, ϵ) =

p∑
i=1

{
ai1 · y1

b̃i1 + ci2(ϵ− y1)
+

ai2 · (ϵ− y1)

b̃i2 + ci1y1
+

n∑
l≥3

ãil

b̃il + ci1y1 + ci2(ϵ− y1)

}, (2.4.10a)

where y1 ∈ [0, ϵ] if ϵ ≤ 1 and y1 ∈ [ϵ− 1, 1] if ϵ > 1. We now show each of the three terms

is convex.

Let Ri1(y1) =
ai1·y1

b̃i1+ci2(ϵ−y1)
. Then

dRi1(y1)

dy1
=

(b̃i1 + ci2(ϵ− y1))ai1 − (ai1y1)(−ci2)
(b̃i1 + ci2(ϵ− y1))2

, (2.4.11a)

On Solving Discrete Fractional Programs 50

=
ai1b̃i1 + ϵ · ai1ci2
(b̃i1 + ci2(ϵ− y1))2

. (2.4.11b)

d2Ri1(y1)

dy21
=

2ci2(ai1b̃i1 + ϵ · ai1ci2)
(b̃i1 + ci2(ϵ− y1))3

, (2.4.12a)

≥ 0. (2.4.12b)

Let Ri2(y1) =
ai2·(ϵ−y1)

b̃i2+ci1y1
. Then

dRi2(y1)

dy1
=

(b̃i2 + ci1y1)(−ai2)− ai2(ϵ− y1)ci1

(b̃i2 + ci1y1)2
, (2.4.13a)

=
−ai2b̃i2 − ϵ · ai2ci1

(b̃i2 + ci1y1)2
. (2.4.13b)

d2Ri2(y1)

dy21
=

2ci1(ai2b̃i2 + ϵ · ai2ci1)
(b̃i2 + ci1y1)3

, (2.4.14a)

≥ 0. (2.4.14b)

Let Ri3(y1) =
ãil

b̃il+ci1y1+ci2(ϵ−y1)
. Then

dRi3(y1)

dy1
=

−ãil(ci1 − ci2)

(b̃il + ci1y1 + ci2(ϵ− y1))2
. (2.4.15a)

d2Ri3(y1)

dy21
=

2ãil(ci1 − ci2)
2

(b̃i2 + ci1y1 + ci2(ϵ− y1))3
, (2.4.16a)

On Solving Discrete Fractional Programs 51

≥ 0. (2.4.16b)

Since the second-order derivatives are positive, the objective is convex in y1. Therefore,

Zr(y1|yc
−{1,2}, ϵ) attains its maximum at (y1, y2) = (0, ϵ) or (y1, y2) = (ϵ, 0) for ϵ ≤ 1 and

for ϵ > 1, (y1, y2) = (ϵ − 1, 1) or (y1, y2) = (1, ϵ − 1). Thus, the continuous relaxation

solutions can be improved by appropriately rounding off the fractional terms pair-wise.

Again note that rounding off the values does not violate any constraint. □.

Algorithm 1: Greedy roundoff.

Input : yc ∈ Y c

Output: yd ∈ Y d : Zr(yd) ≥ Zr(yc)
1 yd ← yc;
2 Bj(y

d)← |{k | ydk ∈ (0, 1), k ∈ Sj}|, ∀j ∈ {1, ...,m};
3 while ∃j ∈ {1, ...,m} | Bj(y

d) ≥ 1 do
4 l← j | Bj(y

d) ≥ 1, j ∈ {1, ...,m};
5 if Bl(y

d) = 1 then
6 k ← q | ydq ∈ (0, 1), q ∈ Sl;

7 if Zr(ydk = 1|yd−k) ≥ Zr(ydk = 0|yd
−k) then ydk ← 1 else ydk ← 0;

8 else
9 k1, k2 ← q | ydq ∈ (0, 1), q ∈ Sl;

10 ϵ← yk1 + yk2 ;
11 if ϵ ≤ 1 then
12 if Zr(ydk1 = ϵ, ydk2 = 0|yd

−k) ≥ Zr(ydk1 = 0, ydk2 = ϵ|yd
−k) then

(ydk1y
d
k2
)← (ϵ, 0) else (ydk1y

d
k2
)← (0, ϵ);

13 else
14 if Zr(ydk1 = ϵ− 1, ydk2 = 1|yd

−k) ≥ Zr(ydk1 = 1, ydk2 = ϵ− 1|yd
−k) then

(ydk1y
d
k2
)← (ϵ− 1, 1) else (ydk1y

d
k2
)← (1, ϵ− 1);

15 end
16 end
17 end

The proof is constructive as it provides us with a rounding scheme. Given any feasi-

ble fractional solution, a discrete integer solution with a higher objective value can be

obtained by rounding off values iteratively. We outline the greedy roundoff steps in algo-

rithm 1. We select a subset Sj with one or more indices having fractional values. If the

On Solving Discrete Fractional Programs 52

0 0.2 0.4 0.6 0.8 1 0
0.5

1

0

0.5

1
Z(y)

Zr(y)

y1 y2

Figure 2.1: Z(y) = 3y1
1+2y1+y2

+ 3y2
1+4y1+3y2

, Zr(y) = 3y1
3+y2

+ 3y2
4+4y1

.

subset has exactly one index with a fractional value, it is rounded off to 0 or 1, whichever

gives a higher objective value (with respect to Zr(y), holding all other values constant.

If the subset has two or more indices with fractional values that add to ϵ ≤ 1, they are

rounded-off to (0, ϵ) or (ϵ, 0) and if ϵ ≥ 1, they are rounded-off to (ϵ− 1, 1) or (1, ϵ− 1),

whichever gives a higher objective value.

Corollary 2.4.1. Given any fractional solution yc ∈ Y c, Algorithm 1 return an integral

solution yd ∈ Y d, such that Zr(yd) ≥ Zr(yc).

Alternatively, the RCFP-CS can be solved using any off-the-shelf nonlinear solver with

the fractional solution as an initial input to obtain a locally optimal integer solution.

While maximizing the reformulation gives integral solutions, it increases the number of

ratio terms from p to p · n. To this end, we consider the direct relaxation of ZOFP-

CS and show that the resultant fractional solution can be rounded off with parametric

approximation guarantees.

On Solving Discrete Fractional Programs 53

2.4.2 Direct Relaxation

We first discuss a simple example shown in figure 2.1 where we consider Z(y) = 3y1
1+2y1+y2

+

3y2
1+4y1+3y2

and its continuous reformulation Zr(y) = 3y1
3+y2

+ 3y2
4+4y1

. As stated in lemma 2.1,

the functions coincide at integral points, and Zr(y) is a lower bound on Z(y). It follows

from simple algebraic manipulation that the relative difference between the first terms in

Z(y) and Zr(y) is bounded by 2(1−y1)
3+y2

and by 3(1−y2)
4+4y1

for the second terms. It immediately

follows that the relative gap between Z(y) and Zr(y) is bounded 3
4
.

We use a similar approach for the general case and first quantify the gap between the

reformulation and the direct relaxation. From lemma 2.1, for any feasible fractional

solution yc ∈ Y c, Z(yc) ≥ Zr(yc). Let γ = maxi,j{ cijbi }, then the following result holds:

Proposition 2.4.1. For any fractional solution yc ∈ Y c, Zr(yc) ≥ 1
1+γ

Z(yc).

Proof: From lemma 2.1, we have Z(yc) ≥ Zr(yc).

Z(yc)− Zr(yc) =

p∑
i=1

n∑
j=1

{ aijy
c
j

bi + cijycj +
∑

k ̸=j ciky
c
k

−
aijy

c
j

bi + cij +
∑

k ̸=j ciky
c
k

}
, (2.4.17a)

=

p∑
i=1

n∑
j=1

aijy
c
j

bi + cijycj +
∑

k ̸=j ciky
c
k

{
1−

bi + cijy
c
j +

∑
k ̸=j ciky

c
k

bi + cij +
∑

k ̸=j ciky
c
k

}
,

(2.4.17b)

=

p∑
i=1

n∑
j=1

aijy
c
j

bi + cijycj +
∑

k ̸=j ciky
c
k

{ cij(1− ycj)

bi + cij +
∑

k ̸=j ciky
c
k

}
, (2.4.17c)

≤
p∑

i=1

n∑
j=1

aijy
c
j

bi + cijycj +
∑

k ̸=j ciky
c
k

{ cij
bi + cij

}
, (2.4.17d)

≤
p∑

i=1

n∑
j=1

aijy
c
j

bi + cijyj +
∑

k ̸=j ciky
c
k

{ γ

1 + γ

}
, (2.4.17e)

= Z(yc)
(γ

1 + γ

)
, (2.4.17f)

On Solving Discrete Fractional Programs 54

Zr(yc) ≥ 1

1 + γ
Z(yc).□ (2.4.17g)

Let ỹc be the solution obtained by direct relaxation of ZOFP-CS i.e., ỹc = argmaxy∈[0,1]n Z(y)

and ỹd be the integral solution obtained by rounding off the fractional values as outlined

in algorithm 1, then:

Theorem 2.4.2. Z(ỹd) ≥ 1
1+γ

Z.

Proof: Since ỹc is the optimal solution of the relaxed problem, we have Z(ỹc) ≥ Z and

from proposition 2.4.1, we have Zr(ỹc) ≥ 1
1+γ

Z(ỹc). Using corollary 2.4.1 and lemma 2.1

we get the desired result. □

Thus, the reformulation allows us to solve the discrete ZOFP-CS either exactly as the

continuous fractional program RCFP-CS or approximately by solving the direct relaxation

and rounding off the resultant fractional solution.

2.5 Applications: Tighter Bounds and Improved Lo-

cal Maxima

We now consider three applications. We first consider the assortment optimization under

MMNL and develop a Lagrange relaxation-based solution and show that it is tighter than

the parametric discretization-based approach by Feldman and Topaloglu (2015). We then

consider the assortment-packing and the two-sided assortment optimization problem and

show that our reformulation improves existing parametric bounds. Finally, we illustrate

that the reformulation can improve discrete local maxima by utilizing the continuous

solution space.

On Solving Discrete Fractional Programs 55

Tighter Upper bounds for the Mixture of Multinomial Logit

Model

The assortment optimization under the mixture of Multinomial logit models is character-

ized by nc customer types, m products, the probability θi of observing customer-type i,

their preference vij for product j and their preference for outside option vi0. The platform

offers a single assortment, and the customers select at most one product from the offered

set based on the Logit-choice model. The platform obtains reward rj if product j is se-

lected, and its objective is to maximize the expected revenue. Let Xj be a binary variable

that takes value one if product j is included in the assortment and zero otherwise. The

platforms expected revenue given an assortment X = {Xj ∈ {0, 1}, ∀j ∈ 1, ...,m} is:

V (X) =
nc∑
i=1

θi

m∑
j=1

rjvij ·Xj

vi0 +
∑m

k=1 vik ·Xk

, (2.5.1a)

V ∗ = max
X∈{0,1}n

V (X). (2.5.1b)

For a single customer-type, the problem reduces to standard assortment optimization with

multinomial logit choice, and can be solved efficiently. However, for nc > 1, the problem

is known to be NP-hard and various approximation algorithms have been developed.

Feldman and Topaloglu (2015) propose a Lagrange relaxation-based solution to compute

upper bounds on the expected revenue. They define auxiliary variables X i
j for each

customer type i, product j and introduce the constraint X i
j = Xϕ

j ,∀i, j. Let λi
j be the

Lagrange multiplier associated with the above constraint. They provide the following

Lagrangian relaxation:

On Solving Discrete Fractional Programs 56

V (X,λ) =
nc∑
i=1

θi

m∑
j=1

rjvij ·X i
j

vi0 +
∑m

k=1 vik ·X i
k

−
∑
j

λi
j(X

i
j −Xϕ

j), (2.5.2a)

=
nc∑
i=1

{
m∑
j=1

[θirjvij ·X i
j

vi0 +
∑m

k=1 vik ·X i
k

− λi
jX

i
j

]}
+

m∑
j=1

(
nc∑
i=1

λi
j)X

ϕ
j , (2.5.2b)

V UB(λ) = max
Xi

k∈{0,1}
V (X,λ) (2.5.2c)

Given λ, V UB(λ) provides a valid upper bound to (2.5.1b). To obtain tight bounds,

Feldman and Topaloglu (2015) solve

V UB = min
λ:
∑nc

i=1 λ
i
j=0

V UB(λ). (2.5.3)

where,
∑nc

i=1 λ
i
j = 0 ensures 2.5.3 is feasible.

Given λ, V (X,λ) is separable across customer types. However, the inner optimization

problem is still difficult to compute. Feldman and Topaloglu (2015), therefore, propose

a discretization-based approach. Denote ti = vi0 +
∑m

k=1 vik · Xk, and let the lower and

upper bounds be tli = vi0 and tui = vi0 +
∑

k vik, respectively. The interval ti ∈ [tli, t
u
i]

is discretized into subintervals [tgi , t
g+1
i],∀g ∈ {1, ..., G} where G is a fixed constant and

t1i = tli, t
G+1
i = tui . The separable parametric reformulation of (2.5.2b) is given by:

V UB(λ) =
nc∑
i=1

max
ti∈[tli,tui]

max
X∈{0,1}n

{
m∑
j=1

(θirjvij
ti
− λi

j

)
X i

j

∣∣∣∣∣vi +
m∑
k=1

vik ·X i
k ≤ ti,∀i

}
,

(2.5.4a)

≤
nc∑
i=1

max
g

max
X∈{0,1}n

{
m∑
j=1

(θirjvij
tgi

− λi
j

)
X i

j

∣∣∣∣∣vi +
m∑
k=1

vik ·X i
k ≤ tg+1

i ,∀i

}
,

(2.5.4b)

On Solving Discrete Fractional Programs 57

≤
nc∑
i=1

max
g

max
X∈[0,1]n

{
m∑
j=1

(θirjvij
tgi

− λi
j

)
X i

j

∣∣∣∣∣vi +
m∑
k=1

vik ·X i
k ≤ tg+1

i ,∀i

}
. (2.5.4c)

The first inequality follows from the observation that for each interval, the inner opti-

mization is solved by replacing ti with its lower bound in the objective and its upper

bound in the constraint. The second inequality follows since the integrality constraint on

X is relaxed. Therefore, for a given λ and g, Feldman and Topaloglu (2015) solve the

continuous knapsack (2.5.4c) to obtain an upper bound.

We observe that three steps add to the gap between V ∗ and V UB. First is the Lagrange

relaxation step, and the second is the discretization step, where, given λ, instead of

solving with respect to the optimal value of ti, the optimization is done over discrete

intervals by considering the lower or upper bounds of ti. Finally, given λ, g, the 0-1

knapsack is solved as a continuous knapsack. We now use our reformulation to develop

an alternative relaxation that avoids the last two steps, i.e., given a set of Lagrange

multipliers, we essentially solve the inner optimization to optimality, in fact, in closed

form by characterizing the optimal t, X.

The reformulated MMNL is given by:

Ṽ (X) =
nc∑
i=1

m∑
j=1

θirjvij ·Xj

vi0 + vij +
∑m

k ̸=j vik ·Xk

, (2.5.5a)

Ṽ ∗ = max
X∈[0,1]n

Ṽ (X). (2.5.5b)

We introduce auxiliary variables X ij
k , Xϕ

k ,∀i ∈ 1, ..., n, ∀j, k ∈ {1, ...,m} and the con-

straint X ij
k = Xϕ

k ,∀i, j, k. Let λ̃ij
k be the Lagrange multiplier associated with the above

On Solving Discrete Fractional Programs 58

constraint. The Lagrange relaxation is given by:

Ṽ (X, λ̃) =
nc∑
i=1

m∑
j=1

[θirjvij ·X ij
j

vi0 + vij +
∑m

k ̸=j vik ·X
ij
k

]
−
∑
k

∑
i,j

λ̃ij
k (X

ij
k −Xϕ

k), (2.5.6a)

=
nc∑
i=1

m∑
j=1

[θirjvij ·X ij
j

vi0 + vij +
∑m

k ̸=j vik ·X
ij
k

−
∑
k

λ̃ij
k X

ij
k

]
+
∑
k

(
∑
i,j

λ̃ij
k)X

ϕ
k , (2.5.6b)

Ṽ UB(λ̃) = max
X∈[0,1]n

Ṽ (X, λ̃). (2.5.6c)

Given λ̃, it is easy to check that Ṽ UB(λ̃) is a valid upper bound for Ṽ ∗. To obtain a tight

upper bound, we minimize with respect to λ̃:

Ṽ UB = min
λ̃:
∑nc

i=1

∑m
j=1 λ̃

ij
k =0

V UB(λ). (2.5.7)

where,
∑nc

i=1

∑m
j=1 λ̃

ij
k = 0 ensures (2.5.7) is feasible.

