Impact Assessment in Observational Studies: A Classification and Regression Tree Approach

Shmueli, G and Mani, D (2013) Impact Assessment in Observational Studies: A Classification and Regression Tree Approach. Working Paper. Indian School of Business.

[thumbnail of forest (2 files merged) (4).pdf]
forest (2 files merged) (4).pdf

| Preview


We introduce a tree-based approach for assessing the performance impact of diverse self-selected interventions in management research. Our approach, which takes advantage of "Big Data", or observational data with large sample sizes and a large number of variables, offers important advantages over traditional propensity score matching. In particular, the tree-based approach to assessing the impact of interventions offers a data-driven methodology that applies to a wide range of intervention types (binary, polytomous, continuous), allows for examination of nascent interventions whose selection cannot be theoretically specified a priori, identifies pre-intervention variables that correlate with the self-selected intervention, and presents comparisons of ensuing performance in visuals that are easy to discern and understand. We illustrate the method and the insights that it yields in the context of two studies: analysis of the impact of an eGov service in India, and comparison of performance across different contractual pricing mechanisms and contract durations in the outsourcing of technology and technology-enabled business functions.

ISB Creiators:
ISB Creators
Shmueli, G
Mani, D
Item Type: Monograph (Working Paper)
Subjects: Business Analytics
Depositing User: LRC ISB
Date Deposited: 31 Oct 2014 05:07
Last Modified: 02 Nov 2014 05:19
Publisher URL:
Related URLs:

Actions (login required)

View Item View Item
Statistics for DESI ePrint 85 Statistics for this ePrint Item