Bapna, R and Goes, P and Gupta, A and Karuga, G
(2008)
Predicting bidders' willingness to pay in online multiunit ascending auctions: Analytical and empirical insights.
INFORMS Journal on Computing, 20 (3).
pp. 345-355.
Full text not available from this repository.
(
Request a copy)
Abstract
we develop a real-time estimation approach to predict bidders' maximum willingness to pay in a multiunit ascending uniform-price and discriminatory-price (Yankee) online auction. Our two-stage approach begins with a bidder classification step, which is followed by an analytical prediction model. The classification model identifies bidders as either adopting a myopic best-response (MBR) bidding strategy or a non-MBR strategy. We then use a generalized bid-inversion function to estimate the willingness to pay for MBR bidders. We empirically validate our two-stage approach using data from two popular online auction sites. Our joint classification-and- prediction approach outperforms two other naive prediction strategies that draw random valuations between a bidder's current bid and the known market upper bound. Our prediction results indicate that, on average, our estimates are within 2% of bidders' revealed willingness to pay for Yankee and uniform-price multiunit auctions. We discuss how our results can facilitate mechanism-design changes such as dynamic-bid increments and dynamic buy-it-now prices.
Actions (login required)
 |
View Item |