We introduce parameter tij = vi0 + vij +
∑m

k ̸=j vik · X
ij
k with the lower bound given by

tlij = vi0+vij and the upper bound tuij = vi0+vij+
∑m

k ̸=j vik. The parametric reformulation

of (2.5.6b) is given by:

Ṽ UB(λ̃) =

nc∑
i=1

m∑
j=1

max
tij∈[tlij ,tuij]

max
Xij

k ∈[0,1]

{
θirjvij ·X ij

j

tij
−
∑
k

λ̃ij
k X

ij
k∣∣∣∣∣vi0 + vij +

m∑
k ̸=j

vik ·X ij
k ≤ tij

}, (2.5.8a)

=

nc∑
i=1

m∑
j=1

max
tij∈[tlij ,tuij]

max
Xij

k ∈[0,1]

{(θirjvij
tij

− λij
j

)
X ij

j −
∑
k ̸=j

λ̃ij
k X

ij
k∣∣∣∣∣vi0 + vij +

m∑
k ̸=j

vik ·X ij
k ≤ tij

}. (2.5.8b)

On Solving Discrete Fractional Programs 59

We now show that given λ̃, V UB(λ) can be solved efficiently, in fact, in closed form.

To give an overview, We proceed by first observing that given tij, the problem reduces

to a continuous knapsack and can be solved efficiently by rank-ordering with respect to

−λ̃ij
k

vik
,∀k ̸= j. We then show that we only need to consider O(n) discrete set of values for

tij and characterize this set. It follows from the same result that at these discrete values

of tij, X
ij
k is integral.

For a given i, j, let Ṽ UB(λ̃) be the inner optimization defined in (2.5.8b):

Ṽ UB
ij (λ̃) =

max
tij∈[tlij ,tuij]

max
Xij

k ∈[0,1]

{(θirjvij
tij

− λ̃ij
j

)
X ij

j −
∑
k ̸=j

λ̃ij
k X

ij
k∣∣∣∣∣vi0 + vij +

m∑
k ̸=j

vik ·X ij
k ≤ tij

}. (2.5.9)

Without loss of generality, assume the indices k = {1, ..., j−1, j+1, ..., n} are rank ordered

with respect to
−λ̃ij

k

vik
,∀k ̸= j i.e.,

−λ̃ij
1

vi1
≥ −λ̃ij

2

vi2
≥ −λ̃ij

j−1

vi,j−1
≥ −λ̃ij

j+1

vi,j+1
≥ ... ≥ −λ̃ij

n

vin
. Denote the

optimal value of tij with t∗ij and let Γij = {vi0+ vij, vi0+ vij + vi1, ..., vi0+ vij +
∑

k ̸=j vik}.

For simplicity, let r̃ij = θirjvij.

Proposition 2.5.1. At optimality, X ij
j ∈ {0, 1} and t∗ij ∈ Γij. And for any t∗ij ∈ Γij,

X ij
k = {0, 1}, ∀k ̸= j.

Proof: Since Ṽ UB
ij (λ̃) is linear in X ij

j and there is no constraint associated with it, for any

given tij, X
ij
j = {0, 1}. If r̃ij

tij
− λ̃ij

j ≤ 0 then X ij
j = 0 and X ij

j = 1 otherwise. If X ij
j = 0, it

is easy to check that t∗ij = vi0 + vij +
∑

k ̸=j vik is optimal. If X ij
j = 1, since for any given

tij Zrl
ij (λ) is a continuous knapsack, the optimal solution is obtained by rank-ordering

with respect to
−λ̃ij

k

cik
,∀k ̸= j. If t∗ij ∈ Γij then X ij

k {0, 1}, ∀k ̸= j and the proposition

holds trivially. If t∗ij /∈ Γij , then there exists k̃(̸= j) such that X ij

k̃
takes fractional value.

On Solving Discrete Fractional Programs 60

However, as we argue below that, if there exists X ij

k̃
∈ (0, 1) for a given t∗ij, then it is

optimal to increase t∗ij such that t∗ij ∈ Γij and set X ij

k̃
= 1.

Let Ṽ UB∗
ij (λ̃) be the optimal value when t∗ij /∈ Γij and X ij

k̃
∈ (0, 1). Let Ṽ UBd

ij (λ̃) be the

optimal value when tij = t∗ij − cik̃X
ij

k̃
in which case X ij

k̃
= 0, and Ṽ UBu

ij (λ̃) be the optimal

value when tij = t∗ij + cik̃(1−X ij

k̃
) in which case X ij

k̃
= 1. That is, Ṽ UBd

ij (λ̃) and Ṽ UBu

ij (λ̃)

are the optimal values obtained by changing tij such that X ij

k̃
is rounded down or rounded

up, respectively.

If X ij

k̃
∈ (0, 1) is optimal, then Ṽ UB∗

ij (λ̃) ≥ Ṽ UBd

ij (λ̃). Comparing the terms, this holds if:

−λ̃ij

k̃

vik̃
≥ r̃ij

t∗ij(t
∗
ij − vik̃X

ij

k̃
)
. (2.5.10)

Next, comparing Ṽ UBu

ij (λ̃) Ṽ UB∗
ij (λ̃), we observe that Ṽ UBu

ij (λ̃) ≥ Ṽ UB∗
ij (λ̃) if:

−λ̃ij

k̃

vik̃
≥ r̃ij

t∗ij(t
∗
ij + vik̃(1−X ij

k̃
))
. (2.5.11)

If (2.5.10) holds, then (2.5.11) is trivially true. Which implies that for given tij if setting

X ij

k̃
to a fractional value gives higher objective value than setting to 0, then it is optimal

to increase tij such that tij ∈ Γij and X ij

k̃
= 1 □.

We use the above result to show that the reformulation based relaxation provides tighter

upper bound than Feldman and Topaloglu (2015). Consider the continuous knapsack in

(2.5.4c) for a given i and interval g. Let λ = λ̄ be the optimal Lagrange multipliers:

V UB
i (λ̄, g) = max

X∈[0,1]n

{
m∑
j=1

(θirjvij
tgi

− λ̄i
j

)
X i

j

∣∣∣∣∣vi +
m∑
k=1

vik ·X i
k ≤ tg+1

i

}
, (2.5.12)

On Solving Discrete Fractional Programs 61

We introduce auxiliary variables X ij
k , X

iϕ
k along with the constraint X ij

k = X iϕ
k . Since

(2.5.12) is a linear program, there exists optimal dual variables λ̂ij
k associated with this

constraint such that (2.5.12) can we rewritten as:

V UB
i (λ̄, g) =

max
X∈[0,1]n

{
m∑
j=1

(θirjvij
tgi

− λ̄i
j

)
X ij

j −
∑
j,k

λ̂ij
k (X

ij
k −X iϕ

k)∣∣∣∣∣vi +
m∑
k=1

vik ·X ij
k ≤ tg+1

i ,∀j ∈ {1, ...,m}

}
,

(2.5.13a)

=

m∑
j=1

max
X∈[0,1]n

{(θirjvij
tgi

− λ̄i
j

)
X ij

j −
∑
k

λ̂ij
k (X

ij
k −X iϕ

k)∣∣∣∣∣vi +
m∑
k=1

vik ·X ij
k ≤ tg+1

i

}, (2.5.13b)

=

m∑
j=1

max
X∈[0,1]n

{(θirjvij
tgi

− λ̄i
j − λ̂ij

j

)
X ij

j −
∑
k ̸=j

λ̂ij
k X

ij
k∣∣∣∣∣vi +

m∑
k=1

vik ·X ij
k ≤ tg+1

i

}. (2.5.13c)

where (2.5.13b) follows from the separability of objective function and (2.5.13c) follows

from dual feasibility which requires
∑

j λ̂
ij
k = 0,∀i, k.

Let V UB
ij (λ̄, g) be the inner optimization problem.

V UB
ij (λ̄, g) = max

X∈[0,1]n

{(θirjvij
tgi

− λ̄i
j − λ̂ij

j

)
X ij

j −
∑
k ̸=j

λ̂ij
k X

ij
k

∣∣∣∣∣vi +
m∑
k=1

vik ·X ij
k ≤ tg+1

i

}
.

(2.5.14)

We now show that for any given interval, the reformulation based relaxation provides

tighter upper bound than the Feldman and Topaloglu (2015) bound.

Proposition 2.5.2. The reformulation based relaxation provides tighter upper bound i.e.,

Ṽ UB ≤ V UB.

On Solving Discrete Fractional Programs 62

Proof: Let λ̃ij
j = λ̄i

j + λ̂ij
j and λ̃ij

j = λ̂ij
k . Note that the assignment satisfies dual feasibility

constraint
∑

ij λ̃
ij
k = 0,∀k. Consider the reformulation based relaxation given in (2.5.9)

computed at λ̃ and interval g:

Ṽ UB
ij (λ̃) =

max
tij∈[tgi ,t

g+1
i]

max
Xij

k ∈[0,1]

{(θirjvij
tij

− λ̃ij
j

)
X ij

j −
∑
k ̸=j

λ̃ij
k X

ij
k∣∣∣∣∣vi0 + vij +

m∑
k ̸=j

vik ·X ij
k ≤ tij

}, (2.5.15a)

=

max
tij∈[tgi ,t

g+1
i]

max
Xij

k ∈[0,1]

{(θirjvij
tij

− λ̄i
j − λ̂ij

j

)
X ij

j −
∑
k ̸=j

λ̂ij
k X

ij
k∣∣∣∣∣vi0 + vij +

m∑
k ̸=j

vik ·X ij
k ≤ tij

}, (2.5.15b)

=

max
tij∈[tgi ,t

g+1
i]

max
Xij

k ∈[0,1]

{(θirjvij
tij

− λ̄i
j − λ̂ij

j

)
X ij

j −
∑
k ̸=j

λ̂ij
k X

ij
k∣∣∣∣∣vi0 +

m∑
k

vik ·X ij
k ≤ tij − vij(1−Xij)

}
,

(2.5.15c)

≤ max
Xij

k ∈[0,1]

{(θirjvij
tgi

− λ̄i
j − λ̂ij

j

)
X ij

j −
∑
k ̸=j

λ̂ij
k X

ij
k

∣∣∣∣∣vi0 +
m∑
k

vik ·X ij
k ≤ tg+1

i

}
,

(2.5.15d)

= V UB
ij (λ̄, g). (2.5.15e)

On Solving Discrete Fractional Programs 63

Improving Expectation Bounds

Assortment Packing Problem.

The assortment packing problem (APP) consists of a retailer with K products that are

introduced over a finite horizon H. Each product can be introduced in at most one of

the time periods and remains in the assortment thereafter. Customers have an initial

preference value vk for product k which decreases to κk,t−tk · vk in period t if product

k is introduced in tk, where κk,t−tk ∈ [0, 1]. The customers are assumed to follow the

multinomial logit choice function. The retailer’s objective is to offer an assortment at

each time step to maximize its expected revenue. Let Xkt be a binary variable which is

1 of product k is introduced in time step t and 0 otherwise, rk be the retailer’s revenue

for product k and βt be the discount factor associated with time step t. The platforms

expected revenue, given Xkt and the optimal revenue is given by:

V (X) =
H∑
t=1

βt

K∑
k=1

rk

(
vk
∑t

u=1 κk,t−uXku

v0 +
∑K

l=1 vl
∑t

u=1 κl,t−uXlu

)
, (2.5.16a)

APP : V ∗ = max
Xkt∈{0,1}

{
V (X)

∣∣∣∣∣
H∑
t=1

Xkt ≤ 1, ∀k ∈ {1, ..., K}

}
. (2.5.16b)

Caro et al. (2014) show the problem is NP-hard and develop a randomized heuristic by

solving the continuous relaxation of (2.5.16b). Let X̃kt be the solution to the continuous

relaxation, and Qk be a random variable associated with product k such that P (Qk =

t) = X̃kt. Let f(Q1, ..., Qk) be the objective value associated with the Q = (Q1, ..., QK):

f(Q) =
H∑
t=1

βt ·
∑K

k=1

∑t
u=1 rkvkκk,t−u1ku

v0 +
∑K

l=1

∑t
u=1 vlαl,t−u1lu

.

On Solving Discrete Fractional Programs 64

Caro et al. (2014) provide the following parametric bound for the randomized rounding

solution.

Theorem 2.5.1. Let ρ = v0
v0+maxk={1,...,K} vk

. Then, E[f(Q)] ≥ ρ · V ∗ (Caro et al., 2014).

It immediately follows that APP is a special case of ZOFP-CS. The RCFP-CS reformu-

lation of the APP is given by:

V ∗ =

max
Xjt∈{0,1}

{
H∑
t=1

βt

K∑
j=1

rj

(
vj
∑t

u=1 κj,t−uXju

v0 +
∑K

l=1 vl
∑t

u=1 κl,t−uXlu

)
∣∣∣∣∣

H∑
t=1

Xjt ≤ 1,∀j ∈ {1, ..., K}

}, (2.5.17a)

= max
Xjt∈{0,1}

{
H∑
t=1

K∑
j=1

t∑
u=1

βtrjκj,t−uXju

v0 +
∑K

l=1 vl
∑t

u=1 κl,t−uXlu

∣∣∣∣∣
H∑
t=1

Xjt ≤ 1,∀j ∈ {1, ..., K}

}
,

(2.5.17b)

=

max
Xjt∈{0,1}

{
H∑
t=1

K∑
j=1

t∑
u=1

βtrjκj,t−uXju

v0 +
∑t

u=1 vjκj,t−u +
∑K

l=1,l ̸=j vl
∑t

u=1 κl,t−uXlu∣∣∣∣∣
H∑
t=1

Xjt ≤ 1,∀j ∈ {1, ..., K}

}. (2.5.17c)

Corollary 2.5.1.

• The continuous relaxation of (2.5.17c) gives integral solution.

• Let X̃d
kt be the integral solution obtained using algorithm 1 with X̃kt as the input,

then V (X̃d) ≥ ρ · V ∗.

Thus, the reformulation improves the expectation bound in Caro et al. (2014) in two ways.

First, it provides an equivalent continuous fractional program (2.5.17c) that gives integral

solutions. Second, it provides a greedy rounding scheme for the fractional solution, which

is ρ-optimal.

On Solving Discrete Fractional Programs 65

Two-sided Assortment Optimization:

The two-sided assortment optimization consists of a platform with ns suppliers and mc

consumers. Each supplier i has a preference value vij associated with consumer j and a

preference for an outside option vi0. Similarly, the preference values for consumer j are

defined as uji and uj0. On offering an assortment of consumers (suppliers), each supplier

(consumer), simultaneously and independently, selects at most one consumer (supplier)

with probability given by the multinomial logit function. The platform receives a revenue

rij if i and j select each other, and its goal is to maximize its expected revenue. Let

Xij be a binary variable that takes value one if i and j are offered to each other and

zero otherwise. The platform’s expected revenue associated with Xij and the optimal

expected revenue is given by:

V (X) =
ns∑
i=1

mc∑
j=1

rij

(
vij ·Xij

vi0 +
∑m

k=1 vik ·Xik

)
·

(
uji ·Xij

uj0 +
∑n

l=1 ujl ·Xlj

)
, (2.5.18a)

V ∗ = max
X

V (X). (2.5.18b)

Ahmed et al. (2022) prove (2.5.18b) is NP-hard and provide a one-sided relaxation (OSR)

by setting the outside option of consumers to 0, i.e., uj0 = 0,∀j. They show that OSR

reduces to:

Z̃ = max
Xij∈{0,1}

{
ns∑
i=1

mc∑
j=1

rij

(
vij ·Xij

vi0 +
∑mc

k=1 vik ·Xik

)∣∣∣∣∣
ns∑
i=1

Xij ≤ 1,∀j ∈ {1, ...,mc}

}
,

(2.5.19a)

On Solving Discrete Fractional Programs 66

= max
Xij∈{0,1}

{
ns∑
i=1

mc∑
j=1

rij

(
vij ·Xij

vi0 + vij +
∑mc

k=1,k ̸=j vik ·Xik

)∣∣∣∣∣
ns∑
i=1

Xij ≤ 1,∀j ∈ {1, ...,mc}

}
.

(2.5.19b)

Ahmed et al. (2022) consider the continuous relaxation of (2.5.19b) and provide para-

metric bounds in expectation. Let X̃ be the relaxed solution of (2.5.19b) and X̃b be the

integral solution obtained using randomized rounding. The following bound holds:

Theorem 2.5.2. Let ρ = mini,j{ uji

uj0
}. Then E[V (X̃b)] ≥ ρ

1+ρ
· V ∗ (Ahmed et al., 2022).

However, from theorem 2.4.1, the continuous relaxation of (2.5.19b) gives an integral

solution. Therefore, the bound in theorem 2.5.2 is, in fact, exact.

Corollary 2.5.2. X̃ is integral and V (X̃) ≥ ρ
1+ρ
· V ∗

Improved Local Maxima.

We now provide an example to demonstrate that solving the continuous reformulation

can improve the discrete local maxima.

Example 2.5.0.1. Consider the following ZOFP-CS:

Z = max
y∈{0,1}3

{
5y1

1 + y1 + y2 + y3
+

3y2
1 + 2y1 + 3y2 + y3

+
3y3

1 + y1 + y2 + 3y3

∣∣∣∣y1 + y2 + y3 ≤ 2

}
.

(2.5.20)

Observe that y = [0, 1, 1] is a discrete local maxima of (2.5.20) with Z = 1.2. Now,

consider the continuous reformulation

Z = max
y∈[0,1]3

{
5y1

2 + y2 + y3
+

3y2
4 + 2y1 + y3

+
3y3

4 + y1 + y2

∣∣∣∣y1 + y2 + y3 ≤ 2

}
. (2.5.21)

On Solving Discrete Fractional Programs 67

Checking the KKT conditions, it follows that y = [0, 1, 1] is no longer a local optimum

of (2.5.21). Using y = [0, 1, 1] as a starting solution, solving the continuous reformulation

using any nonlinear continuous solver leads to the solution y = [1, 0, 0] with Z = 2.5.

2.6 Numerical Experiments

We now investigate the practical utility of the reformulation in improving discrete local

maxima by considering two problem sets. For the smaller problem set we explore p ∈

{5, 10}, n ∈ {20, 35}, m ∈ {2, 5} and the right-hand side of the constraints Mj ∈ {2, 4}.

For larger instances, we explore p ∈ {75, 150}, n ∈ {300, 600}, m ∈ {10, 25} and Mj ∈

{2, 4}. Across all simulations, we sample cij from a uniform distribution U [0, 100] and bi ∈

{200, 1000}. For aij, we consider two cases; in the base case we choose aij ∼ U [0, 100] and

for the case with outliers, we set aij ∼ U [0, 100] with probability 0.9 and aij ∼ U [0, 1000]

with probability 0.1. Thus, we have 64 combinations in the parameter space, and for each

combination, we report the average performance across ten instances.

For the MILP formulation, we use CPLEX 12.9.0 and set the cutoff time to 600 seconds.

For RCFP-CS, we use the open-source sequential least squares programming algorithm

(SLSQP) available within the python library numpy along with numba compiler for objec-

tive value computation. SLSQP is a quasi-Newton method that computes local maxima

for non-concave functions. We, therefore, report the optimality gaps for the reformula-

tion on smaller instances where the MILP returns the optimal solution within a threshold

time. The simulations were run on Intel core i7, 16 GB RAM, Ubuntu 18.04.5 LTS using

Python 3.6.9.

On Solving Discrete Fractional Programs 68

Recall that Zm is the optimal MILP objective, yls is the discrete local search heuristic

solution and Z ls is objective value at yls, and Zr is the optimal (possibly local) RCFP-CS

objective. We use the same random feasible solution as input for both Z ls and Zr. Let

Zr
ls be the RCFP-CS objective with yls as the initial solution. For the smaller problem

sets, we report the following metrics:

• ∆or = 100× Zm−Zr

Zm , the percentage optimality gap for the RCFP-CS solution start-

ing from a random initial solution.

• ∆ol = 100 × Zm−Zls

Zm , the percentage optimality gap for the discrete local search

heuristic.

• ∆rl = 100× Zr
ls−Zls

Zr
ls

, the percentage increase in the local search heuristic solution by

using RCFP-CS reformulation with yls as the initial solution. Thus, ∆rl measures

the improvement the reformulation offers over the discrete local optima.

For the larger problem set, we observe that the RCFP-CS solution Zr is higher than

the MILP solution Zm computed within the threshold time across all instances. We,

therefore, report the percentage difference between them ∆ro = 100× Zr−Zm

Zr along with

the runtime τ for the RCFP-CS solution.

Table 2.1 provides the results for the smaller problem set. We observe that the RCFP-CS

solution, starting from a random initial feasible solution, provides close to the optimal so-

lution, with ∆or ≤ 5.0% across all parameter settings. The optimality gap is significantly

higher for the local search heuristic, as seen in the column ∆ol, especially for Mj = 2,

with the average ∆ol increasing from 10% for Mj = 4 to 18% for Mj = 2 without outliers

and from 10% to 30% with outliers, indicating that as the constraints become tighter, the

local search heuristic moves further away from the optimal solution. On the other hand,

On Solving Discrete Fractional Programs 69

Problem
Without Outliers With Outliers

Mj = 4 Mj = 2 Mj = 4 Mj = 2

(b,m, n, p) ∆or ∆ol ∆rl ∆or ∆ol ∆rl ∆or ∆ol ∆rl ∆or ∆ol ∆rl

(200, 2, 20, 5) 0.90 12.89 11.18 2.16 29.72 27.98 0.30 0.16 0.00 0.17 44.80 44.73
(200, 2, 20, 10) 1.49 14.40 12.86 4.55 25.01 21.23 0.30 1.54 1.07 0.15 25.79 25.59
(200, 2, 35, 5) 2.01 20.57 18.52 1.23 25.62 24.62 0.88 0.06 0.00 0.68 36.03 35.57
(200, 2, 35, 10) 1.37 21.11 19.73 3.90 21.33 18.15 1.07 7.54 6.67 1.86 30.93 29.57
(200, 5, 20, 5) 0.72 0.01 0.00 1.41 1.57 0.25 0.52 0.04 0.00 0.29 4.15 4.10
(200, 5, 20, 10) 0.65 0.00 0.00 1.75 7.28 5.53 0.49 0.00 0.00 0.28 6.25 6.07
(200, 5, 35, 5) 1.12 1.09 0.72 1.63 6.72 5.39 0.77 0.00 0.00 0.68 2.97 2.46
(200, 5, 35, 10) 0.48 0.92 0.72 2.31 9.46 6.99 0.51 0.01 0.00 0.71 9.24 8.87

Average 1.09 8.87 7.97 2.37 15.84 13.77 0.61 1.17 0.97 0.60 20.02 19.62

(1000, 2, 20, 5) 0.91 17.97 17.10 0.90 28.31 27.62 0.07 31.36 31.31 0.10 54.26 54.22
(1000, 2, 20, 10) 0.57 14.67 14.15 0.10 20.75 20.67 0.11 26.43 26.34 0.21 43.11 42.91
(1000, 2, 35, 5) 0.46 27.69 27.36 0.95 30.53 29.84 0.18 46.50 46.39 0.06 60.51 60.50
(1000, 2, 35, 10) 0.62 18.36 17.84 0.28 26.18 25.97 0.16 41.69 41.59 0.24 44.00 43.89
(1000, 5, 20, 5) 0.16 0.00 0.00 0.59 14.89 14.38 0.14 0.00 0.00 0.06 22.44 22.34
(1000, 5, 20, 10) 0.02 0.00 0.00 0.59 9.65 9.13 0.10 0.00 0.00 0.07 17.76 17.67
(1000, 5, 35, 5) 0.33 10.72 10.21 0.56 17.60 17.07 0.06 5.23 5.09 0.21 42.39 42.27
(1000, 5, 35, 10) 0.23 7.94 7.71 0.29 17.81 17.59 0.10 3.17 3.10 0.23 35.97 35.71

Average 0.41 12.17 11.80 0.53 20.71 20.28 0.12 19.30 19.23 0.15 40.06 39.94

Average 0.75 10.52 9.88 1.45 18.28 17.02 0.36 10.23 10.10 0.38 30.04 29.78

Table 2.1: Small problem set.

for the unconstrained case (m = 5, n = 20,Mj = 4), ∆ol is close to 0 for any value of

bi, with and without outliers. This substantiates the numerical results observed in Bront

et al. (2009), where the local search heuristic provides close to the optimal solution for the

unconstrained case. The optimality gap also increases with bi as the number of variables

set to one increases with bi, and therefore the constraints are more likely to be tighter.

This is analogous to what is observed in assortment optimization literature, where the

assortment size increases with the preference for the outside option. The optimality gap

On Solving Discrete Fractional Programs 70

Problem
Without Outliers With Outliers

Mj = 4 Mj = 2 Mj = 4 Mj = 2

(b,m, n, p) ∆ro τ ∆rl ∆ro τ ∆rl ∆ro τ ∆rl ∆ro τ ∆rl

(200, 10, 300, 75) 11.43 2.48 0.69 8.19 1.32 12.00 14.86 1.49 0.09 8.44 0.84 1.96
(200, 10, 300, 150) 9.39 1.83 4.11 9.09 1.09 8.11 19.08 1.16 0.00 19.33 0.70 4.90
(200, 10, 600, 75) 15.88 15.95 0.64 11.37 9.29 14.63 31.90 8.81 0.04 13.31 6.07 1.15
(200, 10, 600, 150) 10.61 13.13 6.28 10.70 6.91 11.25 23.75 7.82 0.02 25.30 4.78 5.09
(200, 25, 300, 75) 8.48 4.08 0.00 10.86 3.12 0.74 18.24 3.21 0.00 18.03 1.95 0.03
(200, 25, 300, 150) 6.85 3.96 0.06 8.24 2.65 1.56 16.34 2.70 0.00 19.61 1.63 0.27
(200, 25, 600, 75) 12.66 28.94 0.02 14.56 19.21 0.28 26.58 21.07 0.00 30.24 11.50 0.08
(200, 25, 600, 150) 9.52 24.66 0.02 9.93 14.45 1.62 18.77 17.42 0.00 22.05 10.72 0.12

Average 10.60 11.88 1.48 10.37 7.25 6.27 21.19 7.96 0.02 19.54 4.77 1.70

(1000, 10, 300, 75) 7.93 2.87 11.30 2.38 1.92 12.33 6.84 1.67 22.66 3.00 1.11 30.91
(1000, 10, 300, 150) 8.32 2.34 8.27 8.64 1.68 8.86 15.96 1.49 18.03 21.01 0.96 21.03
(1000, 10, 600, 75) 11.57 18.99 13.20 12.08 12.76 14.59 24.86 10.50 26.40 15.58 7.61 33.93
(1000, 10, 600, 150) 9.26 14.72 9.89 8.67 10.72 10.22 22.92 10.28 21.95 23.11 6.13 25.09
(1000, 25, 300, 75) 8.23 4.82 6.90 10.03 3.51 10.22 15.57 3.40 1.46 8.66 2.30 16.96
(1000, 25, 300, 150) 6.10 4.17 5.61 7.17 3.04 7.35 13.35 3.12 3.50 16.23 1.91 16.21
(1000, 25, 600, 75) 11.03 30.42 10.14 11.83 22.33 12.95 24.08 19.84 1.67 22.29 13.99 19.93
(1000, 25, 600, 150) 8.54 26.73 8.21 9.39 18.27 9.37 17.71 17.18 3.53 21.43 11.99 21.69

Average 8.87 13.13 9.19 8.77 9.28 10.73 17.66 8.44 12.40 16.42 5.75 23.22

Average 9.74 12.51 5.34 9.57 8.27 8.50 19.43 8.20 6.21 17.98 5.26 12.46

Table 2.2: Large problem set.

increases as n increases, indicating the performance of the local search heuristic decreases

with an increase in problem dimensionality. However, the reformulation significantly im-

proves the local search heuristic across all parameter settings, as seen in the column ∆rl.

In fact, it again computes close to the optimal value as we observe that the percentage

increase it offers (∆rl) almost coincides with the optimality gap (∆ol).

Table 2.2 provides the results for the larger problem set. The reformulation is quite

scalable and takes less than 30 seconds on average across all parameters. And as seen in

On Solving Discrete Fractional Programs 71

column ∆ro, it also provides significant improvements over the solution computed by the

MILP within the cutoff time. Further, the performance gains are higher with outliers,

indicating the MILP computes a better solution within a given time without the outliers;

∆ro increases from 9.7% with outliers to 19.4% without outliers for Mj = 4 and from 9.5%

to 17.9 for Mj = 2. With respect to the local search heuristic, we observe similar trends

as before, where RCFP-CS provides higher performance gains when the constraints are

tighter; ∆rl increases from 5.3% for Mj = 4 to 8.5% for Mj = 2 without outliers and

from 6.2% to 12.46% with outliers. Similarly, the performance gains increase with bi; for

example, for Mj = 2, ∆rl increases from 1.7% for bi = 200 to 23.2% for bi = 1000, with

outliers.

2.7 Conclusions

In this work, we consider the class of 0-1 linear fractional programs under cardinality-type

constraints and provide a simple reformulation to solve it as a continuous linear fractional

program. We show that the direct relaxation solution can be rounded off with parametric

guarantees. We obtain tighter parametric bounds for a class of assortment optimization

problems and illustrate that the reformulation can improve the commonly used local

search heuristic by exploiting the continuous solution space. We believe our work has

broader implications for solving large discrete fractional programs as it facilitates the

application of tools and algorithms developed in the continuous optimization literature

to a discrete problem.

This work can be extended further in multiple directions. First, since the reformula-

tion provides a greedy procedure to obtain a discrete solution starting from any feasible

Capacity Pooling for Network Revenue Management 72

fractional solution, one can investigate the utility of the reformulation within a branch-

and-bound based algorithm to scale up the MILP formulation. Second, one can explore

more general constraints under which the reformulation gives integral solutions. Finally,

one can examine the reformulation in nonlinear settings for which the traditional MILP

formulation is likely to be even more intractable than the linear setup.

Chapter 3

Capacity Pooling for Network

Revenue Management

3.1 Introduction

Network Revenue Management (NRM) involves the strategic use of limited resources to

fulfill the demand for products that rely on one or more of these resources. It has been

widely studied and applied in industries such as airlines, hotels, and car rentals. Two

common control methods used in NRM are virtual nesting control and bid-price control.

In virtual nesting control, products are assigned to virtual buckets based on their potential

revenue and demand. Incoming requests are matched against these virtual nests, allowing

for the dynamic sharing of resources among products. This method was pioneered by

American Airlines in 1983 to leverage the network structure of airline itineraries and

address the limitations of rigid partitioned controls.

73

Capacity Pooling for Network Revenue Management 74

Bid-price control, on the other hand, assigns a bid price to each resource, representing its

marginal value. A demand request is accepted if the revenue from fulfilling the request

exceeds the total bid prices of all the resources consumed by the product.

In this study, we consider a novel control policy used within Indian Railways (IR). IR is

one of the largest public sector enterprises in India and ranks as the fourth-largest railway

network globally, serving nearly 8 billion passengers during the 2018-19 fiscal year and

generating gross earnings of approximately 51,000 crore INR (Ministry of Railways, 2019).

Given that IR is a public sector enterprise, it has operational constraints that limit the

usage of virtual nesting or bid-price control strategies. Each passenger train in IR offers

multiple classes that are physically distinct, with prices for each origin-destination pair

varying by class. These prices are regulated and do not change dynamically, except for a

few express trains. As such, this setting aligns more closely with the single-fare, multi-leg

scenario discussed by Ciancimino et al. (1999). As Ciancimino et al. (1999) argue, the

nested controls commonly used in airlines are not directly applicable in these settings.

Additionally, IR cannot reject an incoming itinerary request if it has the capacity to fulfill

the demand. This operational constraint limits the use of bid-price control strategies,

which rely on dynamic accept-reject decisions to protect resources.

In response to these challenges, IR has developed a unique control policy based on quota

allocation to optimize revenue. This paper focuses on two primary types: partitioned

quotas and pooled quotas. The partitioned quota allocates a fixed number of seats to

a specific origin-destination (O-D) pair, and any demand for that O-D pair is initially

met from these partitioned resources. To manage excess demand and reduce the risk of

unsold inventory, IR also maintains a pooled quota, which is utilized once the partitioned

seats for a given O-D pair are exhausted. The allocation of seats between partitioned and

pooled quotas depends on pricing and anticipated demand.

Capacity Pooling for Network Revenue Management 75

We consider the above quota allocation problem, model it as a dynamic program, and

discuss the conditions under which simple only partitioning can be optimal. While an

only-partitioning strategy is easy to compute, a hybrid allocation strategy with parti-

tioned and pooled capacities is computationally difficult due to the large state space of

the dynamic program. To address this, we develop a new Lagrangian relaxation-based

solution wherein we decompose the problem by resource type. We then discuss the well-

known deterministic linear programming solution for the partitioned and pooled setting,

and show that it provides an upper bound to our problem. We additionally show that

the Lagrange relaxation solution of Topaloglu (2009) for the standard network revenue

management problem is also a valid upper bound. We compare our relaxation against the

two upper-bound solutions on a real-world data set and find that our approach provides a

tighter upper bound on the optimal revenue. We also report the corresponding revenues

and observe that the our solution offers significant improvements over various benchmark

strategies.

The rest of the paper is organized as follows. In §3.2, we discuss related literature. In §3.3,

we introduce dynamic programming model and highlight the tradeoff between partitioned

and pooled capacities along with the special cases when the only-partitioning strategy is

optimal. In §3.4, we provide the Lagrange relaxation-based solution. Finally, in §3.5, we

perform numerical analysis and conclude in §3.6.

3.2 Literature Review

Our work is closely related to the capacity control literature in network revenue man-

agement. We first discuss the common capacity controls studied in network revenue

management and then discuss the literature specific to railways.

Capacity Pooling for Network Revenue Management 76

The two broad classes of capacity controls commonly used in network revenue manage-

ment are virtual nesting control and bid-price controls.

American Airlines is credited with developing the virtual nesting control approach to in-

corporate the network structure into their allocation decisions (Smith et al., 1992). Each

product is assigned to a virtual nest using an indexing step, and incoming requests are

fulfilled against these virtual nests. Bertsimas and De Boer (2005) developed discrete

simulation-based methods to improve the robustness of virtual nesting controls with re-

spect to demand uncertainty. Van Ryzin and Vulcano (2008) developed a continuous

simulation-based method that addresses some of the limitations of the discrete approach.

Williamson (1992) was one of the earliest works to study bid-price control in network

settings and apply it to airline seat allocation. Talluri and Van Ryzin (1998) showed the

asymptotic optimality of bid prices and laid the foundation for understanding the inter-

play between fare classes and resource allocation. However, computing optimal bid-price

control strategy is computationally difficult. Therefore, various approximation solutions

have been developed. Topaloglu (2009) developed a Lagrange relaxation-based solution

where the problem is decomposed into single-resource problems, and approximate bid

prices are computed using this decomposition. They show the relaxation provides a

tighter upper bound than the well-known deterministic linear programming-based (DLP)

upper bound. Other approximations include the affine value-function approximation by

Adelman (2007) and, more recently, the product-based approximation by Zhang et al.

(2022).

The above control strategies have been more widely studied and applied in airline settings

than railways. One reason, Ciancimino et al. (1999) highlight, is that these controls were

Capacity Pooling for Network Revenue Management 77

largely developed in United States (US) after deregulation of airline industry in 1970s

and air transport is a more common mode of transport in US than railways.

Ciancimino et al. (1999) is credited as one of the earliest works to use mathematical

optimization models to address seat allocation problem in passenger rails. Seat allocation

problem involves determining the number of seats to be sold to each origin-destination

pair. They argue that the nested fare classes of airlines does not immediately carry over

to railway settings, as railways usually carry physically distinct classes for distinct fares.

They, therefore, consider a single-fare, multi-leg setting and provide a deterministic linear

and a stochastic non-linear model. They benchmark their strategies on real-world dataset

and show the non-linear model outperforms the first-come-first-serve solution as well the

linear model. Since then, various extensions have been proposed. You (2008) extend the

non-linear model to a two-fare setting - a full fare and a discounted fare segment. Jiang

et al. (2015) consider dynamic seat allocation using short-term demand forecasting. Yan

et al. (2020) extend it to flexible train capacity.

Gopalakrishnan and Rangaraj (2010), Dutta and Ghosh (2012) develop deterministic

linear programming based solution for Indian Railways settings. In our works, instead

of planning against mean demand, we explicitly account for dynamic arrival rates. We

model the novel control policy used in IR as a dynamic program and use a Lagrange

relaxation approach, similar to (Topaloglu, 2009), to address the curse of dimensionality.

Numerically, we observe our relaxation to be tighter than both DLP and Topaloglu (2009).

Capacity Pooling for Network Revenue Management 78

3.3 Model

Network revenue management (NRM) is characterized by a set of m resources (or legs)

denoted by L and a set of n products denoted by K. We assume that each product

consumes at most one unit of each resource and that there is initial capacity c = ⟨cl⟩ of

resources available. For each product k ∈ K, we define ak = ⟨alk⟩ as a vector of size m,

such that alk = 1 if product k consumes resource l and 0 otherwise. Let A = [a1, ...an]

be the m × n resource consumption matrix. We define Lk = {l : alk = 1,∀l ∈ L} as the

set of resources consumed by product k and Kl = {k : alk = 1,∀k ∈ K} as the set of

products using resource l.

We assume demand arrives sequentially with at most one request at each time step. We

denote the probability of a request arriving at time step t by λt and, conditional on an

arrival, it is for product k with probability λk,t (
∑

k λk,t = 1). On fulfilling the demand

for product k, the platform obtains a revenue of rk. The objective of the platform is

to maximize its total expected revenue over the finite planning horizon H by optimally

partitioning its resources between partitioned and pooled quotas.

While capacity partitioning has been widely studied in NRM, our setting involves a novel

mechanism whereby the platform carries a subset of its resources as pooled capacity,

which it uses to serve demand across products along with dedicated capacities for each

resource. The platform uses a first-come, first-serve (FCFS) policy, and a request for

product k is accepted if the product’s dedicated capacity or the pooled resources are

available. Additionally, it uses the pooled resources to fulfill a request for product k

only after the dedicated capacity for k is fully utilized. Thus, the control variable is

characterized by the booking limits assigned to each product along with a pooled capacity

at the start of the planning period.

Capacity Pooling for Network Revenue Management 79

Let x = ⟨xk⟩, ∀k ∈ K be the vector of partitioned capacities for the products and let

y = ⟨yk⟩, ∀k ∈ L be the vector of pooled resources. Note that the partitioned capacity

is defined with respect to products, and the pooled capacity is defined with respect to

resources. We define the state space as s = ⟨x,y⟩. Let 1k(x) be an indicator function for

product k which is 1 if xk ≥ 1 and 0 otherwise. Let 1k(y) be an indicator function for

product k which is 1 if yl ≥ alk for all l ∈ Lk i.e. the functions 1k(·) indicates whether or

not there are sufficient resources to fulfill a request for product k.

Let V t(s) be the value function for state s at time step t. Let ek be a vector of length

n which is 1 at index k and 0 otherwise. The dynamic programming formulation as is

given as follows:

V t(s) = (1− λt) · [0 + V t+1(s)] +
∑
k

λt · λk,t

[
1k(x) · [rk + V t+1(x− ek,y)]+

[1− 1k(x)] · 1k(y) · [rk + V t+1(x,y− ak)] + [1− 1k(x)] · [1− 1k(y)] · [0 + V t+1(s)]

]
.

(3.3.1)

If there is no arrival at time step t, the system remains in the same state. If a request for

product k arrives, and the partitioned capacity is available (xk > 0) then the platform

fulfills the demand and obtains the reward rk, and the system transitions to xk − 1. If

there is no partitioned capacity but pooled capacity is available (1k(y) = 1), the platform

fulfills the demand using the pooled capacity, and the pooled capacity is consumed across

all legs Lk. If neither partitioned nor pooled capacity is available, the incoming request

is declined, and the system remains in the same state.

Capacity Pooling for Network Revenue Management 80

The objective of the platform is to maximize the total expected value given by V0(s
0)

such that the following capacity constraint is satisfied at time step 0:

A · x0 + y0 ≤ c.

The constraint ensures that the sum of pooled and partitioned resources on any given leg

is not greater than the total capacity available on that leg.

We now illustrate the model along with the primary trade-off between partitioned and

pooled capacities with the following examples.

Example 1: Consider a train travelling from station s1 s3 via s2 and 1 seat for each leg.

Denote product (s1, s2) with 1, product (s1, s3) with 2 and (s2, s3) with 3. Similarly,

denote resource or leg (s1, s2) with 1 and (s2, s3) with 2. Assume H = 3, r1 = r3 =

10, r2 = 15, λt = 1,∀t and λ2,1 = 1, λ1,2 = 1 and λ3,3 = 1 i.e., there are a deterministic

arrivals with product 2 request coming first followed by product 1 and 3.

Consider the case when the seat is assigned to pooled capacity on each leg at time step 0.

Product 2 request arrives at the first time step and is fulfilled using the pooled capacity.

The subsequent requests for products 1 and 3 are declined since no seats are left. The

resultant value function is given by V 1(0, 0, 0; 1, 1) = 15 Now, consider the case when

the seat is assigned to partitioned capacity for products 1 and 3. Product 2 request is

declined, and product 1 and 3 requests that arrive at subsequent time steps are fulfilled.

The resultant value function is given by V 1(0, 0, 0; 1, 1) = 20. Thus, partitioned capacities

help protect the resources for products that might arrive later.

Example 2: Consider the same setting as before, but instead of deterministic arrivals,

assume the arrivals are equally likely λj,t =
1
3
.

Capacity Pooling for Network Revenue Management 81

If the seat is assigned to pool capacity, the value function is given by V 3(0, 0, 0; 0, 0) =

0, V 3(0, 0, 0; 1, 0) = 10
3
, V 3(0, 0, 0; 0, 1) = 10

3
, V 3(0, 0, 0; 0, 1) = 45

3
for t = 3, V 2(0, 0, 0; 0, 0) =

0, V 2(0, 0, 0; 1, 0) = 50
9
, V 2(0, 0, 0; 0, 1) = 50

9
, V 2(0, 0, 0; 1, 1) = 125

9
for t = 2, and

V 1(0, 0, 0; 1, 1) = 415
27

for t = 1. The optimal partitioned capacity is to set x1 = x3 = 1

and the associated value function at t = 1 v1(1, 0, 1; 0, 0) = 380
27
. Pooling performs better

because partitioning the resource prevents it from being used for other product requests.

The above examples highlight the trade-off between the partitioning and pooling: par-

titioned capacity helps protect resources for future higher revenue arrivals. However, it

might lead to unsold inventory. Pooling, on the other hand, reduces unsold inventory;

however, it fails to protect resources.

Some of the observations in the above examples can be generalized.

Lemma 3.1.

• If λk,t ∈ {0, 1},∀k ∈ K, ∀t, then only-partitioning is optimal.

• If the horizon is sufficiently long, (H > maxl∈L maxt:λtλkt>0{ cl
λtλkt
}), then only-

partitioning is optimal.

Proof: We use the deterministic linear programming formulation (see section 3.4), along

with the observation that in our setting, with single-fare multi-leg products, the resource

consumption matrix A is totally-unimodular (Ciancimino et al. (1999)). We provide

additional details in the appendix 3.7. □.

We now show that only-partitioning can be computed efficiently. Define vtk(xj) as follows:

vtk(xk) = (1− λtλk,t) · vt+1
k (xk) + λtλk,t

[
1k(xk)[rk + vt+1

k (xk − 1)] + (1−1k(xk))v
t+1
k (xk)]

]
.

Capacity Pooling for Network Revenue Management 82

Proposition 3.3.1. If yl = 0,∀l ∈ L, then V t(x,y) =
∑

k v
t
k(xk).

Proof: We first argue it holds for the last time step, t = H.

V H(x,0) =
∑
k

λtλk,t[1k(x)(rk)], (3.3.2a)

=
∑
k

vHk (xk). (3.3.2b)

Assume it holds for time step t+ 1. Then, for any time step t:

V t(x,0) = (1− λt)V
t+1(x,0) +

∑
k

λtλk,t

[
1k(x)[rk + V t+1(x− ek,0)] + (1− 1k(x))V

t+1(x,0)
]
,

(3.3.3a)

=

(1− λt)
∑
k

vt+1
k (xk) +

∑
k

λtλk,t

[
1k(x)[rk +

∑
j ̸=k

vt+1
j (xj) + vt+1

k (xk − 1)]

+ (1− 1k(x))(
∑
j

vt+1
j (xj))

],
(3.3.3b)

=

(1− λt)
∑
k

vt+1
k (xk) +

∑
k

λtλk,t

[
1k(x)[rk + vt+1

k (xk − 1)]

+ (1− 1k(x))v
t+1
k (xk) +

∑
j ̸=k

vt+1
j (xj)

], (3.3.3c)

=

(1− λt)
∑
k

vt+1
k (xk) +

∑
k

λtλk,t

[
1k(x)[rk + vt+1

j (xk − 1)]

+ (1− 1k(x))v
t+1
k (xk) +

∑
j

vt+1
j (xj)− vt+1

k (xk)

], (3.3.3d)

Capacity Pooling for Network Revenue Management 83

=

(1− λt)
∑
k

vt+1
k (xk) +

∑
k

λtλk,t

[
1k(x)[rk + vt+1

k (xk − 1)] + (1− 1k(x))v
t+1
j (xk)

]
+
∑
j

λtv
t+1
j (xj)

∑
k

λk,t −
∑
k

λtλk,tv
t+1
k (xk)

,

(3.3.3e)

=

∑
k

vt+1
k (xk)−

∑
k

λtλk,tv
t+1
k (xk)+

∑
k

λtλk,t

[
1k(x)[rk + vt+1

k (xk − 1)] + (1− 1k(x))v
t+1
k (xk)

], (3.3.3f)

=
∑
k

(1− λtλk,t)v
t+1
k (xk) +

∑
k

λtλk,t

[
1k(x)[rk + vt+1

k (xk − 1)] + (1− 1k(x))v
t+1
k (xk)

]
,

(3.3.3g)

=
∑
j

(1− λtλj,t)v
t+1
j (xj) +

∑
j

λtλj,t

[
1k(xk)[rk + vt+1

k (xk − 1)] + (1− 1k(xk))v
t+1
k (xk)

]
,

(3.3.3h)

=
∑
j

vtk(xk). (3.3.3i)

Thus, the value function becomes separable across products. And, since the value function

for a single product vk(xk) is known to be concave in xk (Gallego et al. (2019)), the optimal

only-partitioning allocation can be computed efficiently.

3.4 Upper Bounds

We now present three upper-bound solutions. The first is the Lagrange relaxation-based

upper bound where we reformulate and relax a subset of constraints, and decompose

the problem across partitioned and pooled resources. The second is deterministic linear

programming based upper bound where we compute the allocations based on the mean

Capacity Pooling for Network Revenue Management 84

demand. Lastly, we show that the Lagrange relaxation of the standard network revenue

management problem provides a valid upper bound.

3.4.1 Lagrange Relaxation

Lagrange relaxation-based methods decouple large state space problems into smaller,

separable sub-problems by relaxing the right set of constraints. The resultant sub-problem

usually have smaller dimensions and can be solved efficiently. The complexity of the

resultant sub-problem is determined by which constraints are relaxed. Here, we present

a relaxation that separates the problem across pooled and partitioned resources.

We reformulate the model by defining decision variable uty
lk ∈ {0, 1} which is 1 if at time

step t demand for product k is fulfilled using pooled capacity on leg l. We coordinate the

decisions across legs for each product by introducing the constraint uty
lk = uty

ϕk. The value

function can be rewritten as follows:

V t(s) = (1−λt)V
t+1(s)+

∑
k

λt·λk,t

[
rk[1k(x)+uty

ϕk]+V t+1(x−1k(x)·exk,y−
∑
l

alku
ty
lk·e

y
l),

]
,

(3.4.1)

subject to the constraints:

alku
ty
lk ≤ 1(yl), ∀k, l, (3.4.2a)

alku
ty
lk = alku

ty
ϕk, ∀k, l, (3.4.2b)

uty
ϕk ≤ 1− 1(xk) ∀k, (3.4.2c)

Capacity Pooling for Network Revenue Management 85

uty
ϕk ≥ 1− 1(xk)−

∑
l

alk(1− 1(yl)) ∀k. (3.4.2d)

Constraint (3.4.2a) ensures the pooled capacity is used on leg l only if its available, Con-

straint (3.4.2b) coordinates the decision for pooled capacities across legs, Constraint (3.4.2c)

ensures pooled capacity is utilized after the partitioned capacity is exhausted and con-

straint (3.4.2d) forces the pooled capacity to be used if it is available and the partitioned

capacity has been exhausted.

Let β1 = {β1t
lk ,∀t,∀l ∈ L,∀k ∈ K}, β2 = {β2t

ϕk ≥ 0,∀t,∀k ∈ K} be the Lagrange

multipliers associated with constraints (3.4.2b), (3.4.2d), respectively. Let β = {β1, β2}.

Relaxing the constraints, we obtain the following separable value function:

Proposition 3.4.1. Given β:

V t,β(x,y) = −
∑
t′≥t

∑
k

λt′λt′kβ
2t′

ϕk +
∑
k

vt,βk (xk) +
∑
l

vt,βl (yl),

vt,βk (xk) = (1− λtλk,t)v
t+1,β
k (xk) + λtλk,t

{
1(xk)[rk + β2t

ϕk] + uty
ϕk[rk + β2t

ϕk −
∑
l

alkβ
1t
lk]

+vt+1,β
k (xk − utx

ϕk)
}
,

(3.4.3)

vt,βl (yl) = (1− λt)v
t+1,β
l (yl) +

∑
k

λtλk,t

{
1(yl)alku

ty
lkβ

1t
lk + alk(1− 1(yl))β

2t
ϕk + vt+1,β

l (yl − alku
ty
lk)
}
.

(3.4.4)

Capacity Pooling for Network Revenue Management 86

Proof: We prove by induction. It is easy to check that it holds for the last time step,

t = H. Assume it holds at t+ 1. Then, at time step t:

V t(x,y) =

(1− λt)

[
−
∑

t′≥t+1

∑
k

λt′λt′kβ
2t′

ϕk +
∑
k

vt+1,β
k (xk) +

∑
l

vt+1,β
l (yl)

]

+
∑
k

λtλkt

[
rk[1(xk) + uty

ϕk]−
∑

t′≥t+1

∑
k′

λt′λt′k′β
2t′

ϕk′

+ vt+1,β
k (xk − 1(xk)) +

∑
k′ ̸=k

vt+1,β
k′ (xk′) +

∑
l

vt+1,β
l (yl − alku

ty
lk)

]

+
∑
l,k

λtλktβ
1t
lkalk(u

ty
lk − uty

ϕk) +
∑
k

λtλktβ
2t
ϕk

[
uty
ϕk − (1− 1(xk)) +

∑
l

alk(1− 1(yl))
]
,

(3.4.5a)

=

−
∑
t′≥t

∑
k

λt′λt′kβ
2t′

ϕk + (1− λt)
∑
k

vt+1,β
k (xk) +

∑
k

λtλkt

[
1(xk)[rk + β2t

ϕk]+

uty
ϕk[rk + β2t

ϕk −
∑
l

alkβ
1t
lk] + vt+1,β

k (xk − 1(xk)) +
∑
k′ ̸=k

vt+1
k′ (xk′)

]
∑
l

[
(1− λt)v

t+1,β
l (yl) +

∑
k

λtλk,t

{
1(yl)alku

ty
lkβ

1t
lk + alk(1− 1(yl))β

2t
ϕk+

vt+1,β
l (yl − alku

ty
lk)
}]

,

(3.4.5b)

=

−
∑
t′≥t

∑
k

λt′λt′kβ
2t′

ϕk +
∑
k

vt+1,β
k (xk)[1− λt +

∑
k′ ̸=k

λtλk′t]

+
∑
k

λtλkt

[
1(xk)[rk + β2t

ϕk] + uty
ϕk[rk + β2t

ϕk −
∑
l

alkβ
1t
lk] + vt+1,β

k (xk − 1(xk))

]
∑
l

[
(1− λt)v

t+1,β
l (yl) +

∑
k

λtλk,t

{
1(yl)alku

ty
lkβ

1t
lk + alk(1− 1(yl))β

2t
ϕk+

vt+1,β
l (yl − alku

ty
lk)
}]

,

(3.4.5c)

Capacity Pooling for Network Revenue Management 87

=

−
∑
t′≥t

∑
k

λt′λt′kβ
2t′

ϕk +
∑
k

vt+1,β
k (xk)[1− λt + λt(1− λkt)]

+
∑
k

λtλkt

[
1(xk)[rk + β2t

ϕk] + uty
ϕk[rk + β2t

ϕk −
∑
l

alkβ
1t
lk] + vt+1,β

k (xk − 1(xk))

]
∑
l

[
(1− λt)v

t+1,β
l (yl) +

∑
k

λtλk,t

{
1(yl)alku

ty
lkβ

1t
lk + alk(1− 1(yl))β

2t
ϕk+

vt+1,β
l (yl − alku

ty
lk)
}]

,

(3.4.5d)

= −
∑
t′≥t

∑
k

λt′λt′kβ
2t′

ϕk +
∑
k

vt,βk (xk) +
∑
l

vt,βl (yl).□. (3.4.5e)

The above relaxation provides a separable value function which is a valid upper bound.

To obtain tight upper bound, we minimize with respect to the Lagrange multipliers.

V 0(x∗,y∗) ≤ min
β

max
x,y

V 0,β(x,y). (3.4.6)

However, to compute the optimal quotas w.r.t to the above relaxed objective, we still

need to solve an allocation problem at t = 0. We do so by solving a linear program.

Let cmk = minl∈Lk
cl and γ = {γp

k : γp
k ∈ {0, 1},∀k ∈ K, p ∈ {0, ..., cmk }} i.e., γp

k is a

binary variable, which is 1 if product k is assigned a partitioned capacity p. Similarly, let

θ = {θql : θql ∈ {0, 1},∀l ∈ L, q ∈ {0, ..., cl}}. We then write xk =
∑cmk

p=0 γ
p
k · p such that∑cmk

p=0 γ
p
k = 1, and yl =

∑cl
q=0 θ

q
l · q such that

∑cl
q=0 θ

q
l = 1. Let ξ, ξc be defined as follows:

ξ =

{
(γ, θ) :

cmk∑
p=0

γp
k = 1, γp

k ∈ {0, 1},∀k ∈ K,

cl∑
q=0

θql = 1, θql ∈ {0, 1},

∑
k

alk(

cmk∑
p=0

γp
k · p) +

cl∑
q=0

θql · q ≤ cl,∀l ∈ L

}
(3.4.7)

Capacity Pooling for Network Revenue Management 88

ξc =

{
(γ, θ) :

cmk∑
p=0

γp
k = 1, γp

k ∈ [0, 1],∀k ∈ K,

cl∑
q=0

θql = 1, θql ∈ [0, 1],

∑
k

alk(

cmk∑
p=0

γp
k · p) +

cl∑
q=0

θql · q ≤ cl,∀l ∈ L

}
(3.4.8)

The inequality (3.4.6) can be written as:

V 0(x∗,y∗) ≤ min
β

max
x,y

V 0,β(x,y) (3.4.9a)

= min
β

max
x,y

{
−
∑
t′≥0

∑
k

λt′λt′kβ
2t′

ϕk +
∑
k

v0,βk (xk) +
∑
l

v0,βl (yl)

}
, (3.4.9b)

= min
β

{
−
∑
t′≥0

∑
k

λt′λt′kβ
2t′

ϕk + max
x,y:Ax+y≤c

{∑
k

v0,βk (xk) +
∑
l

v0,βl (ŷ)

}}
,

(3.4.9c)

=

min
β

[
−
∑
t′≥0

∑
k

λt′λt′kβ
2t′

ϕk+

max
γ,θ∈ξ

∑
k

cmk∑
p=0

γp
kv

0,β
k (xk = p) +

∑
l

cl∑
q=0

θql v
0,β
l (yl = q)

], (3.4.9d)

≤

min
β

[
−
∑
t′≥0

∑
k

λt′λt′kβ
2t′

ϕk+

max
γ,θ∈ξc

∑
k

cmk∑
p=0

γp
kv

0,β
k (xk = p) +

∑
l

cl∑
q=0

θql v
0,β
l (yl = q)

]. (3.4.9e)

For a given β, we solve the above linear program and iteratively update the value of β

using the sub-gradient descent method until convergence.

Capacity Pooling for Network Revenue Management 89

3.4.2 Deterministic Linear Program

The standard deterministic linear program (DLP-S) involves computing the number of

request wd
k that will be accepted against product k subject to capacity and mean demand

constraints:

DLP-S = max
wd

k

∑
k

rkw
d
k, (3.4.10a)

subject to
∑
k

aikw
d
k ≤ c, ∀i ∈ L, (3.4.10b)

wd
k ≤

∑
t

λtλkt, ∀k ∈ K. (3.4.10c)

We define deterministic linear programming with pooling as follows. Let xd
k be the parti-

tioned capacity, let yd be the pooled capacity. Let zdk be the number of request accepted

for product k against the pooled capacity. The DLP with pooling is given by:

DLP = max
xd
k,y

d,zdk

∑
k

rk(x
d
k + zdk), (3.4.11a)

subject to
∑
k

aikx
d
k + yd ≤ c, ∀i ∈ L, (3.4.11b)

∑
k

aikz
d
k ≤ yd, ∀i ∈ L, (3.4.11c)

xd
k + zdk ≤

∑
t

λtλkt, ∀k ∈ K, (3.4.11d)

0 ≤ xd
k, z

d
k ≤ c. (3.4.11e)

We observe that the DLP-P reduces to the standard deterministic linear program.

Capacity Pooling for Network Revenue Management 90

Lemma 3.2. DLP with pooling is equivalent to the standard DLP.

Proof: Given an optimal solution ŵd
k to DLP-S, a feasible solution to the DLP with

pooling can be obtained by setting yd=0, z
d
k = 0 ∀k ∈ K and xd

k = ŵd
k. Similarly, given an

optimal solution x̂d
k, ŷ

d, ẑdk to the DLP with pooling, a feasible solution to DLP-S can be

obtained by wd
k = x̂d

k + ẑdk . □.

3.4.3 Standard NRM Lagrange Relaxation

We now show that the Lagrange relaxation for the standard NRM problem by Topaloglu

(2009) provides a valid upper bound. In the previous LR relaxation, we relax the con-

straint (3.4.2b) as well as the constraint (3.4.2d). Instead, we initially retain the con-

straint (3.4.2b) and set β2t
ϕk = 0 i.e., we essentially drop the constraint (3.4.2d). Then the

following result holds:

Lemma 3.3. If β2t
ϕk = 0,∀t, ∀k ∈ K, at optimality x = 0.

Proof: We prove by induction. For some product k, let xk = 1 and xj = 0, ∀j ̸= k.

Consider the value functions V t,β2=0(xk = 1,x−k,y) and the value function obtained by

reassigning xk to the pooled capacity: V t,β2=0(xk = 0,x−k,y+ak). We drop x−k terms for

notational convenience as they are set to 0. For the reassigned state, we set uty
ϕk = 1 i.e.,

the request against the partitioned resource that is reassigned to the pooled capacity is

always accepted. At the last time step, it is easy to check that V H,β2=0(xk = 0,y+ ak) ≥

Capacity Pooling for Network Revenue Management 91

V H,β2=0(xk = 1,y). Assume it is true for time step t+ 1. Then at time t:

V t,β2=0(xk = 1,y) =

(1− λt)V
t+1,β2=0(xk = 1,y) + λt · λk,t

[
rk + V t+1,β2=0(xk = 0,y)

]
+
∑
j ̸=k

λt · λj,t

[
rj [1j(x) + utyϕj] + V t+1,β2=0(xk = 1,y −

∑
l

utylj · e
y
l)

]
.

(3.4.12a)

V t,β2=0(xk = 0,y + ak) =

(1− λt)V
t+1,β2=0(xk = 0,y + ak) + λt · λk,t

[
rk + V t+1,β2=0(xk = 0,y)

]
+
∑
j ̸=k

λt · λj,t

[
rj [1j(x) + utyϕj] + V t+1,β2=0(xk = 0,y + ak −

∑
l

utylj · e
y
l)

]
.

(3.4.12b)

Comparing term-wise the result follows. □

Given that the optimal partitioned capacity is 0, the resultant value function under only-pooling

is given by:

V t,β2=0(x = 0,y) = (1−λt)V
t+1,β2=0(x = 0,y)+

∑
k

λt·λk,t

[
rku

ty
ϕk+V t+1,β2=0(x = 0,y−

∑
l

utylk ·e
y
l)

]
,

(3.4.13)

subject to the constraints:

utylk ≤ 1(yl), ∀k, l, (3.4.14a)

utylk = utyϕk, ∀k, l. (3.4.14b)

Let β1t
lk be the Lagrange multipliers associated with constraint (3.4.14b). Then the following

lemma holds:

Capacity Pooling for Network Revenue Management 92

Train Class Average Fare Number of Products Capacity Bookings-to-Capacity ratio

1 1A 2398.0 33 65 1.13
1 2A 1364.4 35 361 1.25
1 3A 992.3 35 816 1.27
2 1A 3255.5 21 24 1.26
2 2A 1962.2 23 172 1.15
2 3A 1538.2 25 890 1.03

Table 3.1: IR passenger train data set.

Lemma 3.4. Given β1t
lk and β2t

ϕk = 0, the value function satisfies:

V t,β1,β2=0(0,y) =
∑
t′≥t

∑
k

λt′λt′ku
t′y
ϕk [rk −

∑
l

β1t′
lk] +

∑
l

vt,β
1

l (yl),

where vt,β
1

l (yl) = (1− λt)v
t+1,β1

l (yl) +
∑
k

λtλk,t

{
utylkβ

1t
lk + vt+1,β1

l (yl − utylk)
}
.

Proof: The proof follows from Topaloglu (2009). □.

Thus, Topaloglu’s relaxation (2009) is a valid upper bound for our problem.

Proposition 3.4.2.

V 0(x∗,y∗) ≤ V t,β2=0(0,y) ≤ min
β1

V t,β1,β2=0(0,y) ≤ DLP.

Proof: The first two inequalities follow from the observation that we either drop or relax a

subset of constraints. The last inequality follows from the result by Topaloglu (2009), who show

that their relaxation is tighter than the DLP-S.

Capacity Pooling for Network Revenue Management 93

3.5 Numerical Experiments

We now evaluate the three upper bounds and their corresponding revenues. Additionally, we

consider the heuristic allocation used within IR, which allocates 10% of the capacity to pooling,

with the remaining capacity distributed among products based on their mean demand.

The dataset used is from two passenger trains: Train 1, which has eleven stations, and Train 2,

which has eight stations. Each train offers three classes: First AC (1A), Second AC (2A), and

Third AC (3A). Class 1A consists of premium seats sold at a higher price point than the other

classes. Class 3A has the lowest prices among the three classes but is typically allocated the

highest seat capacity due to higher demand.

We have data for 15 departures for each train. For each departure, we have aggregated bookings

for each class and the allocated capacity for that class. We observe that IR sells more tickets

than the available capacity to account for cancellations. We compute the average bookings-to-

capacity ratio for each class, which we use to inform the various demand settings under which

we evaluate the algorithms.

For each train, class, table 3.1 provides the number of products (unique origin-destination pairs),

average fares, total capacity, and the average bookings-to-capacity ratio (the average is across

the 15 departures and the products in that class). On average, the bookings-to-capacity ratio

ranges between 1 and 1.3, indicating that demand generally exceeds capacity.

To simulate demand, we use a metric similar to bookings-to-capacity ratio from the literature

called the load factor (Topaloglu (2009)) defined as follows:

α =

∑
t

∑
k

∑
l alkλtλkt∑
l cl

.

We explore five load factors, α ∈ {1.0, 1.1, 1.2, 1.3}, which approximately reflect the bookings-to-

capacity ratios observed in the data. For the planning horizon, we considerH ∈ {50, 100, 200, 300}.

Capacity Pooling for Network Revenue Management 94

The parameter space is thus defined as follows: Train ∈ {1, 2}, Class ∈ {1A, 2A, 3A}, α ∈

{1.0, 1.1, 1.2, 1.3}, and H ∈ {50, 100, 200, 300}, resulting in 96 problem instances. For arrival

rates, we define weights wk,t, ∀k ∈ K, t ∈ {1, ...,H} as follows:

wk,t =

Uniform[0, 100], with probability 0.5

0.0, with probability 0.5

The arrival rates λk,t are computed as λk,t =
wk,t∑
k wk,t

. Additionally, we set λt = 1, ∀t. The

capacities are configured to satisfy the load factor α.

3.5.1 Upper bound

We denote the upper bound obtained using our relaxation as LR, the upper bound obtained using

Topaloglu (2009) as TOP, and the upper bound obtained using deterministic linear programming

as DLP. For each problem instance, we set the number of products and their rewards based on

the IR dataset. We conduct six simulations for the arrival rate and report the runtime, as well

as the percentage gaps between the upper-bound solutions.

• The percentage improvement in the upper bound offered by TOP over DLP: ∆DLP
TOP =

100× DLP−TOP
DLP .

• The percentage improvement in the upper bound offered by LR over DLP: ∆DLP
LR =

100× DLP−LR
DLP .

• The percentage improvement in the upper bound offered by LR over TOP: ∆TOP
LR =

100× TOP−LR
TOP .

Table 3.2 shows the performance results for Train 1 and Class 2A. We observe that our relaxation

is scalable, requiring less than 600 seconds even for larger instances with H = 300. Although

Capacity Pooling for Network Revenue Management 95

Train Class α Horizon TOP (time) LR (time) ∆DLP
TOP ∆DLP

LR ∆TOP
LR

1 2A 1.0 50 25.6 ± 3.8 198.8 ± 1.4 1.6 ± 0.0 4.0 ± 0.4 2.4 ± 0.3

1 2A 1.0 100 43.6 ± 0.1 249.2 ± 3.8 1.0 ± 0.1 2.6 ± 0.0 1.6 ± 0.1

1 2A 1.0 200 100.2 ± 1.8 402.5 ± 12.8 0.5 ± 0.0 1.7 ± 0.1 1.2 ± 0.0

1 2A 1.0 300 180.8 ± 7.6 549.3 ± 10.8 0.4 ± 0.0 1.3 ± 0.0 0.9 ± 0.0

1 2A 1.1 50 23.0 ± 0.1 188.7 ± 2.7 1.8 ± 0.1 4.5 ± 0.1 2.8 ± 0.0

1 2A 1.1 100 44.6 ± 1.4 248.4 ± 5.4 0.8 ± 0.1 2.4 ± 0.2 1.6 ± 0.1

1 2A 1.1 200 98.3 ± 1.1 373.1 ± 4.5 0.4 ± 0.0 1.5 ± 0.1 1.1 ± 0.1

1 2A 1.1 300 166.7 ± 1.7 512.3 ± 3.9 0.3 ± 0.0 1.3 ± 0.1 1.0 ± 0.1

1 2A 1.2 50 23.5 ± 0.1 187.3 ± 0.3 2.1 ± 0.2 4.7 ± 0.2 2.7 ± 0.1

1 2A 1.2 100 42.5 ± 0.1 231.2 ± 1.2 1.1 ± 0.1 2.6 ± 0.1 1.4 ± 0.1

1 2A 1.2 200 96.7 ± 1.0 365.6 ± 19.0 0.6 ± 0.0 1.6 ± 0.0 1.1 ± 0.0

1 2A 1.2 300 163.3 ± 0.5 481.3 ± 5.4 0.3 ± 0.1 1.3 ± 0.0 1.0 ± 0.0

1 2A 1.3 50 23.3 ± 0.1 184.1 ± 1.4 2.5 ± 0.1 5.0 ± 0.3 2.6 ± 0.2

1 2A 1.3 100 42.3 ± 0.3 228.2 ± 8.8 1.4 ± 0.3 2.7 ± 0.0 1.3 ± 0.4

1 2A 1.3 200 95.8 ± 2.5 331.8 ± 7.3 0.7 ± 0.0 1.7 ± 0.0 1.0 ± 0.0

1 2A 1.3 300 154.9 ± 2.5 454.5 ± 6.8 0.4 ± 0.1 1.3 ± 0.1 0.9 ± 0.0

Average 1.0 2.5 1.5

Table 3.2: Upper bound comparison: Train 1, Class 2A (mean ± standard deviation).

it takes longer than the TOP relaxation, it provides tighter upper bounds across all problem

instances.

The performance gains of TOP and LR over DLP are more pronounced for smaller horizons.

For longer horizons, DLP generally provides relatively good upper bounds, so the additional

improvements we observe are smaller. On average, TOP offers a 1% improvement over DLP,

while LR provides an additional 1.5% improvement over TOP.

3.5.2 Revenue

For revenues, we consider the following solutions:

Capacity Pooling for Network Revenue Management 96

• LR-Rev: The revenue obtained using a feasible allocation derived from the LR solution.

• DLP-Rev: The revenue obtained using a feasible allocation derived from the DLP solution.

For both LR-Rev and DLP-Rev, we obtain a feasible allocation by rounding down any

fractional solution.

• Pooling-Rev: Revenue obtained using only-pooling strategy.

• Partition-Rev: Revenue obtained using the only-partition solution. Recall that only-

partitioning is computationally feasible and can be computed efficiently.

• IR-Heuristic-Rev: Revenue obtained by allocating 10% of capacity to pooling and assign-

ing the remaining capacity to each product based on its mean demand. This is currently

used a rule-of-thumb within IR.

We simulate each solution 100 times and compute the average revenue and standard deviations.

We then report the percentage gap between the revenue obtained using the LR relaxation

and the other solutions, while also highlighting whether the differences in average revenues are

statistically significant at the 95% confidence level.

• The percentage improvement in revenue offered by LR over Partition-Rev, δLRPA = 100 ×
LR-Rev−Partition-Rev

LR-Rev .

• The percentage improvement in revenue offered by LR over Pooling-Rev, δLRPO = 100 ×
LR-Rev−Pooling-Rev

LR-Rev .

• The percentage improvement in revenue offered by LR over IR-Heuristic-Rev, δLRIR =

100× LR-Rev−IR-Heuristic-Rev
LR-Rev .

• The percentage improvement in revenue offered by LR over DLP-Rev, δLRDLP = 100 ×
LR-Rev−DLP-Rev

LR-Rev .

Capacity Pooling for Network Revenue Management 97

Table 3.3 presents revenue comparisons for Train 1, Class 2A. On average, the Lagrange Re-

laxation (LR) solution consistently outperforms all other solutions across different horizons

and load factors. Note that, in most problem instances, the improvements offered by LR are

statistically significant at the 95% confidence level.

With respect to the planning horizon, as H increases (e.g.,H = 300), the performance gains

from the LR solution diminish. This trend suggests that for longer horizons, or when the load

factor is high, other solutions—such as Deterministic Linear Programming (DLP) or the Indian

Railways heuristic—perform relatively well because the likelihood of unsold inventory decreases.

The results indicate that while the LR solution is particularly effective in scenarios with shorter

horizons and moderate load factors, the advantages taper off as the problem becomes more

relaxed (i.e., with more time or capacity available).

Overall, the LR solution demonstrates significant improvements across a wide range of condi-

tions. This is likely because, unlike DLP, it accounts for varying arrival rates. Additionally,

unlike the only-partition or only-pooling solutions, it balances the allocation between parti-

tioned and pooled capacities, ensuring that the right amount of resources are protected while

minimizing the likelihood of unsold inventory.

3.6 Conclusion

In this paper, we consider a novel resource allocation policy used by Indian Railways. We

provide a dynamic programming-based formulation and discuss the underlying tradeoffs between

resource partitioning and pooling. We develop scalable upper-bound solutions and numerically

demonstrate that they are tighter than well-known upper-bound solutions. Additionally, we

show the corresponding revenues obtained using our solution are higher than other benchmark

solutions.

Capacity Pooling for Network Revenue Management 98

Train Class α Horizon δLRPA δLRPO δLRIR δLRDLP

1 2A 1.00 50 16.98* 3.39* 35.57* 44.81*

1 2A 1.00 100 8.36* 2.11* 17.77* 23.4*

1 2A 1.00 200 4.04* 1.8* 10.13* 14.08*

1 2A 1.00 300 2.25* 0.78 6.08* 9.64*

1 2A 1.10 50 16.54* 3.7* 35.53* 40.6*

1 2A 1.10 100 6.98* 3.12* 16.92* 22.71*

1 2A 1.10 200 2.6* 1.43* 10.37* 14.26*

1 2A 1.10 300 0.51 1.43* 5.03* 8.42*

1 2A 1.20 50 13.19* 2.49* 35.29* 39.61*

1 2A 1.20 100 6.6* 2.86* 18.55* 24.38*

1 2A 1.20 200 2.13* 1.76* 9.25* 12.42*

1 2A 1.20 300 -0.40 1.7* 4.79* 8.05*

1 2A 1.30 50 12.93* 3.4* 35.61* 40.44*

1 2A 1.30 100 5.63* 2.6* 15.87* 21.6*

1 2A 1.30 200 0.57 1.68* 7.18* 10.37*

1 2A 1.30 300 -1.0* 2.08* 4.12* 6.76*

Average 6.2 2.3 16.8 21.4

Table 3.3: Revenue comparison: Train 1, Class 2A.

3.7 Appendix

3.7.1 Proofs

Lemma 3.1:

• If λk,t ∈ {0, 1},∀k ∈ K, ∀t, then only-partitioning is optimal.

• If the horizon is sufficiently long, (H > maxl∈Lmaxt:λtλkt>0{ cl
λtλkt

}), then only-partitioning

is optimal.

Capacity Pooling for Network Revenue Management 99

Proof: Consider the standard DLP:

DLP-S = max
wd

k

∑
k

rkw
d
k, (3.7.1a)

subject to
∑
k

aikw
d
k ≤ c, ∀i ∈ L, (3.7.1b)

wd
k ≤

∑
t

λtλkt, ∀k ∈ K, (3.7.1c)

(3.7.1d)

Since A is totally unimodular, if λk,t ∈ {0, 1}, the solution of the above the linear program is

integral. We can then define xk = wd
k,∀k ∈ K and yl = 0, ∀l ∈ L which is a feasible solution to

the value function formulation. Therefore, only-partitioning is optimal.

For sufficiently long horizon, H > maxl∈Lmaxt:λtλkt>0{ cl
λtλkt

}, it is easy to check that the

constraint wd
k ≤

∑
t λtλkt becomes redundant. We again obtain integral solution and a similar

argument as above follows. □.

3.7.2 Numerical Results

Upper bounds and revenues for train 1, class 1A, 3A and train 2, class 1A, 2A, 3A.

Capacity Pooling for Network Revenue Management 100

Train Class α Horizon TOP (time) LR (time) ∆DLP
TOP ∆DLP

LR ∆TOP
LR

1 1A 1.0 50 27.4 ± 4.6 182.4 ± 6.5 1.6 ± 0.1 3.3 ± 0.3 1.7 ± 0.2

1 1A 1.0 100 40.0 ± 1.4 231.7 ± 7.6 0.9 ± 0.1 2.0 ± 0.2 1.2 ± 0.2

1 1A 1.0 200 92.4 ± 0.9 371.8 ± 0.4 0.4 ± 0.1 1.2 ± 0.1 0.8 ± 0.2

1 1A 1.0 300 142.1 ± 3.8 511.2 ± 2.9 0.3 ± 0.0 0.9 ± 0.1 0.7 ± 0.1

1 1A 1.1 50 22.6 ± 1.8 172.6 ± 3.5 1.9 ± 0.0 3.8 ± 0.3 2.0 ± 0.3

1 1A 1.1 100 40.0 ± 0.8 229.4 ± 10.5 0.8 ± 0.1 1.9 ± 0.1 1.1 ± 0.1

1 1A 1.1 200 91.8 ± 3.9 350.1 ± 11.1 0.4 ± 0.0 1.1 ± 0.1 0.7 ± 0.1

1 1A 1.1 300 147.8 ± 3.4 472.7 ± 5.1 0.3 ± 0.1 1.0 ± 0.1 0.7 ± 0.0

1 1A 1.2 50 22.1 ± 0.4 170.3 ± 5.6 2.0 ± 0.2 4.3 ± 0.2 2.3 ± 0.3

1 1A 1.2 100 39.0 ± 1.2 218.8 ± 6.4 0.9 ± 0.0 2.0 ± 0.1 1.1 ± 0.1

1 1A 1.2 200 88.1 ± 1.5 332.1 ± 8.3 0.5 ± 0.1 1.3 ± 0.0 0.7 ± 0.1

1 1A 1.2 300 143.4 ± 6.0 444.4 ± 6.8 0.4 ± 0.1 1.0 ± 0.1 0.6 ± 0.2

1 1A 1.3 50 21.8 ± 0.4 164.9 ± 6.7 1.9 ± 0.3 4.2 ± 0.2 2.3 ± 0.1

1 1A 1.3 100 39.8 ± 1.7 209.8 ± 5.3 1.1 ± 0.2 2.1 ± 0.2 1.0 ± 0.1

1 1A 1.3 200 86.9 ± 1.7 313.4 ± 3.2 0.5 ± 0.1 1.3 ± 0.1 0.7 ± 0.1

1 1A 1.3 300 140.4 ± 5.8 426.0 ± 11.2 0.3 ± 0.0 1.0 ± 0.0 0.7 ± 0.1

Average 0.9 2.0 1.1

Table 3.4: Upper bound comparison: Train 1, Class 1A.

Train Class α Horizon TOP (time) LR (time) ∆DLP
TOP ∆DLP

LR ∆TOP
LR

1 3A 1.0 50 24.0 ± 0.5 183.8 ± 6.9 1.9 ± 0.2 4.3 ± 0.4 2.4 ± 0.4

1 3A 1.0 100 40.8 ± 0.6 232.6 ± 5.3 1.1 ± 0.0 2.5 ± 0.2 1.5 ± 0.2

1 3A 1.0 200 92.5 ± 1.5 340.2 ± 3.3 0.6 ± 0.0 1.6 ± 0.1 1.1 ± 0.1

1 3A 1.0 300 150.7 ± 1.7 474.5 ± 8.8 0.4 ± 0.0 1.3 ± 0.0 0.9 ± 0.0

1 3A 1.1 50 23.2 ± 0.6 175.9 ± 7.5 2.0 ± 0.1 4.5 ± 0.3 2.5 ± 0.2

1 3A 1.1 100 41.8 ± 1.2 220.4 ± 5.7 1.0 ± 0.1 2.5 ± 0.2 1.5 ± 0.2

1 3A 1.1 200 90.4 ± 1.1 324.5 ± 7.6 0.5 ± 0.0 1.8 ± 0.0 1.3 ± 0.0

1 3A 1.1 300 146.0 ± 1.0 443.5 ± 12.0 0.3 ± 0.0 1.3 ± 0.1 1.0 ± 0.1

1 3A 1.2 50 23.4 ± 1.0 172.7 ± 14.4 2.0 ± 0.2 5.0 ± 0.1 3.0 ± 0.3

1 3A 1.2 100 41.3 ± 1.5 211.0 ± 16.3 1.1 ± 0.1 2.7 ± 0.2 1.6 ± 0.1

1 3A 1.2 200 88.5 ± 1.3 306.3 ± 3.6 0.5 ± 0.0 1.8 ± 0.1 1.3 ± 0.1

1 3A 1.2 300 141.8 ± 1.8 411.1 ± 2.8 0.4 ± 0.0 1.3 ± 0.1 0.9 ± 0.0

1 3A 1.3 50 22.9 ± 0.3 168.9 ± 4.8 2.6 ± 0.4 5.4 ± 0.2 2.9 ± 0.3

1 3A 1.3 100 39.6 ± 2.3 191.6 ± 7.4 1.4 ± 0.2 2.9 ± 0.1 1.5 ± 0.3

1 3A 1.3 200 86.8 ± 1.3 288.7 ± 2.8 0.7 ± 0.1 1.8 ± 0.1 1.1 ± 0.2

1 3A 1.3 300 138.7 ± 0.5 398.1 ± 12.8 0.5 ± 0.1 1.4 ± 0.0 0.9 ± 0.1

Average 1.1 2.6 1.6

Table 3.5: Upper bound comparison: Train 1, Class 3A.

Capacity Pooling for Network Revenue Management 101

Train Class α Horizon TOP (time) LR (time) ∆DLP
TOP ∆DLP

LR ∆TOP
LR

2 1A 1.0 50 19.2 ± 4.9 152.5 ± 8.5 2.0 ± 0.1 3.4 ± 0.5 1.4 ± 0.6

2 1A 1.0 100 22.0 ± 0.3 190.6 ± 2.5 1.0 ± 0.1 1.9 ± 0.3 0.9 ± 0.2

2 1A 1.0 200 41.8 ± 1.2 265.6 ± 7.2 0.6 ± 0.1 1.5 ± 0.2 0.9 ± 0.1

2 1A 1.0 300 73.1 ± 1.4 362.1 ± 7.1 0.3 ± 0.0 1.2 ± 0.1 0.8 ± 0.1

2 1A 1.1 50 13.6 ± 0.1 148.5 ± 1.9 2.0 ± 0.1 3.8 ± 0.5 1.9 ± 0.5

2 1A 1.1 100 22.7 ± 1.6 185.5 ± 7.4 1.1 ± 0.2 2.4 ± 0.4 1.3 ± 0.2

2 1A 1.1 200 43.2 ± 1.2 253.1 ± 2.3 0.6 ± 0.0 1.3 ± 0.1 0.8 ± 0.1

2 1A 1.1 300 71.1 ± 2.7 342.7 ± 12.5 0.3 ± 0.0 1.0 ± 0.1 0.6 ± 0.1

2 1A 1.2 50 13.5 ± 0.3 141.9 ± 5.8 2.0 ± 0.3 3.9 ± 0.7 1.9 ± 0.5

2 1A 1.2 100 21.7 ± 0.4 177.0 ± 3.1 1.0 ± 0.0 2.0 ± 0.1 1.1 ± 0.1

2 1A 1.2 200 41.6 ± 0.9 243.0 ± 7.4 0.5 ± 0.0 1.4 ± 0.1 0.9 ± 0.0

2 1A 1.2 300 71.2 ± 2.2 326.5 ± 4.6 0.3 ± 0.1 1.1 ± 0.1 0.7 ± 0.1

2 1A 1.3 50 13.5 ± 0.3 137.1 ± 2.5 2.1 ± 0.3 3.8 ± 0.3 1.8 ± 0.4

2 1A 1.3 100 21.8 ± 0.5 175.9 ± 3.9 1.0 ± 0.0 2.1 ± 0.1 1.2 ± 0.1

2 1A 1.3 200 41.0 ± 0.8 234.8 ± 3.2 0.5 ± 0.1 1.4 ± 0.2 0.9 ± 0.1

2 1A 1.3 300 66.0 ± 0.6 300.2 ± 4.5 0.3 ± 0.1 1.1 ± 0.1 0.8 ± 0.1

Average 1.0 2.0 1.1

Table 3.6: Upper bound comparison: Train 2, Class 1A.

Train Class α Horizon TOP (time) LR (time) ∆DLP
TOP ∆DLP

LR ∆TOP
LR

2 2A 1.0 50 14.7 ± 0.3 158.4 ± 4.2 2.2 ± 0.2 3.8 ± 0.8 1.6 ± 1.0

2 2A 1.0 100 24.0 ± 0.4 195.6 ± 5.7 1.3 ± 0.1 2.8 ± 0.6 1.5 ± 0.6

2 2A 1.0 200 45.5 ± 0.4 275.3 ± 4.7 0.8 ± 0.0 1.7 ± 0.2 1.0 ± 0.2

2 2A 1.0 300 78.1 ± 3.7 370.5 ± 5.1 0.4 ± 0.1 1.4 ± 0.3 0.9 ± 0.4

2 2A 1.1 50 14.7 ± 0.4 155.7 ± 5.3 2.3 ± 0.2 4.5 ± 0.5 2.3 ± 0.7

2 2A 1.1 100 24.1 ± 0.2 185.6 ± 5.6 1.2 ± 0.1 2.8 ± 0.5 1.6 ± 0.5

2 2A 1.1 200 44.8 ± 1.1 261.7 ± 7.9 0.7 ± 0.1 2.0 ± 0.0 1.3 ± 0.0

2 2A 1.1 300 76.9 ± 2.6 350.5 ± 3.9 0.4 ± 0.0 1.6 ± 0.4 1.1 ± 0.4

2 2A 1.2 50 14.6 ± 0.1 142.6 ± 9.7 2.3 ± 0.1 4.5 ± 0.3 2.2 ± 0.4

2 2A 1.2 100 24.1 ± 1.2 187.3 ± 1.1 1.2 ± 0.3 2.6 ± 0.2 1.3 ± 0.3

2 2A 1.2 200 44.8 ± 0.8 249.7 ± 4.4 0.6 ± 0.1 1.6 ± 0.2 1.0 ± 0.3

2 2A 1.2 300 75.0 ± 1.5 339.6 ± 5.6 0.4 ± 0.0 1.5 ± 0.2 1.1 ± 0.1

2 2A 1.3 50 15.0 ± 0.7 152.8 ± 8.3 1.9 ± 0.4 4.3 ± 0.3 2.5 ± 0.1

2 2A 1.3 100 23.8 ± 0.1 178.4 ± 5.2 1.2 ± 0.1 2.1 ± 0.1 1.0 ± 0.2

2 2A 1.3 200 43.4 ± 1.2 240.3 ± 3.0 0.6 ± 0.0 1.7 ± 0.2 1.1 ± 0.2

2 2A 1.3 300 70.9 ± 1.9 323.5 ± 6.7 0.4 ± 0.0 1.3 ± 0.1 0.9 ± 0.1

Average 1.1 2.5 1.4

Table 3.7: Upper bound comparison: Train 2, Class 2A.

Capacity Pooling for Network Revenue Management 102

Train Class α Horizon TOP (time) LR (time) ∆DLP
TOP ∆DLP

LR ∆TOP
LR

2 3A 1.0 50 15.4 ± 0.5 166.1 ± 6.7 3.1 ± 0.3 4.2 ± 0.6 1.2 ± 0.7

2 3A 1.0 100 25.4 ± 0.3 202.2 ± 4.8 1.5 ± 0.1 2.4 ± 0.5 1.0 ± 0.6

2 3A 1.0 200 49.8 ± 0.6 295.4 ± 2.4 0.7 ± 0.0 2.0 ± 0.1 1.4 ± 0.1

2 3A 1.0 300 85.7 ± 2.7 401.0 ± 1.1 0.4 ± 0.1 1.5 ± 0.3 1.1 ± 0.4

2 3A 1.1 50 15.7 ± 0.8 154.4 ± 7.1 2.6 ± 0.3 3.8 ± 0.6 1.3 ± 0.4

2 3A 1.1 100 25.4 ± 0.3 197.6 ± 2.2 1.4 ± 0.0 2.4 ± 0.1 1.1 ± 0.1

2 3A 1.1 200 48.8 ± 0.5 277.2 ± 7.5 0.7 ± 0.1 1.5 ± 0.1 0.7 ± 0.0

2 3A 1.1 300 83.5 ± 1.8 371.4 ± 4.0 0.5 ± 0.1 1.1 ± 0.0 0.6 ± 0.1

2 3A 1.2 50 15.3 ± 0.7 154.3 ± 6.6 2.3 ± 0.1 3.9 ± 0.3 1.7 ± 0.2

2 3A 1.2 100 25.7 ± 0.9 189.4 ± 3.6 1.2 ± 0.1 2.3 ± 0.1 1.1 ± 0.0

2 3A 1.2 200 48.6 ± 1.3 268.3 ± 10.9 0.6 ± 0.0 1.6 ± 0.1 1.0 ± 0.1

2 3A 1.2 300 82.5 ± 2.7 355.9 ± 5.9 0.4 ± 0.0 1.2 ± 0.0 0.9 ± 0.0

2 3A 1.3 50 15.6 ± 0.8 157.5 ± 6.0 2.1 ± 0.1 4.4 ± 0.2 2.3 ± 0.3

2 3A 1.3 100 25.4 ± 0.5 182.9 ± 12.0 1.0 ± 0.1 2.2 ± 0.1 1.2 ± 0.1

2 3A 1.3 200 48.3 ± 1.8 252.3 ± 3.3 0.6 ± 0.1 1.6 ± 0.1 1.0 ± 0.0

2 3A 1.3 300 78.7 ± 1.0 334.4 ± 1.2 0.4 ± 0.0 1.2 ± 0.1 0.8 ± 0.1

Average 1.2 2.3 1.1

Table 3.8: Upper bound comparison: Train 2, Class 3A.

Train Class α Horizon δLR
PA δLR

PO δLR
IR δLR

DLP

1 1A 1.00 50 15.12* 1.69 36.02* 43.96*

1 1A 1.00 100 9.18* 2.24* 16.05* 24.5*

1 1A 1.00 200 2.94* 1.03* 9.15* 13.37*

1 1A 1.00 300 1.94* 0.92 6.51* 9.69*

1 1A 1.10 50 15.54* 3.28* 37.36* 46.05*

1 1A 1.10 100 7.81* 2.18* 17.85* 22.86*

1 1A 1.10 200 3.18* 1.05* 8.06* 13.01*

1 1A 1.10 300 0.28 1.06* 4.08* 6.55*

1 1A 1.20 50 11.72* 2.2* 31.67* 35.83*

1 1A 1.20 100 4.09* 1.38 14.17* 19.57*

1 1A 1.20 200 0.88 1.39* 6.23* 9.18*

1 1A 1.20 300 -1.03* 1.49* 3.21* 4.94*

1 1A 1.30 50 13.19* 3.64* 37.1* 43.87*

1 1A 1.30 100 6.82* 3.66* 19.38* 24.15*

1 1A 1.30 200 0.26 1.28* 8.05* 10.25*

1 1A 1.30 300 -1.83* 1.53* 2.87* 4.94*

Average 5.6 1.9 16.1 20.8

Table 3.9: Revenue comparison: Train 1, Class 1A.

Capacity Pooling for Network Revenue Management 103

Train Class α Horizon δLR
PA δLR

PO δLR
IR δLR

DLP

1 3A 1.00 50 14.72* 1.44 35.96* 43.59*

1 3A 1.00 100 8.62* 2.76* 19.24* 26.05*

1 3A 1.00 200 3.28* 0.99 9.59* 13.97*

1 3A 1.00 300 2.02* 1.0* 5.39* 9.72*

1 3A 1.10 50 15.13* 2.69* 41.56* 46.13*

1 3A 1.10 100 6.83* 2.6* 17.87* 25.41*

1 3A 1.10 200 2.66* 1.17* 7.59* 11.87*

1 3A 1.10 300 0.31 1.66* 4.47* 7.99*

1 3A 1.20 50 14.21* 1.93 36.57* 38.78*

1 3A 1.20 100 5.87* 2.58* 14.72* 21.61*

1 3A 1.20 200 1.06 2.09* 8.92* 13.17*

1 3A 1.20 300 -0.52 1.81* 3.84* 7.83*

1 3A 1.30 50 11.48* 3.47* 45.0* 45.52*

1 3A 1.30 100 4.05* 3.02* 16.71* 22.68*

1 3A 1.30 200 0.08 1.53* 6.55* 9.85*

1 3A 1.30 300 -1.48* 2.07* 4.34* 6.99*

Average 5.6 2.1 17.4 21.9

Table 3.10: Revenue comparison: Train 1, Class 3A.

Train Class α Horizon δLR
PA δLR

PO δLR
IR δLR

DLP

2 1A 1.00 50 12.04* 1.74 31.64* 31.85*

2 1A 1.00 100 5.46* 2.92* 13.95* 17.21*

2 1A 1.00 200 1.06* 1.2* 4.87* 7.37*

2 1A 1.00 300 -0.08 0.93* 3.05* 4.9*

2 1A 1.10 50 9.33* 2.51* 31.12* 32.46*

2 1A 1.10 100 4.63* 2.53* 11.73* 14.29*

2 1A 1.10 200 0.45 1.42* 5.92* 7.21*

2 1A 1.10 300 -0.94* 1.41* 3.53* 4.23*

2 1A 1.20 50 7.46* 2.74* 32.4* 33.76*

2 1A 1.20 100 3.46* 2.12* 13.52* 15.72*

2 1A 1.20 200 0.43 1.84* 5.46* 8.09*

2 1A 1.20 300 -1.4* 1.51* 2.89* 3.66*

2 1A 1.30 50 7.95* 2.54* 31.19* 31.48*

2 1A 1.30 100 3.58* 2.54* 11.58* 12.81*

2 1A 1.30 200 -0.68 1.16* 5.87* 6.8*

2 1A 1.30 300 -1.99* 1.94* 2.8* 3.59*

Average 3.2 1.9 13.2 17.7

Table 3.11: Revenue comparison: Train 2, Class 1A.

Capacity Pooling for Network Revenue Management 104

Train Class α Horizon δLR
PA δLR

PO δLR
IR δLR

DLP

2 2A 1.00 50 14.15* 3.22* 26.28* 33.0*

2 2A 1.00 100 6.39* 1.98* 12.87* 16.18*

2 2A 1.00 200 3.21* 1.0* 7.67* 10.03*

2 2A 1.00 300 1.24* 0.40 4.5* 6.17*

2 2A 1.10 50 10.02* 2.23* 24.12* 25.26*

2 2A 1.10 100 4.47* 1.83* 13.59* 14.26*

2 2A 1.10 200 1.08* 1.36* 7.11* 8.48*

2 2A 1.10 300 -0.14 1.33* 4.15* 4.51*

2 2A 1.20 50 9.97* 1.58 30.31* 31.19*

2 2A 1.20 100 5.03* 1.54* 13.93* 16.83*

2 2A 1.20 200 1.72* 1.72* 7.2* 8.31*

2 2A 1.20 300 -1.32* 1.66* 4.01* 3.92*

2 2A 1.30 50 10.25* 1.96* 31.94* 35.46*

2 2A 1.30 100 4.03* 2.22* 15.96* 18.19*

2 2A 1.30 200 -0.69 1.66* 7.18* 8.35*

2 2A 1.30 300 -1.89* 1.78* 3.09* 4.26*

Average 4.2 1.7 13.3 15.2

Table 3.12: Revenue comparison: Train 2, Class 2A.

Train Class α Horizon δLR
PA δLR

PO δLR
IR δLR

DLP

2 3A 1.00 50 16.43* 2.28* 27.71* 33.64*

2 3A 1.00 100 8.99* 2.01* 18.19* 20.36*

2 3A 1.00 200 2.79* 1.14* 7.91* 11.05*

2 3A 1.00 300 1.08* 0.71 3.4* 5.3*

2 3A 1.10 50 14.0* 2.76* 29.61* 30.92*

2 3A 1.10 100 5.09* 1.75* 14.73* 15.48*

2 3A 1.10 200 2.2* 1.45* 6.41* 7.69*

2 3A 1.10 300 0.23 1.16* 3.13* 4.54*

2 3A 1.20 50 12.13* 1.73* 29.65* 30.52*

2 3A 1.20 100 5.4* 1.56* 16.3* 18.29*

2 3A 1.20 200 1.78* 2.01* 7.7* 8.85*

2 3A 1.20 300 0.25 1.9* 4.64* 5.41*

2 3A 1.30 50 10.06* 1.7* 30.04* 33.1*

2 3A 1.30 100 5.38* 1.82* 15.77* 22.47*

2 3A 1.30 200 0.79 2.05* 6.67* 8.78*

2 3A 1.30 300 -0.28 2.57* 5.07* 5.46*

Average 5.4 1.8 14.2 16.4

Table 3.13: Revenue comparison: Train 2, Class 3A.

Bibliography

Adelman, Daniel. 2007. Dynamic bid prices in revenue management. Operations Research, 55

(4), 647-661.

Ahmed, Asrar, Milind G Sohoni, Chaithanya Bandi. 2022. Parameterized approximations for

the two-sided assortment optimization. Operations Research Letters, 50 (4), 399-406.

Anderson, Ross, Itai Ashlagi, David Gamarnik, Yash Kanoria. 2014. A dynamic model of

barter exchange. Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms. SIAM, 1925-1933.

Aouad, Ali, Daniela Saban. 2020. Online assortment optimization for two-sided matching plat-

forms. Available at SSRN 3712553 , .

Arnosti, Nick, Ramesh Johari, Yash Kanoria. 2014. Managing congestion in decentralized match-

ing markets. Proceedings of the Fifteenth ACM Conference on Economics and Computation.

451-451.

Arora, SR, MC Puri, Kanti Swarup. 1977. The set covering problem with linear fractional

functional. Indian Journal of Pure Applied Mathematics, 8 (5), 578-588.

Ashlagi, Itai, Anilesh K Krishnaswamy, Rahul Makhijani, Daniela Saban, Kirankumar Shi-

ragur. 2019. Assortment planning for two-sided sequential matching markets. arXiv preprint

arXiv:1907.04485 , (https://arxiv.org/abs/1907.04485).

Avadhanula, Vashist, Jalaj Bhandari, Vineet Goyal, Assaf Zeevi. 2016. On the tightness of an

LP relaxation for rational optimization and its applications. Operations Research Letters, 44

(5), 612-617.

Beal, Logan DR, Daniel C Hill, R Abraham Martin, John D Hedengren. 2018. Gekko optimiza-

tion suite. Processes, 6 (8), 106.

Benson, Harold P. 2007. A simplicial branch and bound duality-bounds algorithm for the linear

sum-of-ratios problem. European Journal of Operational Research, 182 (2), 597-611.

105

https://arxiv.org/abs/1907.04485

Bibliography 106

Bertsimas, Dimitris, Sanne De Boer. 2005. Simulation-based booking limits for airline revenue

management. Operations Research, 53 (1), 90-106.

Boros, Endre, Peter L Hammer. 2002. Pseudo-boolean optimization. Discrete Applied Mathe-

matics, 123 (1-3), 155-225.

Borrero, Juan S, Colin Gillen, Oleg A Prokopyev. 2017. Fractional 0–1 programming: Applica-

tions and algorithms. Journal of Global Optimization, 69 (1), 255-282.

Bront, Juan José Miranda, Isabel Méndez-Dı́az, Gustavo Vulcano. 2009. A column generation

algorithm for choice-based network revenue management. Operations Research, 57 (3), 769-

784.

Caro, Felipe, Victor Mart́ınez-de Albéniz, Paat Rusmevichientong. 2014. The assortment pack-

ing problem: Multiperiod assortment planning for short-lived products. Management Science,

60 (11), 2701-2721.

Charnes, Abraham, William W Cooper. 1962. Programming with linear fractional functionals.

Naval Research logistics quarterly , 9 (3-4), 181-186.

Chen, Danny Z, Ovidiu Daescu, Yang Dai, Naoki Katoh, Xiadong Wu, Jinhui Xu. 2000. Op-

timizing the sum of linear fractional functions and applications. Proceedings of the eleventh

annual ACM-SIAM symposium on Discrete algorithms. Association for Computing Machin-

ery, Society for Industrial and Applied Mathematics, 707-716.

Chen, Xi, Chao Shi, Yining Wang, Yuan Zhou. 2021. Dynamic assortment planning under

nested logit models. Production and Operations Management , 30 (1), 85-102.

Ciancimino, A, G Inzerillo, Stefano Lucidi, Laura Palagi. 1999. A mathematical programming

approach for the solution of the railway yield management problem. Transportation science,

33 (2), 168-181.

Davis, James M, Guillermo Gallego, Huseyin Topaloglu. 2014. Assortment optimization under

variants of the nested logit model. Operations Research, 62 (2), 250-273.

Depetrini, Daniele, Marco Locatelli. 2011. Approximation of linear fractional-multiplicative

problems. Mathematical Programming , 128 (1), 437-443.

Désir, Antoine, Vineet Goyal, Jiawei Zhang. 2022. Capacitated assortment optimization: Hard-

ness and approximation. Operations Research, 70 (2), 893-904.

Dickerson, John P, Ariel D Procaccia, Tuomas Sandholm. 2013. Failure-aware kidney exchange.

Proceedings of the Fourteenth ACM Conference on Electronic Commerce. 323-340.

Dinkelbach, Werner. 1967. On nonlinear fractional programming. Management Science, 13

(7), 492-498.

Bibliography 107

Drezner, Zvi, Siegfried Schaible, David Simchi-Levi. 1990. Queueing-location problems on the

plane. Naval Research Logistics (NRL), 37 (6), 929-935.

Dutta, Goutam, Priyanko Ghosh. 2012. A passenger revenue management system (rms) for a

national railway in an emerging asian economy. Journal of Revenue and Pricing Management ,

11 487-499.

Feldman, Jacob, Huseyin Topaloglu. 2015. Bounding optimal expected revenues for assortment

optimization under mixtures of multinomial logits. Production and Operations Management ,

24 (10), 1598-1620.

Freund, Roland W, Florian Jarre. 2001. Solving the sum-of-ratios problem by an interior-point

method. Journal of Global Optimization, 19 (1), 83-102.

Gale, David, Lloyd S Shapley. 1962. College admissions and the stability of marriage. The

American Mathematical Monthly , 69 (1), 9-15.

Gallego, Guillermo, Huseyin Topaloglu, et al. 2019. Revenue management and pricing analytics,

vol. 209. Springer.

Golrezaei, Negin, Hamid Nazerzadeh, Paat Rusmevichientong. 2014. Real-time optimization of

personalized assortments. Management Science, 60 (6), 1532-1551.

Gopalakrishnan, Raja, Narayan Rangaraj. 2010. Capacity management on long-distance pas-

senger trains of indian railways. Interfaces, 40 (4), 291-302.

Hammer, I., P.L. Ivǎnescu, P.L. Hammer, P.I. Ivănescu, S. Rudeanu. 1968. Boolean Methods in

Operations Research and Related Areas. Econometrics and Operations Research, Springer-

Verlag. URL https://books.google.co.in/books?id=7EPxAAAAMAAJ.

Han, Shaoning, Andres Gomez, Oleg A Prokopyev. 2020. Fractional 0-1 programming and

submodularity. arXiv preprint arXiv:2012.07235 , .

Hansen, Pierre, Marcus V Poggi de Aragão, Celso C Ribeiro. 1990. Boolean query optimization

and the 0-1 hyperbolic sum problem. Annals of Mathematics and Artificial Intelligence, 1

(1-4), 97-109.

Hansen, Pierre, Marcus V Poggi de Aragão, Celso C Ribeiro. 1991. Hyperbolic 0–1 programming

and query optimization in information retrieval. Mathematical Programming , 52 (1), 255-263.

Jiang, Xiushan, Xiqun Chen, Lei Zhang, Ruifeng Zhang. 2015. Dynamic demand forecasting and

ticket assignment for high-speed rail revenue management in china. Transportation Research

Record , 2475 (1), 37-45.

Kunnumkal, Sumit, Victor Mart́ınez-de Albéniz. 2019. Tractable approximations for assortment

planning with product costs. Operations Research, 67 (2), 436-452.

https://books.google.co.in/books?id=7EPxAAAAMAAJ

Bibliography 108

Kuno, Takahito. 2002. A branch-and-bound algorithm for maximizing the sum of several linear

ratios. Journal of Global optimization, 22 (1), 155-174.

Kuno, Takahito. 2005. A revision of the trapezoidal branch-and-bound algorithm for linear

sum-of-ratios problems. Journal of Global Optimization, 33 (2), 215-234.

Li, Guang, Paat Rusmevichientong, Huseyin Topaloglu. 2015. The d-level nested logit model:

Assortment and price optimization problems. Operations Research, 63 (2), 325-342.

Li, Han-Lin. 1994. A global approach for general 0–1 fractional programming. European Journal

of Operational Research, 73 (3), 590-596.

Matsui, Tomomi. 1996. Np-hardness of linear multiplicative programming and related problems.

Journal of Global Optimization, 9 (2), 113-119.

Megiddo, Nimrod. 1979. Combinatorial optimization with rational objective functions. Math-

ematics of Operations Research, 4 (4), 414-424. URL http://www.jstor.org/stable/

3689226.

Méndez-Dı́az, Isabel, Juan José Miranda-Bront, Gustavo Vulcano, Paula Zabala. 2014. A

branch-and-cut algorithm for the latent-class logit assortment problem. Discrete Applied

Mathematics, 164 246-263.

Ministry of Railways, India. 2019. Indian railwaysannual report & accounts. https://

indianrailways.gov.in/railwayboard/uploads/directorate/stat_econ/Year_Book/

Indian%20Railways%20Annual%20Report%20%26%20Accounts%20English%202018-19.pdf.

Nemhauser, George L, Laurence A Wolsey, Marshall L Fisher. 1978. An analysis of approxi-

mations for maximizing submodular set functions—i. Mathematical programming , 14 (1),

265-294.

Page-Tickell, Rebecca, Elaine Yerby. 2020. Conflict and shifting boundaries in the gig economy:

An interdisciplinary analysis. Emerald Group Publishing.

Pardalos, Panos M. 1996. Continuous Approaches to Discrete Optimization Problems. Springer

US, Boston, MA, 313-325.

Prokopyev, Oleg A, Hong-Xuan Huang, Panos M Pardalos. 2005. On complexity of uncon-

strained hyperbolic 0–1 programming problems. Operations Research Letters, 33 (3), 312-

318.

Rao, MR. 1971. Cluster analysis and mathematical programming. Journal of the American

statistical association, 66 (335), 622-626.

Roth, Alvin E. 1984. The evolution of the labor market for medical interns and residents: a

case study in game theory. Journal of Political Economy , 92 (6), 991-1016.

http://www.jstor.org/stable/3689226
http://www.jstor.org/stable/3689226
https://indianrailways.gov.in/railwayboard/uploads/directorate/stat_econ/Year_Book/Indian%20Railways%20Annual%20Report%20%26%20Accounts%20English%202018-19.pdf
https://indianrailways.gov.in/railwayboard/uploads/directorate/stat_econ/Year_Book/Indian%20Railways%20Annual%20Report%20%26%20Accounts%20English%202018-19.pdf
https://indianrailways.gov.in/railwayboard/uploads/directorate/stat_econ/Year_Book/Indian%20Railways%20Annual%20Report%20%26%20Accounts%20English%202018-19.pdf

Bibliography 109

Roth, Alvin E. 1991. A natural experiment in the organization of entry-level labor markets:

regional markets for new physicians and surgeons in the united kingdom. The American

Economic Review , 415-440.

Roth, Alvin E, Tayfun Sönmez, M Utku Ünver. 2004. Kidney exchange. The Quarterly Journal

of Economics, 119 (2), 457-488.

Roth, Alvin E, Tayfun Sönmez, M Utku Ünver. 2007. Efficient kidney exchange: Coincidence

of wants in markets with compatibility-based preferences. The American Economic Review ,

97 (3), 828-851.

Rusmevichientong, Paat, Zuo-Jun Max Shen, David B Shmoys. 2009. A ptas for capacitated

sum-of-ratios optimization. Operations Research Letters, 37 (4), 230-238.

Rusmevichientong, Paat, David Shmoys, Chaoxu Tong, Huseyin Topaloglu. 2014. Assortment

optimization under the multinomial logit model with random choice parameters. Production

and Operations Management , 23 (11), 2023-2039.

Sen, Alper, Alper Atamtürk, Philip Kaminsky. 2018. A conic integer optimization approach to

the constrained assortment problem under the mixed multinomial logit model. Operations

Research, 66 (4), 994-1003.

Skiscim, Christopher C, Susan W Palocsay. 2001. Minimum spanning trees with sums of ratios.

Journal of Global Optimization, 19 (2), 103-120.

Smith, Barry C, John F Leimkuhler, Ross M Darrow. 1992. Yield management at american

airlines. interfaces, 22 (1), 8-31.

Sönmez, Tayfun, M Utku Ünver. 2010. Course bidding at business schools. International

Economic Review , 51 (1), 99-123.

Talluri, Kalyan, Garrett Van Ryzin. 1998. An analysis of bid-price controls for network revenue

management. Management science, 44 (11-part-1), 1577-1593.

Talluri, Kalyan, Garrett Van Ryzin. 2004. Revenue management under a general discrete choice

model of consumer behavior. Management Science, 50 (1), 15-33.

Tawarmalani, Mohit, Shabbir Ahmed, Nikolaos V Sahinidis. 2002. Global optimization of 0-1

hyperbolic programs. Journal of Global Optimization, 24 (4), 385-416.

Topaloglu, Huseyin. 2009. Using lagrangian relaxation to compute capacity-dependent bid prices

in network revenue management. Operations Research, 57 (3), 637-649.

Torrico, Alfredo, Margarida Carvalho, Andrea Lodi. 2020. Provable guarantees for general two-

sided sequential matching markets. arXiv preprint arXiv:2006.04313 , (https://arxiv.org/

abs/2006.04313).

https://arxiv.org/abs/2006.04313
https://arxiv.org/abs/2006.04313

Bibliography 110

Tyson, Gareth, Vasile C Perta, Hamed Haddadi, Michael C Seto. 2016. A first look at user ac-

tivity on tinder. 2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM). IEEE, 461-466.

Ünver, M Utku. 2010. Dynamic kidney exchange. The Review of Economic Studies, 77 (1),

372-414.

Van Ryzin, Garrett, Gustavo Vulcano. 2008. Simulation-based optimization of virtual nesting

controls for network revenue management. Operations research, 56 (4), 865-880.

Williamson, Elizabeth Louise. 1992. Airline network seat inventory control: Methodologies and

revenue impacts. Ph.D. thesis, Massachusetts Institute of Technology.

Wu, Tai-Hsi. 1997. A note on a global approach for general 0–1 fractional programming. Euro-

pean Journal of Operational Research, 101 (1), 220-223.

Yan, Zhenying, Xiaojuan Li, Qi Zhang, Baoming Han. 2020. Seat allocation model for high-

speed railway passenger transportation based on flexible train composition. Computers &

Industrial Engineering , 142 106383.

You, Peng-Sheng. 2008. An efficient computational approach for railway booking problems.

European Journal of Operational Research, 185 (2), 811-824.

Zhang, Rui, Saied Samiedaluie, Dan Zhang. 2022. Product-based approximate linear programs

for network revenue management. Operations Research, 70 (5), 2837-2850.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by
ProQuest LLC a part of Clarivate ().

Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway

Ann Arbor, MI 48108 USA

31840420

2025

	Abstract
	Acknowledgements
	1 Two-Sided Assortment Optimization
	1.1 Introduction
	1.2 Literature Review
	1.2.1 Matching theory
	1.2.2 Assortment Optimization

	1.3 Two-Sided Assortment Optimization Problem
	1.3.1 Two-sided Assortment Optimization Model
	1.3.2 Computational Complexity
	1.3.3 Exact MILP Reformulation

	1.4 Greedy Heuristics
	1.4.1 Revenue Ordered Heuristic:
	1.4.2 Greedy Separable Heuristic

	1.5 Relaxations and Bounds
	1.5.1 One-Sided Relaxation
	1.5.1.1 Continuous Relaxation

	1.5.2 Two-Sided Relaxation

	1.6 Numerical Analysis
	1.7 Conclusion
	1.8 Appendix
	1.8.1 Submodularity of One-sided Relaxation
	1.8.2 Uniform Distribution

	2 On Solving Discrete Fractional Programs and Its Applications to Assortment Optimization
	2.1 Introduction
	2.2 Related Work and Contribution
	2.2.1 Literature Review
	2.2.2 Contribution

	2.3 ZOFP-CS: Formulation and Standard Solutions
	2.3.1 Formulation
	2.3.2 Standard Solutions
	2.3.2.1 Mixed Integer Linear Programming Formulation.
	2.3.2.2 Local Search Heuristic.

	2.4 The Continuous Reformulation and The Direct Relaxation
	2.4.1 Reformulation
	2.4.2 Direct Relaxation

	2.5 Applications: Tighter Bounds and Improved Local Maxima
	2.6 Numerical Experiments
	2.7 Conclusions

	3 Capacity Pooling for Network Revenue Management
	3.1 Introduction
	3.2 Literature Review
	3.3 Model
	3.4 Upper Bounds
	3.4.1 Lagrange Relaxation
	3.4.2 Deterministic Linear Program
	3.4.3 Standard NRM Lagrange Relaxation

	3.5 Numerical Experiments
	3.5.1 Upper bound
	3.5.2 Revenue

	3.6 Conclusion
	3.7 Appendix
	3.7.1 Proofs
	3.7.2 Numerical Results

	Bibliography

